JOURNAL OF FOREST SCIENCE, 50, 2004 (10): 456–463

The ground (Coleoptera: Carabidae) of forest altitudinal zones of the eastern part of the Krušné hory Mts.

E. KULA, L. PURCHART

Faculty of Forestry and Wood Technology, Mendel University of Agriculture and Forestry, Brno,

ABSTRACT: By means of Sörensen’s index and Renkonen’s number, the differences in species composition and abundance of the ground beetles (Carabidae) were specified in 5 forest altitudinal zones (3rd, 5th–8th) and also the faunal similarity in the linking-up forest altitudinal zones. The entry of some species ( coriaceus, Carabus violaceus, Pterostichus niger and Pterostichus oblongopunctatus) into higher altitudes was much more marked than is mentioned in hitherto published information. The objective of the present study was to explore the potential use of the ground beetles as an ancillary component of the geobiocoenological typological system.

Keywords: ground beetles; Carabidae; forest altitudinal zones; Krušné hory Mts.

It is necessary to obtain additional data on the fauna in stands of blue spruce (Picea pungens Engelm.). component in order to characterise the basic and super- BRABEC (1989), ŠUSTEK (1993, 2000), NENADÁL (1993) structural units of the geobiocoenological typological and ROHÁČOVÁ (2001) examined the Carabid beetles in system (BUČEK 2000), because we see that changes in forest altitudinal zones. populations of important animal species, in terms of bio- The objective of the present study is to characterise the indication, can be used to evaluate the situation and trends Carabid fauna of birch stands in forest altitudinal zones in the development of forest geobiocoenoses. (FAZ) in the eastern part of the Krušné hory Mts. The ground beetles (Coleoptera: Carabidae) belong to the most numerous families of beetles (530 species in the MATERIAL AND METHODS Czech Republic), their distribution being cosmopolitan (35,000 species) (HŮRKA, ČEPICKÁ 1978; HŮRKA 1992, In accordance with typological investigations, 20 birch 1996). Their bio-indication importance (HŮRKA et al. (B. pendula) stands were selected in the eastern part of the 1996) is derived from their dependence on specific con- Krušné hory Mts., i.e. Forest Management Plans of the areas ditions of the site (humidity, temperature, soil pH, etc.), Litvínov, Klášterec nad Ohří, Červený Hrádek, which repre- which creates conditions for their potential use in practice sent the pivotal spectrum of forest types (FT) in the 3rd oak- when elaborating descriptions and characteristics of the beech, 5th fir-beech, 6th spruce-beech, 7th beech-spruce and groups of geobiocoenosis types (STG). HOLUŠA (2003) 8th spruce forest altitudinal zones (PLÍVA 1991) (Table 1). reached the same conclusions with book lice (Psocop- The criterion for the selection of the areas was an tera). PULPÁN (1968, 1971) and PULPÁN and REŠKA 80–100% composition of birch (B. pendula) and minimal (1971) reported altitudinal zoning of the ground beetles stand area > 1 ha. and their preference to certain altitudes. The ground beetles were collected using the method of In the Krušné hory Mts. and Děčín Sandstone Uplands formalin ground traps (NOVÁK et al. 1969). Four-litre jars the Carabidae fauna has been explored in stands of sub- containing 2.5 litres of a 2–4% solution of formaldehyde stitute tree species with dominant birch (Betula pendula were placed in the stand in lines (5 jars 10 m apart). The Roth) for a long time and has been used for various faunal traps were placed on 1. 5. 2003 and collections were con- and ecological studies (KULA 1992, 1997; KULA et al. ducted in 6-week intervals (3. 6., 15. 7., 28. 8. and 29. 10.). 2002, 2003, 2004). FARKAČ (1996) described the Carabid The trapped were preserved in 75% ethanol.

The study was elaborated within the Project of the Ministry of Agriculture of the Czech Republic No. 1Q46002, Research Plan of the Czech Ministry of Education, Youth and Sports MSM No. 434100005, with the participation of a PhD student from Grant No. 526/03/H036 of the Czech Science Foundation. The following regional joint-stock companies, firms and state administration authorities funded the project: Netex and Alcan Děčín Extrusions, District Authority in Děčín, Setuza in Ústí n. L., ČEZ Praha, Lafarge Cement in Čížkovice, North Bohemian Mines in Chomutov, Dieter Bussmann in Ústí n. L.

