Incorporation of Magnetic Nanoparticles and Paramagnetic

Total Page:16

File Type:pdf, Size:1020Kb

Incorporation of Magnetic Nanoparticles and Paramagnetic Incorporation of magnetic nanoparticles and paramagnetic molecules into human red blood cells for use as proton relaxivity enhancers for blood pool magnetic resonance imaging. Mounir Ibrahim (MSc) This thesis is presented in partial fulfilment of the requirements for the degree of the Doctor of Philosophy of The University of Western Australia School of Physics 2013 Abstract Abstract Chelated gadolinium compounds and magnetic nanoparticles have been developed for use as magnetic resonance imaging (MRI) contrast agents. However, both chelated gadolinium compounds and magnetic particles are rapidly cleared from the blood stream, gadolinium via renal excretion and magnetic nanoparticles by the reticulo-endothelial system. In order to extend the lifetime of the contrast agents in the blood stream, we have encapsulated contrast agents within red blood cells (RBCs) as a potential strategy for slowing their clearance from the blood pool. A key strategy for loading RBCs with contrast agent is to incubate them in the presence of the contrast agents under hypo-osmolar conditions. Under these conditions the cells swell and holes open up in the cell membranes allowing particles to pass into or out from the cell. The RBCs can be re-sealed by bringing the osmolarity of the medium back up to physiological values. Human RBCs were loaded with magnetic nanoparticles and gadoteric acid by two different methods. The methods comprised either hypo-osmolar incubation or a hypo-osmolar pulse in the presence of gadoteric acid or magnetic nanoparticles. The efficacy of the resulting RBCs as contrast agents for MRI was assessed by measuring the cell specific longitudinal and transverse proton relaxivities in a magnetic field of magnitude 1.4T. Human RBCs were loaded with four different magnetic iron oxide nanoparticle systems (three different polymer coated systems and one uncoated system (-Fe2O3)) using the two techniques. Polymers used comprised poly(ethylene oxide) (PEO), poly(acrylic acid) (diblock), and propylene oxide-b-ethylene oxide (PPO-b-PEO) (triblock). The aim of this study was to compare the effectiveness of magnetic resonance contrast enhancement by RBCs loaded with magnetic nanoparticles by the two different methods. Here we also tested the hypothesis that only a fraction of the RBCs in a sample open pores to enable iron oxide nanoparticles loading with each of the techniques. The optimum osmolarity for particle loading was found to be close to 200 mOsm, a condition at which the greatest fraction of particles in the incubating medium enter the cells. The maximum size of aggregate that enters the cells under 1 Abstract these conditions was found to be approximately 120 nm. Osmolarities of 150 mOsm or lower cause excessive cell destruction. At osmolarities of 200 mOsm and above, and with the osmotic pulse method, cell survival was typically about 70%. While use of uncoated magnetic nanoparticles was useful for studies of particle size limitations on cell loading, the inability to effectively wash extraneous particles from the cells makes quantitative interpretation of proton relaxivity enhancement problematical. Extraneous polymer-coated particles were easily washed from cells preparations facilitating quantitative interpretation of proton relaxometry measurements. For the polymer coated nanoparticle systems it was found that the osmotic pulse method of loading resulted in higher cell-specific transverse proton relaxivities (r2). Cell-specific transverse proton relaxivity up to 31 times higher than native red blood cells were achieved (using the triblock copolymer coated iron oxide nanoparticles introduced with the osmotic pulse technique). Human RBCs were also loaded with gadoteric acid by either hypo-osmolar incubation or a hypo-osmolar pulse in the presence of gadoteric acid. The aim of this study was to compare the effectiveness of magnetic resonance contrast enhancement by RBCs loaded with gadoteric acid by these two different methods. The resulting enhancements in proton relaxivities of cell suspensions in 1.4 T were measured and the effect of incubation osmolarity on the resulting cell specific proton relaxivity was also studied. The osmotic pulse method was found to yield the greatest cell-specific relaxivity enhancements (71-fold for longitudinal relaxivity and 39-fold for transverse relaxivity). The spatial distribution of the gadolinium within the cells was studied using energy filtered transmission electron microscopy to generate gadolinium M-edge jump ratio images. All surviving cells exposed to gadoteric acid under hypo-osmolar conditions showed enhanced (relative to control cells) and generally uniform intensity within the cells in gadolinium jump ratio images suggesting all cells are susceptible to loading and that the loading is generally spatially uniform within each cell. There was some evidence for a small amount of precipitation or aggregation of gadolinium within some cells prepared by the hypo- osmolar incubation method. 