FAVORITE OPERCULUM by BUNNIE COOK*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bruno Sabelli * E Stefano Tommasini * Introduzione
Boll. Malacologico I Milano' 18 I (9-12) I 291-300 I settembre-dicembre 1982 Bruno Sabelli * e Stefano Tommasini * OSSERVAZIONI SULLA RADULA E SULLA PROTOCONCA DI BOLINUS BRANDARIS (L" 1758) E PHYLWNOTUS TRUNCULUS (L" 1758) Introduzione La sottofamiglia M u r i c i n a e comprende in Mediterraneo so- lo poche specie, per la precisione sei, di cui una (Bolinus cornutus (L., 1758)) segnalata solo dubitativamente per il nostro mare, due (Mu- rex tribulus L., 1758 e Aspella anceps (LAMARCK,1822)) sono ospiti re- centissimi essendo penetrati e forse acclimatati si in Mediterraneo so- lo dopo l'apertura del canale di Suez (BARASHe DANIN, 1972, 1977; GHI- SOTTI,1974) mentre le altre tre si possono definire come autoctone. Poichè le tre specie esotiche sono state reperite solo in numero esi- guo di esemplari e comunque mai viventi non si hanno informazioni sulla loro radula e sulla microscultura della loro protoconca e noi non siamo stati in grado di colmare questa lacuna. Per quanto con- cerne le altre tre specie Dermomurex scalaroides (BLAINVILLE,1826) è stato ampiamente investigato sotto il profilo tassonomico da FRAN- CHINI (1977) che ne ha anche illustrato la radula; mancherebbero co- munque dati sulla sua protoconca, ma gli oltre trenta esemplari esa- minati di questa specie non si sono prestati per questo studio essen- do tutti con l'apice abraso per cui la questione rimane insoluta. Solo le ultime due specie: Bolinus brandaris (L., 1758) e Phyllonotus trun- culus (L., 1758), sono dunque state studiate e se pur poco rappresen- tative dell'intera sottofamiglia presentano comunque alcuni interes- santi problemi che ci hanno indotto a redigere questa nota. -
(Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean. -
Mechanical Basis of Morphogenesis and Convergent Evolution of Spiny Seashells
Mechanical basis of morphogenesis and convergent evolution of spiny seashells Régis Chirata, Derek E. Moultonb,1, and Alain Gorielyb aCentre National de la Recherche Scientifique 5276, Université Lyon, 69622 Villeurbanne Cedex, France; and bOxford Centre for Collaborative Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX1 3LB, United Kingdom Edited by George Oster, University of California, Berkeley, CA, and approved February 22, 2013 (received for review November 26, 2012) Convergent evolution is a phenomenon whereby similar traits that is, we must ask whether the morphogenetic processes that evolved independently in not closely related species, and is often actually shape these structures make them likely to reappear. In interpreted in functional terms. Spines in mollusk seashells are this study, we focus on the mechanistic approach and the natural classically interpreted as having repeatedly evolved as a defense in mechanical process that shapes spines in mollusk shells and response to shell-crushing predators. Here we consider the mor- underlies their repeated emergence. phogenetic process that shapes these structures and underlies their Spines, like other ornamentations found in seashells, are in- repeated emergence. We develop a mathematical model for spine crementally secreted and represent the spatiotemporal record of morphogenesis based on the mechanical interaction between the the shape modifications of the shell edge during growth. Spines secreting mantle edge and the calcified shell edge to which the first emerge as a bulge of the shell edge that curves both longi- mantle adheres during shell growth. It is demonstrated that a large tudinally and transversely as growth proceeds, resulting in a fold diversity of spine structures can be accounted for through small that eventually closes in on itself as the lateral edges converge variations in control parameters of this natural mechanical process. -
Dynamics of Large Sessile Seabed Fauna, Important for Structural
Dynamics of large sessile seabed fauna, important for structural fisheries habitat and biodiversity of marine ecosystems – and use of these habitats by key finfish species No. 97/205 Project CSIRO Marine Research C. R. Pitcher T. J. Wassenberg G. P. Smith M. Austin S. R. Gordon R. H. Bustamante C. H. Moeseneder Australian Institute of Marine Science M. C. Cappo P. J. Speare P. J. Doherty Queensland Museum J. A. Kennedy J. N. A. Hooper August 2004 DYNAMICS OF LARGE SESSILE SEABED FAUNA, IMPORTANT FOR STRUCTURAL FISHERIES HABITAT AND BIODIVERSITY OF MARINE ECOSYSTEMS – AND USE OF THESE HABITATS BY KEY FINFISH SPECIES C.R. Pitcher¹, T.J. Wassenberg¹, M.C. Cappo², G.P. Smith¹, M. Austin¹, S.R. Gordon¹, R.H. Bustamante¹, C.H. Moeseneder¹, P.J. Speare², J.A. Kennedy³, P.J. Doherty², J.N.A. Hooper³ 1 2 3 PROJECT No. 97/205 ISBN 1 876 996 77 3 ii National Library of Australia Cataloguing-in-Publication entry: Dynamics of large sessile seabed fauna, important for structural fisheries habitat and biodiversity of marine ecosystems — and use of these habitats by key finfish species. ISBN 1 876996 77 3. 