456 J. FOR. SCI., 50, 2004 (10): 456–463 Table 1. Classification of stands according to the forest altitudinal zones and edaphic series

Forest altitudinal zone 3 5 6 7 8 Edaphic series K S K S A F K N O S Z G K R* S V G Q R Locality 4 3 2 13 15 16 20 12 14 10 18 5 1 8, 19 11 17 9 6 7 *Forest type 7R in two stands

The species and sex of the ground beetles were deter- The number of species and captured specimens differ- mined according to HŮRKA (1996), and the nomenclature entiated the Carabid fauna of the investigated FAZ. The according to PULPÁN and HŮRKA (1993). highest captures were confined to the 3rd FAZ, the most A number of standard faunal indexes was used to evalu- abundant fauna was discovered in the 7th and 6th FAZ (42 and ate the carabidocoenoses of the forest altitudinal zones 35 species, respectively). The 5th FAZ differed markedly (LOSOS 1980): from the other FAZ in terms of its composition of the – dominance (D) – expression of the composition of the sub-recedent species (29.4%); their proportion was 62.8% zoocoenosis in per cent in the FAZ using a 5-grade (6th FAZ) and 70.8–73.8% (3rd, 7th and 8th FAZ). scale according to Schwer dt f eger (1975), Members of the genus Carabus occupied a major po- – Sörensen’s similarity index (Sö) – calculation of the sition in the 3rd and 5th FAZ (61–64%), which was also species identity of two or more biocoenoses (FAZ), maintained in the FAZ of higher altitudes, but on a quan- – similarity of dominance – Renkonen’s number (Re) titatively lower level of dominance (44–55%) (Table 5). – calculation of similarity of biocoenoses (FAZ) us- Members of the genus Pterostichus occupied the cleared ing the dominance of species occurring in parallel in space in the 3rd FAZ – 12.6%; 5th and 6th FAZ – 21.35 to compared coenoses (FAZ). 24.6%; and 7th and 8th FAZ – 39.8–37.5% (Table 5). The conversion key (LÖW et al. 1995) enabled interpre- The composition of the genus Abax in the 3rd, 5th–6th tation of the results of ŠUSTEK (2000) based on geobio- FAZ was eudominant and in the FAZ of higher altitudes coenological units according to ZLATNÍK (1976). it virtually disappeared. The composition of the other genera is of minor importance for the characteristics of RESULTS the individual FAZ. The changed dominance of the genus Carabus in the The ground beetles in birch stands according to FAZ of lower altitudes (3rd and 5th) was significantly de- forest altitudinal zones pendent on the presence of the species C. hortensis and C. nemoralis, while the other two species of the genus In 2003, 5,373 specimens of the Carabidae family Carabus were sub-recedent. The genus Carabus was the were captured belonging to 64 species in 20 birch stands most species-abundant genus in the 6th FAZ (8 species, situated in 5 forest altitudinal zones of the eastern of the of which only 2 species were sub-recedent). The spe- Krušné hory Mts. (Table 2). cies spectrum of Carabus receded at the higher altitudes On the basis of one-year collection marked differences (7th–8th FAZ) (Table 2). The overall increased dominance in the population of ground beetles were discovered be- of the genus Pterostichus in the FAZ is accompanied by a tween the 3rd (656 specimens/stand) and 5th–8th FAZ significant increase in the abundance, i.e. from 3 species (218–244 specimens/stand) (Table 2). The faunal similar- (3rd and 5th FAZ) to 6–7 species (6th–8th FAZ). P. niger ity of the individual FAZ, derived from Sörensen’s index and P. oblongopunctatus occupied a major position. The (Table 3) and Renkonen’s number (Table 4), revealed a species abundance of the genus Amara in the 7th FAZ with similar regularity with only a few exceptions. According 8 registered species is beyond any comparison (Table 2). to Sörensen’s index the successive FAZ are generally very close to each other in similarity, i.e. 5 × 6, 6 × 7, 7 × 8, at DISCUSSION higher altitudes also FAZ 6 × 7 × 8 (Table 3). Renkonen’s number also confirmed this regularity when a distinct di- Characteristic of the investigated region of the eastern vergence in the similarities occurred in FAZ 3 × 5 and 5 × 6 part of Krušné hory Mts. is a sudden, short and abrupt as compared to FAZ 6 × 7, 7 × 8 (Table 4). The similar- transition between the 3rd and 5th FAZ, where the 4th FAZ ity between the 5th and 7th to 8th FAZ was lower (Tables 3 is such a small area that it is not demarcated within the and 4). The faunal similarity of the 3rd FAZ draws near to forest management plan area. It can be assumed that the the 5th and 6th FAZ, the similarity with the 7th FAZ being similarity between the 3rd and 4th FAZ is high, because considerably lower and that with the 8th FAZ relatively ŠUSTEK (1976) also mentioned the link-up between the high (Tables 3 and 4). neighbouring FAZ. For typological use, however, the Changes in the species composition are dependent fauna has to be evaluated within the forest type complex on the ecological demands of the individual species; and it is necessary to know to what extent the tree species some of them increase or, on the contrary, decrease and the stand conditions are able to modify the numerical their dominance and abundance with increasing altitude and species composition. The Carabid coenosis responds (Table 6). to the changes of the FAZ more readily in the numeri-