2 Table of Contents Table of contents List of Figures………………………………………. ............................................ 9 List of Abbreviations………. ................................................................................ 15 Statement of candidate contribution ...................................................................... 16 Acknowledgements ............................................................................................... 17 Chapter 1: Introduction 1.1 Magnetic Resonance Imaging development history ............................................. 18 1.2 Magnetic Resonance Imaging (Introduction) ........................................................ 19 1.2.1 MRI scanner .......................................................................................................... 21 1.3 Role of contrast agents .......................................................................................... 22 1.4 Limitations and side effects of current agents ....................................................... 23 1.5 Human blood function and red blood cells (RBCs) .............................................. 24 1.5.1 Blood function ........................................................................................................ 24 1.5.2 Red blood cells ....................................................................................................... 25 1.6 The concept of using red blood cells as a “Trojan Horse” for contrast agents ...... 27 1.6.1 Equation for manipulating osmolarity (diffusion and osmosis) ............................. 27 1.6.2 Manipulating red blood cells with osmotic pressure. ............................................ 31 1.6.3 Loading red blood cells: pore size and membrane reversibility ............................ 32 1.6.4 Previous methods of drug loading into red blood cells .......................................... 32 1.7 Aims of this study ................................................................................................... 34 Chapter 2: Theoretical Principles of MRI Contrast Agents 2.1 Basic magnetic resonance imaging theory ............................................................. 36 2.1.1 Proton magnetic relaxation .................................................................................... 39 2.1.1.1 Longitudinal (or spin-lattice) relaxation time T1 ................................................... 39 2.1.1.2 The transverse relaxation times T2 and T2* ........................................................... 40 2.1.1.3 Relationship between T2 and T2* ........................................................................... 42 2.2 Contrast agent mechanisms .................................................................................... 42 2.2.1 Ferromagnetism...................................................................................................... 44 2.2.2 Paramagnetism ....................................................................................................... 47 2.2.3 Superparamagnetism .............................................................................................. 48 3 Table of Contents 2.3 Mechanisms of longitudinal Proton Relaxation Enhancement by paramagnetic materials .......................................................................................49 2.4 Mechanisms of Transverse Proton Relaxtion Enhancement by Magnetized Particles ...................................................................................................................50 2.4.1 Static dephasing regime ...........................................................................................51 2.4.2 Motional averaging regime ......................................................................................52 2.4.3 Echo limited regime .................................................................................................52 Chapter 3: Materials and Equipments 3.1 Magnetic Nanoparticles ..........................................................................................54 3.1.1 Polymer coated Fe3O4 nanoparticles ......................................................................54 3.1.2 -Fe2O3 nanoparticles from Sigma Aldrich ............................................................54 3.1.2.1 Nanoparticle size fractionation ..............................................................................55 3.2 Gadoteric acid.........................................................................................................55 3.3 Transmission Electron
Recommended publications
  • List of Union Reference Dates A
    Active substance name (INN) EU DLP BfArM / BAH DLP yearly PSUR 6-month-PSUR yearly PSUR bis DLP (List of Union PSUR Submission Reference Dates and Frequency (List of Union Frequency of Reference Dates and submission of Periodic Frequency of submission of Safety Update Reports, Periodic Safety Update 30 Nov. 2012) Reports, 30 Nov.