1. Fishery management - Australia. 2. Fish habitat improvement - Australia. 3. Marine sciences - Australia. 4. Marine ecology - Australia. 5. Marine fauna. I. Pitcher, C. R. (Clifford Roland). II. CSIRO Marine Research. III. Fisheries Research & Development Corporation (Australia). 333.9560994 This Report should be cited as: Pitcher, C.R., Wassenberg, T.J., Cappo, M.C., Smith, G.P., Austin, M., Gordon, S.R., Bustamante, R.H., Moeseneder, C.H., Speare, P.J., Kennedy, J.A., Doherty, P.J., Hooper, J.N.A. -
Biodiversity and Spatial Distribution of Molluscs in Tangerang Coastal Waters, Indonesia 1,2Asep Sahidin, 3Yusli Wardiatno, 3Isdradjad Setyobudiandi
Biodiversity and spatial distribution of molluscs in Tangerang coastal waters, Indonesia 1,2Asep Sahidin, 3Yusli Wardiatno, 3Isdradjad Setyobudiandi 1 Laboratory of Aquatic Resources, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung, Indonesia; 2 Department of Fisheries, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung, Indonesia; 3 Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia. Corresponding author: A. Sahidin, [email protected] Abstract. Tangerang coastal water is considered as a degraded marine ecosystem due to anthropogenic activities such as mangrove conversion, industrial and agriculture waste, and land reclamation. Those activities may affect the marine biodiversity including molluscs which have ecological role as decomposer in bottom waters. The purpose of this study was to describe the biodiversity and distribution of molluscs in coastal waters of Tangerang, Banten Province- Indonesia. Samples were taken from 52 stations from April to August 2014. Sample identification was conducted following the website of World Register of Marine Species and their distribution was analyzed by Canonical Correspondence Analysis (CCA) to elucidate the significant environmental factors affecting the distribution. The research showed 2194 individual of molluscs found divided into 15 species of bivalves and 8 species of gastropods. In terms of number, Lembulus bicuspidatus (Gould, 1845) showed the highest abundance with density of 1100-1517 indv m-2, probably due to its ability to live in extreme conditions such as DO < 0.5 mg L-1. The turbidity and sediment texture seemed to be key parameters in spatial distribution of molluscs. Key Words: bivalve, ecosystem, gastropod, sediment, turbidity. Introduction. Coastal waters are a habitat for various aquatic organisms including macroinvertebrates such as molluscs, crustaceans, polychaeta, olygochaeta and echinodermata. -
Physiological Responses and Scope for Growth in a Marine Scavenging
ICES Journal of Marine Science ICES Journal of Marine Science (2016), 73(3), 814–824. doi:10.1093/icesjms/fsv208 Contribution to Special Issue: ‘Towards a Broader Perspective on Ocean Acidification Research’ Original Article Physiological responses and scope for growth in a marine Downloaded from https://academic.oup.com/icesjms/article/73/3/814/2458919 by guest on 29 September 2021 scavenging gastropod, Nassarius festivus (Powys, 1835), are affected by salinity and temperature but not by ocean acidification Haoyu Zhang1, Paul K. S. Shin1,2, and Siu Gin Cheung1,2* 1Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China 2State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China *Corresponding author: tel: + 852 34427749; fax: + 852 34420522; e-mail: [email protected] Zhang, H., Shin, P. K. S., and Cheung, S. G. Physiological responses and scope for growth in a marine scavenging gastropod, Nassarius festivus (Powys, 1835), are affected by salinity and temperature but not by ocean acidification. – ICES Journal of Marine Science, 73: 814–824. Received 4 June 2015; revised 17 September 2015; accepted 19 October 2015; advance access publication 11 November 2015. In the past few years, there has been a dramatic increase in the number of studies revealing negative or positive effects of ocean acidification on marine organisms including corals, echinoderms, copepods, molluscs, and fish. However, scavenging gastropods have received little attention despite being major players in energy flow, removing carrion, and recycling materials in marine benthic communities. The present study investi- gated the physiological responses (ingestion, absorption rate and efficiency, respiration, and excretion) and scope for growth (SfG) of an intertidal scavenging gastropod, Nassarius festivus, to the combined effects of ocean acidification (pCO2 levels: 380, 950, and 1250 matm), salinity (10 and 30 psu), and temperature (15 and 308C) for 31 d. -