J. FOR. SCI., 50, 2004 (10): 456–463 457 Table 2. The species spectrum of ground beetles in birch stands of the particular FAZ (2003, method of ground traps)

Species/Forest altitudinal zone 3 5 6 7 8 Total Abax parallelepipedus (Piller et Mitterpacher, 1783) × × × 503 Abax parallelus (Duftschmid, 1812) × 12 Amara aenea (De Geer, 1774) × 1 Amara aulica (Panzer, 1797) × 1 Amara communis (Panzer, 1797) × × × × × 33 Amara convexior Stephens, 1828 × × × × × 26 Amara eurynota (Panzer, 1797) × 1 Amara famelica Zimmermann, 1831 × 1 Amara familiaris (Duftschmid, 1812) × 1 Amara lunicollis Schioedte, 1837 × × 6 Amara similata (Gyllenhal, 1810) × 1 Badister lacertosus Sturm, 1815 × 4 Bembidion biguttatum (Fabricius, 1779) × 1 Bembidion guttula (Fabricius, 1792) × × 3 Bembidion lampros (Herbst, 1784) × × × × × 25 Bembidion lunulatum (Fourcroy, 1785) × 1 Bradycellus czikii Laczó, 1912 × 2 Calathus fuscipes (Goeze, 1777) × 1 Calathus micropterus (Duftschmid, 1812) × × 3 Carabus arcensis arcensis Herbst, 1784 × × × 104 Carabus auronitens auronitens Fabricius, 1792 × × × × 500 Carabus cancellatus cancellatus Illiger, 1798 × 1 Carabus convexus convexus Fabricius, 1775 × 1 Carabus coriaceus coriaceus Linnaeus, 1758 × × × × 466 Carabus hortensis hortensis Linnaeus, 1758 × × × × 837 Carabus intricatus intricatus Linnaeus, 1761 × 6 Carabus linnaei Panzer, 1810 × 11 Carabus nemoralis nemoralis O.F.Müller, 1764 × × × × × 415 Carabus problematicus gallicus Géhin, 1885 × 2 Carabus sylvestris sylvestris Panzer, 1796 × × × 122 Carabus violaceus violaceus Linnaeus, 1758 × × × × 434 Cychrus caraboides (Linnaeus, 1758) × × × × × 57 Demetrias monostigma Samouelle, 1819 × 1 Dromius fenestratus (Fabricius, 1794) × 1 Dyschirius globosus (Herbst, 1784) × 5 Epaphius secalis (Paykull, 1790) × × × × 145 Europhilus micans (Nicolai, 1822) × 1 Harpalus latus (Linnaeus, 1758) × × × × 12 Harpalus luteicornis (Duftschmid, 1812) × 1 Harpalus quadripunctatus Dejean, 1829 × × 2 Harpalus rufipalpis Sturm, 1812 × 1 Leistus terminatus (Hellwig in Panter, 1793) × 6 Loricera pilicornis (Fabricius, 1775) × 5 Molops elatus (Fabricius, 1801) × 2