    [Show full text]
  • Guideline on Core Smpc and Package Leaflet for Gadoteric Acid EMA/CHMP/337820/2016 Page 2/23
    1 26 May 2016 2 EMA/CHMP/337820/2016 3 Committee for Medicinal Products for Human Use (CHMP) 4 Guideline on core SmPC and Package Leaflet for gadoteric 5 acid 6 Draft Draft agreed by Radiopharmaceutical Drafting Group April 2016 Adopted by CHMP for release for consultation 26 May 2016 Start of public consultation 1 June 2016 End of consultation (deadline for comments) 30 September 2016 7 Comments should be provided using this template. The completed comments form should be sent to [email protected]. 8 Keywords Magnetic resonance, contrast media, gadolinium compounds, core SmPC, core Package Leaflet, gadoteric acid 9 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2016. Reproduction is authorised provided the source is acknowledged. 10 Guideline on core SmPC and Package Leaflet for gadoteric 11 acid 12 Table of contents 13 Executive summary ..................................................................................... 3 14 1. Introduction (background) ...................................................................... 3 15 2. Scope....................................................................................................... 3 16 3. Legal basis .............................................................................................. 3 17 4. Core SmPC and Package Leaflet for gadoteric acid .................................
    [Show full text]
  • Drug-Induced Anaphylaxis in China: a 10 Year Retrospective Analysis of The
    Int J Clin Pharm DOI 10.1007/s11096-017-0535-2 RESEARCH ARTICLE Drug‑induced anaphylaxis in China: a 10 year retrospective analysis of the Beijing Pharmacovigilance Database Ying Zhao1,2,3 · Shusen Sun4 · Xiaotong Li1,3 · Xiang Ma1 · Huilin Tang5 · Lulu Sun2 · Suodi Zhai1 · Tiansheng Wang1,3,6 Received: 9 May 2017 / Accepted: 19 September 2017 © The Author(s) 2017. This article is an open access publication Abstract Background Few studies on the causes of (50.1%), mucocutaneous (47.4%), and gastrointestinal symp- drug-induced anaphylaxis (DIA) in the hospital setting are toms (31.3%). A total of 249 diferent drugs were involved. available. Objective We aimed to use the Beijing Pharma- DIAs were mainly caused by antibiotics (39.3%), traditional covigilance Database (BPD) to identify the causes of DIA Chinese medicines (TCM) (11.9%), radiocontrast agents in Beijing, China. Setting Anaphylactic case reports from (11.9%), and antineoplastic agents (10.3%). Cephalospor- the BPD provided by the Beijing Center for Adverse Drug ins accounted for majority (34.5%) of antibiotic-induced Reaction Monitoring. Method DIA cases collected by the anaphylaxis, followed by fuoroquinolones (29.6%), beta- BPD from January 2004 to December 2014 were adjudi- lactam/beta-lactamase inhibitors (15.4%) and penicillins cated. Cases were analyzed for demographics, causative (7.9%). Blood products and biological agents (3.1%), and drugs and route of administration, and clinical signs and plasma substitutes (2.1%) were also important contributors outcomes. Main outcome measure Drugs implicated in DIAs to DIAs. Conclusion A variety of drug classes were impli- were identifed and the signs and symptoms of the DIA cases cated in DIAs.
    [Show full text]
  • Harmonised Bds Suppl 20070
    ABCDEF 1 EU Harmonised Birth Dates and related Data Lock Points, Supplementary list, 7 February 2007 Innovator brand name First DLP after Proposed Active substance name (INN) (for fixed combination 30 October Firm's Name Comments EU HBD products only) 2005 2 3 Aceclofenac 19900319 20080331 Almirall / UCB 4 Aciclovir 19810610 20060630 GSK 5 Adrafinil 19810710 20060131 Cephalon 6 Aldesleukine 19890703 20051231 Novartis NL=RMS Pfizer/Schwarz 7 Alprostadil (erectile dysfunction) 19840128 20080131 Pharma UK=RMS Alprostadil (peripheral arterial 19810723 20060731 Pfizer product differs from Schwarz Pharma 8 occlusive diseases) product Alprostadil (peripheral arterial 19841128 20051128 Schwarz Pharma product differs from Pfizer product 9 occlusive diseases) 10 Atenolol + chlorthalidone Tenoretic 19970909 20080908 AstraZeneca Azelaic acid 19881027 