Rapid Biodiversity Assessment of REPUBLIC of NAURU
RAPID BIODIVERSITY ASSESSMENT OF REPUBLIC OF NAURU JUNE 2013 NAOERO GO T D'S W I LL FIRS SPREP Library/IRC Cataloguing-in-Publication Data McKenna, Sheila A, Butler, David J and Wheatley, Amanda. Rapid biodiversity assessment of Republic of Nauru / Sheila A. McKeena … [et al.] – Apia, Samoa : SPREP, 2015. 240 p. cm. ISBN: 978-982-04-0516-5 (print) 978-982-04-0515-8 (ecopy) 1. Biodiversity conservation – Nauru. 2. Biodiversity – Assessment – Nauru. 3. Natural resources conservation areas - Nauru. I. McKeena, Sheila A. II. Butler, David J. III. Wheatley, Amanda. IV. Pacific Regional Environment Programme (SPREP) V. Title. 333.959685 © SPREP 2015 All rights for commercial / for profit reproduction or translation, in any form, reserved. SPREP authorises the partial reproduction or translation of this material for scientific, educational or research purposes, provided that SPREP and the source document are properly acknowledged. Permission to reproduce the document and / or translate in whole, in any form, whether for commercial / for profit or non-profit purposes, must be requested in writing. Secretariat of the Pacific Regional Environment Programme P.O. Box 240, Apia, Samoa. Telephone: + 685 21929, Fax: + 685 20231 www.sprep.org The Pacific environment, sustaining our livelihoods and natural heritage in harmony with our cultures. RAPID BIODIVERSITY ASSESSMENT OF REPUBLIC OF NAURU SHEILA A. MCKENNA, DAVID J. BUTLER, AND AmANDA WHEATLEY (EDITORS) NAOERO GO T D'S W I LL FIRS CONTENTS Organisational Profiles 4 Authors and Participants 6 Acknowledgements -
Shell's Field Guide C.20.1 150 FB.Pdf
1 C.20.1 Human beings have an innate connection and fascination with the ocean & wildlife, but still we know more about the moon than our Oceans. so it’s a our effort to introduce a small part of second largest phylum “Mollusca”, with illustration of about 600 species / verities Which will quit useful for those, who are passionate and involved with exploring shells. This database made from our personal collection made by us in last 15 years. Also we have introduce website “www.conchology.co.in” where one can find more introduction related to our col- lection, general knowledge of sea life & phylum “Mollusca”. Mehul D. Patel & Hiral M. Patel At.Talodh, Near Water Tank Po.Bilimora - 396321 Dist - Navsari, Gujarat, India [email protected] www.conchology.co.in 2 Table of Contents Hints to Understand illustration 4 Reference Books 5 Mollusca Classification Details 6 Hypothetical view of Gastropoda & Bivalvia 7 Habitat 8 Shell collecting tips 9 Shell Identification Plates 12 Habitat : Sea Class : Bivalvia 12 Class : Cephalopoda 30 Class : Gastropoda 31 Class : Polyplacophora 147 Class : Scaphopoda 147 Habitat : Land Class : Gastropoda 148 Habitat :Freshwater Class : Bivalvia 157 Class : Gastropoda 158 3 Hints to Understand illustration Scientific Name Author Common Name Reference Book Page Serial No. No. 5 as Details shown Average Size Species No. For Internal Ref. Habitat : Sea Image of species From personal Land collection (Not in Scale) Freshwater Page No.8 4 Reference Books Book Name Short Format Used Example Book Front Look p-Plate No.-Species Indian Seashells, by Dr.Apte p-29-16 No. -
2020 Sub Lethal Predatory Shell Damage
Sub-lethal predatory shell damage does not affect physiologyunder high ANGOR UNIVERSITY CO2 in the intertidal gastropod Tritia reticulata Yokoyama, Leonardo; Turra, Alexander; Suckling, Coleen; Torres, Gabriela; Davies, Andrew; McCarthy, Ian Ocean and Coastal Management DOI: https://doi.org/10.1590/s2675-28242020068274 PRIFYSGOL BANGOR / B Published: 01/01/2020 Publisher's PDF, also known as Version of record Cyswllt i'r cyhoeddiad / Link to publication Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Yokoyama, L., Turra, A., Suckling, C., Torres, G., Davies, A., & McCarthy, I. (2020). Sub-lethal predatory shell damage does not affect physiologyunder high CO in the intertidal gastropod Tritia reticulata. Ocean and Coastal Management, 68, [e20274]. https://doi.org/10.1590/s2675-2 28242020068274 Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing -
Complete Mitochondrial Genomes of Two Toxin-Accumulated Nassariids (Neogastropoda: Nassariidae: Nassarius) and Their Implication for Phylogeny