458 J. FOR. SCI., 50, 2004 (10): 456–463 Species/Forest altitudinal zone 3 5 6 7 8 Total Nebria brevicollis (Fabricius, 1792) × 1 Notiophilus aquaticus (Linnaeus, 1758) × × 3 Notiophilus biguttatus (Fabricius, 1779) × × × 5 Notiophilus germynyi Fauvel in Grenier, 1863 × × 3 Notiophilus palustris G.R.Waterhouse, 1833 × × × × 23 Ophonus nitidulus Stephens, 1828 × 1 Poecilus versicolor (Sturm, 1824) × × × × 48 Pseudoophonus rufipes (De Geer, 1774) × × × × 7 Pterostichus aethiops (Panzer, 1797) × × × 65 Pterostichus burmeisteri Heer, 1841 × × × 219 Pterostichus diligens (Sturm, 1824) × × 8 Pterostichus melanarius (Illiger, 1798) × × × 30 Pterostichus niger (Schaller, 1783) × × × × × 937 Pterostichus nigrita (Paykull, 1790) × 1 Pterostichus oblongopunctatus (Fabricius, 1787) × × × × × 206 Pterostichus strenuus (Panzer, 1797) × × × 12 Syntomus truncatellus (Linnaeus, 1761) × 1 Trechus quadristriatus (Schrank, 1781) × 7 Trechus splendens Gemminger et Herold, 1868 × × 5 Trichotichnus laevicollis (Duftschmid, 1812) × × × × 27 Total 1,313 487 1,565 1,310 698 5,373 Average number of specimens in stand 656.5 243.5 223.6 218.3 232.7

Table 3. Sörensen’s index (%) Table 4. Renkonen’s number (%)

3 5 6 7 8 3 5 6 7 8 3 53.66 61.02 39.39 50.00 3 93.63 79.65 46.97 59.76 5 61.54 47.46 48.89 5 95.46 72.85 78.42 6 62.34 63.49 6 84.72 77.21 7 62.86 7 86.37 8 8 cal composition of the individual species than by faunal Carabus coriaceus appeared in birch stands from 3rd to diversion. 7th FAZ (Table 6). ŠUSTEK (2000) detected it in the 1st to ŠUSTEK (2000) considered Abax parallelepipedus to be 3rd FAZ, and in the 6th FAZ its incidence was only sub- a species of the lowest FAZ (1st to 3rd). From the 6th FAZ it recedent. A relatively high dominance was discovered in is not represented in the acid series A and only marginally the 7th FAZ, even at more humid and shaded sites corre- in series B–D. A high dominance was discovered in the sponding to the waterlogged hydric series where dominant extreme ecological series of edaphic category Z and may incidence is mentioned only in the case of sites damaged be associated with the shallow and easy-to-dry substrate by human activities (ŠUSTEK 2000). (LÖW et al. 1995), which corresponds to the dry hydric Carabus hortensis preferred lower altitudes, especially series. In such conditions ŠUSTEK (2000) classified it as a the 3rd FAZ. With increasing altitude the abundance mark- sub-recedent species. The abundance corresponded to the edly dropped (Tables 5 and 6). These data are in accord- vertical incidence (PULPÁN 1971) (Table 6). ance with data of ŠUSTEK (2000). Characteristic of Carabus auronitens is its preference Carabus nemoralis appeared in lower altitudes (Ta- to higher altitudes (Table 6), especially at more humid ble 6), in accordance with the conclusions of ŠUSTEK sites corresponding to hydric series 4–6 (PLÍVA 1991). (2000). The captures of this species in birch stands confirm the Carabus sylvestris gave preference to higher altitudes results of ŠUSTEK (2000), i.e. from 3rd to 8th FAZ. (6–8 FAZ), the abundance increasing considerably with