20060102 Schering AG / Pfizer AT = RMS 11 12 Aztreonam 19840804 20060803 BMS 13 Benazepril 19891128 20071130 Novartis Benazepril + hydrochlorothiazide Cibadrex 19920519 20070531 Novartis 14 15 Bisoprolol 19860128 20070930 Merck AG Bisoprolol + hydrochlorothiazide many product names 19920130 20061103 Merck AG 16 17 Botulinum Toxin A 19960906 20061030 Allergan currently 6-monthly PSURs 18 Brimonidine 19960906 20080930 Allergan UK=RMS 19 Brimonidine + timolol Combigan 19960906 20080930 Allergan UK=RMS 20 Bromperidol 20061115 J&J 21 Brotizolam 19830515 20071231 Boehringer Ingelheim 22 Budesonide 19920430 20070430 AstraZeneca 23 Budesonide + formoterol Symbicort 20000825 20070825 AstraZeneca 24 Buflomedil
    [Show full text]
  • ACR Manual on Contrast Media
    ACR Manual On Contrast Media 2021 ACR Committee on Drugs and Contrast Media Preface 2 ACR Manual on Contrast Media 2021 ACR Committee on Drugs and Contrast Media © Copyright 2021 American College of Radiology ISBN: 978-1-55903-012-0 TABLE OF CONTENTS Topic Page 1. Preface 1 2. Version History 2 3. Introduction 4 4. Patient Selection and Preparation Strategies Before Contrast 5 Medium Administration 5. Fasting Prior to Intravascular Contrast Media Administration 14 6. Safe Injection of Contrast Media 15 7. Extravasation of Contrast Media 18 8. Allergic-Like And Physiologic Reactions to Intravascular 22 Iodinated Contrast Media 9. Contrast Media Warming 29 10. Contrast-Associated Acute Kidney Injury and Contrast 33 Induced Acute Kidney Injury in Adults 11. Metformin 45 12. Contrast Media in Children 48 13. Gastrointestinal (GI) Contrast Media in Adults: Indications and 57 Guidelines 14. ACR–ASNR Position Statement On the Use of Gadolinium 78 Contrast Agents 15. Adverse Reactions To Gadolinium-Based Contrast Media 79 16. Nephrogenic Systemic Fibrosis (NSF) 83 17. Ultrasound Contrast Media 92 18. Treatment of Contrast Reactions 95 19. Administration of Contrast Media to Pregnant or Potentially 97 Pregnant Patients 20. Administration of Contrast Media to Women Who are Breast- 101 Feeding Table 1 – Categories Of Acute Reactions 103 Table 2 – Treatment Of Acute Reactions To Contrast Media In 105 Children Table 3 – Management Of Acute Reactions To Contrast Media In 114 Adults Table 4 – Equipment For Contrast Reaction Kits In Radiology 122 Appendix A – Contrast Media Specifications 124 PREFACE This edition of the ACR Manual on Contrast Media replaces all earlier editions.
    [Show full text]
  • ACR Manual on Contrast Media – Version 9, 2013 Table of Contents / I
    ACR Manual on Contrast Media Version 9 2013 ACR Committee on Drugs and Contrast Media ACR Manual on Contrast Media – Version 9, 2013 Table of Contents / i ACR Manual on Contrast Media Version 9 2013 ACR Committee on Drugs and Contrast Media © Copyright 2013 American College of Radiology ISBN: 978-1-55903-012-0 Table of Contents Topic Last Updated Page 1. Preface. V9 – 2013 . 3 2. Introduction . V7 – 2010 . 4 3. Patient Selection And Preparation Strategies . V7 – 2010 . 5 4. Injection of Contrast Media . V7 – 2010 . 13 5. Extravasation Of Contrast Media . V7 – 2010 . 17 6. Allergic-Like And Physiologic Reactions To Intravascular Iodinated Contrast Media . V9 – 2013 . 21 7. Contrast Media Warming . V8 – 2012 . 29 8. Contrast-Induced Nephrotoxicity . V8 – 2012 . 33 9. Metformin . V7 – 2010 . 43 10. Contrast Media In Children . V7 – 2010 . 47 11. Gastrointestinal (GI) Contrast Media In Adults: Indications And Guidelines V9 – 2013 . 55 12. Adverse Reactions To Gadolinium-Based Contrast Media . V7 – 2010 . 77 13. Nephrogenic Systemic Fibrosis . V8 – 2012 . 81 14. Treatment Of Contrast Reactions . V9 – 2013 . 91 15. Administration Of Contrast Media To Pregnant Or Potentially Pregnant Patients . V9 – 2013 . 93 16. Administration Of Contrast Media To Women Who Are Breast-Feeding . V9 – 2013 . 97 Table 1 – Indications for Use of Iodinated Contrast Media . V9 – 2013 . 99 Table 2 – Organ and System-Specific Adverse Effects from the Administration of Iodine-Based or Gadolinium-Based Contrast Agents. V9 – 2013 . 100 Table 3 – Categories of Acute Reactions . V9 – 2013 . 101 Table 4 – Treatment of Acute Reactions to Contrast Media in Children . V9 – 2013 .