International Journal of Molecular Sciences Article Complete Mitochondrial Genomes of Two Toxin-Accumulated Nassariids (Neogastropoda: Nassariidae: Nassarius) and Their Implication for Phylogeny Yi Yang 1, Hongyue Liu 1, Lu Qi 1, Lingfeng Kong 1 and Qi Li 1,2,* 1 Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; [email protected] (Y.Y.); [email protected] (H.L.); [email protected] (L.Q.); [email protected] (L.K.) 2 Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei Town, Qingdao 266237, China * Correspondence: [email protected]; Tel.: +86-532-8203-2773 Received: 30 March 2020; Accepted: 12 May 2020; Published: 17 May 2020 Abstract: The Indo-Pacific nassariids (genus Nassarius) possesses the highest diversity within the family Nassariidae. However, the previous shell or radula-based classification of Nassarius is quite confusing due to the homoplasy of certain morphological characteristics. The toxin accumulators Nassarius glans and Nassarius siquijorensis are widely distributed in the subtidal regions of the Indo-Pacific Ocean. In spite of their biological significance, the phylogenetic positions of N. glans and N. siquijorensis are still undetermined. In the present study, the complete mitochondrial genomes of N. glans and N. siquijorensis were sequenced. The present mitochondrial genomes were 15,296 and 15,337 bp in length, respectively, showing negative AT skews and positive GC skews as well as a bias of AT rich on the heavy strand. They contained 13 protein coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and several noncoding regions, and their gene order was identical to most caenogastropods. -
Adec Preview Generated PDF File
Records of the Western Allstralian Mllselllll Supplement No. 66: 247-291 (2004). Diversity and distribution of subtidal benthic molluscs from the Dampier Archipelago, Western Australia; results of the 1999 dredge survey (DA2/99) John D. Taylor and Emily A. Glover Department of Zoology, The Natural History Museum, London SW7 5BD, U.K. email: [email protected] [email protected] Abstract - From a dredge survey of the subtidal fauna of the Dampier Archipelago a total of 422 species of macromolluscs was identified, comprising 227 gastropods, 188 bivalves, four scaphopods and three chitons. Most species were uncommon but abundant taxa included the bivalves Melaxinaea vitrea, Corbllla fZlIIlcata and C. crassa and the gastropods Herpetopoma atrata and Xenophora solarioides. Community analysis identified eight molluscan assemblages, reflecting the varied and patchy nature of the substrates that ranged from muds and silts to coarse sands, gravel, rubble and rocks. The most species-rich stations were those located inshore at water depths <10 m. These muddy stations were also notable for the diversity and abundance of suspension-feeding bivalves. Most of the mollusc species identified are distributed widely around tropical Australia and the Indo-West Pacific but a few are endemic to northwestern Australia, including the newly described lucinid bivalve Lamellolllcina pilbara. INTRODUCTION parts of the world. Studies of latitudinal gradients Although the northwestern Australian shelf is of in molluscan diversity usually focus on well outstanding biological interest for its suspected high documented continental margins such as the diversity and the relatively high numbers of eastern Pacific coast of North America (Roy, endemic taxa, the subtidal molluscan fauna is Jablonski and Valentine, 2001; Valentine, Roy and poorly known. -
Description of Key Species Groups in the East Marine Region
Australian Museum Description of Key Species Groups in the East Marine Region Final Report – September 2007 1 Table of Contents Acronyms........................................................................................................................................ 3 List of Images ................................................................................................................................. 4 Acknowledgements ....................................................................................................................... 5 1 Introduction............................................................................................................................ 6 2 Corals (Scleractinia)............................................................................................................ 12 3 Crustacea ............................................................................................................................. 24 4 Demersal Teleost Fish ........................................................................................................ 54 5 Echinodermata..................................................................................................................... 66 6 Marine Snakes ..................................................................................................................... 80 7 Marine Turtles...................................................................................................................... 95 8 Molluscs ............................................................................................................................