J. FOR. SCI., 50, 2004 (10): 456–463 459 Table 5. The ground beetles with dominance > 1% in the forest altitudinal zones

3rd FAZ D 6th FAZ D 7th FAZ D Carabus hortensis 35.80 Carabus coriaceus 14.25 Pterostichus niger 33.05 Carabus nemoralis 27.95 Abax parallelepipedus 12.97 Carabus violaceus 15.88 Abax parallelepipedus 18.74 Carabus hortensis 12.01 Carabus coriaceus 13.13 Pterostichus niger 6.70 Pterostichus niger 10.73 Carabus auronitens 11.91 Pterostichus oblongopunctatus 4.11 Pterostichus burmeisteri 10.16 Epaphius secalis 5.19 Pterostichus melanarius 1.83 Carabus auronitens 9.20 Pterostichus burmeisteri 4.50 Amara communis 1.07 Carabus violaceus 5.37 Carabus arcensis 2.37 5th FAZ D Epaphius secalis 4.79 Pterostichus aethiops 2.29 Carabus hortensis 32.85 Carabus arcensis 4.22 Poecilus versicolor 1.37 Carabus coriaceus 13.55 Pterostichus oblongopunctatus 3.71 Bembidion lampros 1.07 Pterostichus niger 12.32 Carabus sylvestris 3.26 Carabus sylvestris 1.07 Abax parallelepipedus 11.09 Poecilus versicolor 1.79 8th FAZ D Pterostichus oblongopunctatus 9.03 Cychrus caraboides 1.41 Pterostichus niger 26.93 Carabus nemoralis 6.57 Carabus auronitens 26.36 Carabus auronitens 3.29 Carabus violaceus 18.05 Carabus violaceus 3.29 Carabus sylvestris 8.17 Amara convexior 2.05 Pterostichus oblongopunctatus 5.87 Amara communis 1.64 Pterostichus aethiops 4.73 Carabus arcensis 1.44 Carabus hortensis 2.72 Cychrus caraboides 1.44 Cychrus caraboides 2.15

Table 6. Height dominance of the ground beetles

Species/Forest altitudinal zone 3 5 6 7 8 Abax parallelepipedus 68.72 15.08 16.20 Amara communis 52.22 29.84 4.26 3.73 9.95 Amara convexior 43.66 43.66 2.49 1.46 8.73 Bembidion lampros 19.35 9.68 19.35 45.16 6.45 Carabus arcensis 19.34 52.11 28.55 Carabus auronitens 6.90 17.75 22.43 52.92 Carabus coriaceus 2.60 34.37 33.18 29.85 Carabus hortensis 67.49 22.98 7.71 1.82 Carabus nemoralis 90.59 7.90 0.78 0.08 0.66 Carabus sylvestris 25.46 8.15 66.39 Carabus violaceus 8.28 12.41 35.86 43.45 Cychrus caraboides 6.91 24.18 21.71 12.66 34.54 Epaphius secalis 2.19 46.83 49.53 1.46 Poecilus versicolor 6.38 51.06 38.30 4.26 Pterostichus aethiops 1.75 30.70 67.54 Pterostichus burmeisteri 1.51 68.73 29.76 Pterostichus melanarius 91.97 5.47 2.55 Pterostichus niger 18.90 12.88 10.31 30.99 26.91 Pterostichus oblongopunctatus 37.27 30.36 11.44 2.07 18.86