    [Show full text]
  • Advisory Committee Briefing Document Medical Imaging Drugs Advisory Committee (MIDAC) September 8, 2017
    Dotarem® (gadoterate meglumine) Injection – NDA# 204781 Advisory Committee Optimark® (gadoversetamide) Injection - NDAs# 020937, 020975 & 020976 Briefing Document Advisory Committee Briefing Document Medical Imaging Drugs Advisory Committee (MIDAC) September 8, 2017 DOTAREM® (gadoterate meglumine) Injection NDA 204781 Guerbet LLC, 821 Alexander Rd, Princeton, NJ 08540 OPTIMARK® (gadoversetamide) Injection NDAs 020937, 020975 & 020976 Liebel-Flarsheim Company LLC, 1034 Brentwood Blvd., Richmond Heights, MO 63117 ADVISORY COMMITTEE BRIEFING MATERIALS AVAILABLE FOR PUBLIC RELEASE Information provided within this briefing document is based upon medical and scientific information available to date. ADVISORY COMMITTEE BRIEFING MATERIALS AVAILABLE FOR PUBLIC RELEASE Page 1 / 168 Dotarem® (gadoterate meglumine) Injection – NDA# 204781 Advisory Committee Optimark® (gadoversetamide) Injection - NDAs# 020937, 020975 & 020976 Briefing Document EXECUTIVE SUMMARY Gadolinium-based contrast agents (GdCAs) are essential for use in magnetic resonance imaging (MRI). Although non-contrast-enhanced MRI may be sufficient for use in some clinical conditions, contrast-enhanced MRI (CE-MRI) using GdCA provides additional vital diagnostic information in a number of diseases. It is widely recognized that CE-MRI increases diagnostic accuracy and confidence, and thus can impact the medical and/or surgical management of patients. Based on the chemical structure of the complexing ligand, GdCA are classified as linear (L-GdCA) or macrocyclic (M-GdCA) and can be ionic or nonionic and those characteristics have a dramatic influence on the stability of the GdCA. Dotarem®, a M-GdCA, was first approved in France in 1989. US-FDA approval was obtained in March 2013 for “intravenous use with MRI of the brain (intracranial), spine and associated tissues in adult and pediatric patients (2 years of age and older) to detect and visualize areas with disruption of the blood brain barrier (BBB) and/or abnormal vascularity”, at the dose of 0.1 mmol/kg BW.
    [Show full text]
  • PRESCRIBING INFORMATION CLARISCAN™ – Gadoteric Acid Please Refer to Full National Summary of Product Characteristics (Smpc) Before Prescribing
    PRESCRIBING INFORMATION CLARISCAN™ – gadoteric acid Please refer to full national Summary of Product Characteristics (SmPC) before prescribing. Further information available on request. PRESENTATION Clariscan 0.5 mmol/mL solution for injection. Solution for injection containing 279.3 mg/ml gadoteric acid (as gadoterate meglumine) equivalent to 0.5 mmol/mL. INDICATIONS For diagnostic use only. Clariscan should be used only when diagnostic information is essential and not available with unenhanced magnetic resonance imaging (MRI). Contrast agent for contrast enhancement in MRI for a better visualisation/delineation. Adult and paediatric population (0-18 years): lesions of the brain, spine, and surrounding tissues. Adults and children over 6 months Whole body MRI. Non-coronary angiography in adults only. DOSAGE AND METHOD OF ADMINISTRATION This medicinal product should only be administered by trained healthcare professionals with technical expertise in performing and interpreting gadolinium enhanced MRI. The lowest dose that provides sufficient enhancement for diagnostic purposes should be used. The dose should be calculated based on the patient’s body weight, and should not exceed the recommended dose per kilogram of body weight detailed in this section. MRI of brain and spine: Adults: The recommended dose is 0.1 mmol/kg BW, i.e. 0.2 mL/kg BW. In patients with brain tumours, an additional dose of 0.2 mmol/kg BW, i.e. 0.4 mL/kg BW, may improve tumor characterisation and facilitate therapeutic decision making. Children (0-18 years): The recommended and maximum dose of Clariscan is 0.1 mmol/kg body weight. Do not use more than one dose during a scan.