460 J. FOR. SCI., 50, 2004 (10): 456–463 increasing altitude (Table 6). The data correspond with number of species and captured specimens. The fauna ŠUSTEK (2000). of the 7th and 6th FAZ was the most abundant. The re- ŠUSTEK (2000) found Carabus violaceus primarily in duced dominance of species of the genus Carabus in the 4th and 5th FAZ, the abundance decreasing in the 6th and FAZ of higher altitudes was substituted by species of 7th FAZ, i.e. its upper boundary. In the Krušné hory Mts. the genus Pterostichus. it populated higher altitudes and with increasing altitude 2. Counter to present information the following spe- its abundance grew linearly and was the highest in the cies move up to higher altitudes: Carabus coriaceus 8th FAZ, particularly in humid localities of the 4th to 6th (7th FAZ), Carabus violaceus (8th FAZ), Pterostichus hydric series. Likewise the species C. auronitens and C. niger (6th to 8th FAZ), Pterostichus oblongopunctatus coriaceus; according to ŠUSTEK (2000) they occur only (8th FAZ), which are humid sites of the 4th to 6th hydric at sites damaged by human activities. series damaged by human activities. Epaphius secalis was monitored in the 5th to 8th FAZ; After evaluations in the forest altitudinal zones, the 96.36% of all the captured specimens were found in the ground beetles may become an important additional 6th and 7th FAZ (Table 6). The data of PULPÁN (1971), component of the geobiocoenological system and could who discovered the maximal abundance at 500–800 m be used for descriptions of the group types of the geobio- altitudes, the abundance declining towards the lower and coenosis. also higher altitudes, were confirmed. Pterostichus burmeisteri was captured in the 5th to References 7th FAZ, culminating in the 6th FAZ (Table 6). ŠUSTEK (2000) shifted the maximal abundance to the 4th and BRABEC L., 1989. Brouci čeledi střevlíkovitých (Coleoptera) 5th FAZ. PULPÁN (1971) specified the maximal abundance 6., 7. a 8. vegetačního stupně Čertova mlýna a Kněhyně. Zprav. at an altitude of 500–800 m, but admitted that it could Okr. Vlastiv. Muz. ve Vsetíně: 13–21. ascend to an altitude of 800–1,200 m. BUČEK A., 2000. Geobiocenologická typologie krajiny. In: The species Pterostichus niger was captured in the entire ŠTYKAR J., ČERMÁK P. (eds.), Geobiocenologická typizace profile of the FAZ in birch stands of the eastern Krušné hory krajiny a její aplikace. Geobiocenologické spisy, 5: 1–11. Mts. ŠUSTEK (2000) monitored this species in the 1st to FARKAČ J., 1993. Využití střevlíkovitých (Coleoptera, Carabi- 5th FAZ, its abundance decreasing with higher altitudes. In dae) ke stanovení kvality prostředí horských a podhorských the monitored area the abundance decreased continuously lesních ekosystémů. [Kandidátská dizertační práce.] Praha, from the 3rd–6th FAZ, but in the 7th and 8th (or more precisely VŠZ, LF: 63. 6th and 7th) FAZ it increased relatively sharply. We can HOLUŠA O., 2003. Vegetační stupňovitost a její bioindikace explain this discrepancy by the fact that this species was pomocí řádu pisivek (Insecta: Psocoptera). [Kandidátská detected particularly at humid sites of the 4th to 5th hydric dizertační práce.] Brno, MZLU, LDF: 257. series it prefers (ŠUSTEK 2000), so favourable conditions HŮRKA K., 1992. Střevlíkovití – Carabidae I. Praha, Academia: for its existence can be formed also in FAZ lying at higher 192. altitudes. PULPÁN (1971) indicates that the centre of abun- HŮRKA K., 1996. Carabidae of the Czech and Slovak Republic. dance of this species is an altitude of 300–500 m (1st, 2nd and Zlín, Kabourek, s. r. o.: 565. 3rd FAZ), the abundance decreasing, and with a potential HŮRKA K., ČEPICKÁ A., 1978. Rozmnožování a vývoj hmyzu. abundance up to 900–1,200 m (7th and 8th FAZ). Praha, SPN: 223. Much like the previous species also Pterostichus ob- HŮRKA K., VESELÝ P., FARKAČ J., 1996. Využití střevlíko- longopunctatus appeared in all FAZ. According to ŠUSTEK vitých (Col. Carabidae) k indikaci kvality životního prostředí. (2000) it should not occur in the 7th FAZ (Table 6) or only Klapalekiana, 32: 15–26. sporadically and irregularly. On the other hand, its presence KULA E., 1992. Střevlíkovití (Carabidae) v porostech břízy in the 8th FAZ and at humid sites of the 4th to 6th hydric series (Betula verrucosa Ehrh.) imisní oblasti. Acta Univ. Agric., may point to its ability to penetrate to higher FAZ within 1–4: 17–30. these series. PULPÁN (1971) claims that it is most abundant KULA E., 1997. Biomonitoring stanovištních změn v náhradních at an altitude of 300–500 m (ca. 2nd and 3rd FAZ), but in porostech břízy imisní oblasti – I. Střevlíkovití. Lesnictví- Bohemia it may appear at altitudes up to 1,200 m. -Forestry, 43: 453–464. KULA E., HRDLIČKA P., PURCHART L., ZABECKA J., 2002. CONCLUSION Bioindikační význam střevlíkovitých (Carabidae) v oblastech narušených antropogeními imisemi. In: Význam a struktura In 2003, 5,373 specimens of 64 species of the family půdní a korunové fauny lesních ekosystémů v aspektu mě- Carabidae were captured in 20 localities of birch stands nících se imisních podmínek. 2. část. [Závěrečná zpráva.] of the eastern Krušné hory Mts. classified in 5 forest Brno, MZLU: 69. altitudinal zones. KULA K., PURCHART L., MATOUŠEK D., 2003. Střevlíkovití 1. The faunal similarity of Carabidae monitored in suc- (Coleoptera: Carabidae) na plochách určených k vápnění. cessive forest altitudinal zones was confirmed using In: Arachnoentomofauna stanovišť ovlivněných vápněním Sörensen’s index and Renkonen’s number. The Carabid a hnojením a její dynamika. 1. část. [Výzkumná zpráva.] fauna was differentiated in the particular FAZ by the Brno, MZLU: 30.