    [Show full text]
  • Injection of Contrast Media V7 – 2010 13 5
    ACR Manual on Contrast Media Version 8 2012 ACR Committee on Drugs and Contrast Media ACR Manual on Contrast Media Version 8 2012 ACR Committee on Drugs and Contrast Media © Copyright 2012 American College of Radiology ISBN: 978-1-55903-009-0 Table of Contents Topic Last Updated Page 1. Preface. V8 – 2012 . 3 2. Introduction . V7 – 2010 . 4 3. Patient Selection and Preparation Strategies . V7 – 2010 . 5 4. Injection of Contrast Media . V7 – 2010 . 13 5. Extravasation of Contrast Media . V7 – 2010 . 17 6. Adverse Events After Intravascular Iodinated Contrast Media . V8 – 2012 . 21 Administration 7. Contrast Media Warming . V8 – 2012 . 29 8. Contrast-Induced Nephrotoxicity . V8 – 2012 . 33 9. Metformin . V7 – 2010 . 43 10. Contrast Media in Children . V7 – 2010 . 47 11. Iodinated Gastrointestinal Contrast Media in Adults: Indications . V7 – 2010 . 55 and Guidelines 12. Adverse Reactions to Gadolinium-Based Contrast Media . V7 – 2010 . 59 13. Nephrogenic Systemic Fibrosis (NSF) . V8 – 2012 . 63 14. Treatment of Contrast Reactions . V8 – 2012 . 73 15. Administration of Contrast Media to Pregnant or Potentially . V6 – 2008. 75 Pregnant Patients 16. Administration of Contrast Media to Breast-Feeding Mothers . V6 – 2008 . 79 Table 1 – Indications for Use of Iodinated Contrast Media . V6 – 2008 . 81 Table 2 – Organ or System-Specific Adverse Effects from the Administration . V7 – 2010 . 82 of Iodine-Based or Gadolinium-Based Contrast Agents Table 3 – Categories of Reactions . V7 – 2010 . 83 Table 4 – Management of Acute Reactions in Children . V7 – 2010 . 84 Table 5 – Management of Acute Reactions in Adults . V6 – 2008 . 86 Table 6 – Equipment for Emergency Carts . V6 – 2008 .
    [Show full text]
  • Scanned Using Fujitsu 6670 Scanner and Scandall Pro Ver 1.7 Software
    358 1998/74 MEDICINES AMENDMENT REGULATIONS 1998 THOMAS EICHELBAUM, Administrator of the Government ORDER IN COUNCIL At Wellington this 20th day of April 1998 Present: THE HON JENNY SHIPLEY PRESIDING IN COUNCIL PURSUANT to section 105 of the Medicines Act 1981, His Excellency the Administrator of the Government, acting by and with the advice and consent of the Executive Council, and on the advice of the Minister of Health tendered after consultation with the organisations and bodies that appeared to the Minister to be representative of persons likely to be substantially affected, makes the following regulations. ANALYSIS 1. Title and commencement SCHEDULE 2. New First Schedule substituted New First Schedule of Principal Regulations 3. Revocation 1998/74 Medicines Amendment Regulations 1998 359 REGULAnONS 1. Title and commencement-( 1) These regulations may be cited as the Medicines Amendment Regulations 1998, and are part of the Medicines Regulations 1984"- ("the principal regulations"). (2) These regulations come into force on 1 June 1998. 2. New First Schedule substituted-The principal regulations are amended by revoking the First Schedule, and substituting the First Schedule set out in the Schedule of these regulations. 3. Revocation-The Medicines Regulations 1984, Amendment No. 7 (S.R. 1996/367) are consequentially revoked. ·S.R. 1984/143 Amendment No.1: (Revoked by S.R. 1996/367) Amendment No.2: (Revoked by S.R. 1996/367) Amendment NO.3: S.R. 1990/221 Amendment No.4: S.R. 1991/134 Amendment NO.5: S.R. 1992/43 Amendment NO.6: S.R. 1994/299 Amendmem No.7: 5 R 1996/367 Amendment 1997: S.R.
    [Show full text]
  • Art. 31 Gadolinium
    Annex I List of nationally authorised medicinal products 1 Annex IA – medicinal products containing intravenous gadobenic acid, gadobutrol, gadoteric acid, gadoteridol, gadoxetic acid and intra-articular gadopentetic acid and intra-articular gadoteric acid Member State Marketing Invented name INN + Strength Pharmaceutical form Route of EU/EEA authorisation holder administration Austria Bayer Austria GmbH Magnevist Gadopentetate solution for injection intra-aintra-articular use Dimeglumine 1.876mg/Ml Austria Bayer Austria GmbH Dotagraf Gadoteric Acid solution for injection intravenous use 279.32mg/Ml Austria Bayer Austria GmbH Gadovist Gadobutrol solution for injection intravenous use 604.72mg/Ml Austria Bayer Austria GmbH Primovist Gadoxetic Acid, solution for injection intravenous use Disodium 181.43mg/Ml Austria Bracco Imaging S.p.A. Prohance Gadoteridol solution for injection intravenous use 279.3mg/Ml Austria Guerbet Artirem Gadoteric Acid solution for injection intra-articular use 1.397mg/Ml Austria Guerbet Dotarem Gadoteric Acid solution for injection intravenous use 279.32mg/Ml Austria Sanochemia Cyclolux Gadoteric Acid solution for injection intravenous use Pharmazeutika AG 0.5mmol/Ml Austria Bracco Imaging S.p.A. Multihance Gadobenate solution for injection intravenous use Dimeglumine 529mg/Ml Belgium Agfa Healthcare Imaging Dotagita Gadoteric Acid solution for injection intravenous use Agents GmbH 279.32mg/Ml Belgium Bayer SA NV Dotagraph Gadoteric Acid solution for injection intravenous use 279.32mg/Ml 2 Member State Marketing
    [Show full text]
  • Application for Inclusion of Gadolinium-Based Contrast Agents to the WHO
    Application for inclusion of Gadolinium‐based contrast agents to the WHO Essential List of Medicines Submitted by Daniel Patiño, PhD (McMaster) Faculty of Medicine University of Antioquia, Medellin, Colombia Holger J. Schünemann, MD, PhD Chair and Professor, Departments of Clinical Epidemiology and Biostatistics Co‐Director, WHO Collaborating Center for Evidence Informed Policy, McMaster University Potential conflicts of interest Dr. Patiño and Dr. Schünemann declare that they have no COI. Date: Dec 15, 2014 1 Application to add Gadolinium‐based contrast agents to the WHO Essential List of Medicines 1. Summary statement of the proposal for inclusion, change or deletion Currently the 18th edition of WHO Model List of Essential Medicines does not include gadolinium‐based contrast agents (Gd‐CAs) under 14.2 radio contrast media classification. Since the introduction of gadopentate dimeglumine in 1988, gadolinium‐based contrast agents have significantly improved the diagnostic efficacy of Magnetic Resonance Image (MRI) (1). Gadolinium‐based contrast agents are intravenous agents used for contrast enhancement with magnetic resonance imaging (MRI) and with magnetic resonance angiography (MRA). The Gd‐CAs are available for different types of MR scan varying from product to product, including liver, brain and whole body scan. This application proposes to add Gd‐CAs for the complementary list of WHO Essential List of Medicines to be used in the detection of lymph node metastases. It will focus on the following ‘general purpose’ Gd‐CAs: gaodopentate dimeglumine, gadodiamide, gadoversetamide, gadobenate dimeglumine, gadoteridol, gadoteric acid, gadobutrol. We will not include the ‘newer’ Gd‐CAs that are organ specific like the hepatobiliary‐specific contrast agents that are available for imaging the liver (e.g., gadoxetic acid).
    [Show full text]