J. FOR. SCI., 50, 2004 (10): 456–463 461 KULA K., PURCHART L., MATOUŠEK D., 2004. Střevlíkovití PULPÁN J., HŮRKA K., 1993. Carabidae. In: JELÍNEK J. (Coleoptera: Carabidae) a homogenita ploch určených k váp- (ed.), Check-list of Czechoslovak Insects IV (Coleoptera). nění. Sbor. z konf. Výsledky lesnického výzkumu v Krušných Seznam československých brouků. Folia Heyrovskyana, horách v roce 2003, Teplice, 22. 4. 2004: 229–238. Suppl., 1: 12–22. LOSOS B., 1980. Ekologie živočichů. Praha, SPN: 307. ROHÁČOVÁ M., 2001. Entomocenózy přírodní rezervace Smrk LÖW J. et al., 1995. Rukověť projektanta místního územního (Moravsko-slezské Beskydy) na příkladě střevlíkovitých systému ekologické stability. Brno, nakl. Doplněk: 122. (Coleoptera: Carabidae) a ploštic (Heteroptera). Práce a stud. NENADÁL S., 1993. Střevlíkovití brouci (Col., Carabidae) Muz. Beskyd, 11: 23–51. Arnoleckých hor a okolí. Vlastivědný sborník Vysočiny, odd. ŠUSTEK Z., 1976. Role čeledí Carabidae a Staphylinidae věd přírodních, XI: 251–259. v lesních geobiocenózách. [Diplomová práce.] Brno, VŠZ, NOVÁK K. et al., 1969. Metody sběru a preparace hmyzu. LF: 64. Praha, Academia: 243. ŠUSTEK Z., 1993. Využitie Zlatníkovej geobiocenologickej PLÍVA K., 1991. Funkční integrované lesní hospodářství. klasifikácie pri štúdiu rozšírenia bystruškovitých (Coleoptera, 1 – Přírodní podmínky v lesním plánování. Brandýs nad Carabidae). In: Sb. Geobiocenologický výzkum lesů, výsledky Labem, ÚHÚL: 263. a aplikace poznatků. Brno, Ed. stř. VŠZ: 59–63. PULPÁN J., 1968. Stanovení areálů a subareálů Československa ŠUSTEK Z., 2000. Spoločenstvá bystruškovitých (Coleoptera, vzhledem k faunistice brouků čeledi Carabidae (Coleoptera). Carabidae) a ich využitie ako doplnkovej charakteristiky geo- Acta musei Reginaehradecensis, S. A.: Scientiae naturales, biocenologických jednotiek: problémy a stav poznania. In: IX: 95–146. ŠTYKAR J., ČERMÁK P. (eds.), Geobiocenologická typizace PULPÁN J., 1971. Dodatek ke stanovení některých subareálů krajiny a její aplikace. Brno, MZLU: 18–30. vzhledem k faunistice československých druhů čeledi Cara- SCHWERDTFEGER F., 1975. Ökologie der Tiere, Synökologie. bidae (Coleoptera). Acta musei Reginaehradecensis, S. A.: Hamburg, Berlin, Verlag Paul Parey: 451. Scientiae naturales, XII: 81–83. ZLATNÍK A., 1976. Přehled skupin typů geobiocénů původně PULPÁN J., REŠKA M., 1971. Vertikální a územní rozšíření lesních a křovitých v ČSSR. Zpr. Geogr. Úst. ČSAV (Brno), brouků čeledi Carabidae (Coleoptera) v Československu. 13: 55–63. Acta musei Reginaehradecensis, S. A.: Scientiae naturales, XII: 85–104. Received for publication May 5, 2004 Accepted after corrections August 2, 2004

Střevlíkovití (Coleoptera: Carabidae) lesních vegetačních stupňů východního Krušnohoří

E. KULA, L. PURCHART

Lesnická a dřevařská fakulta, Mendelova zemědělská a lesnická univerzita, Brno, Česká republika

ABSTRAKT: V pěti lesních vegetačních stupních (3., 5.–8.) byla u střevlíkovitých (Carabidae) potvrzena druhová a početní diferencovanost užitím Sörensenova indexu a Renkonenova čísla i faunistická podobnost navazujících lesních vegetačních stupňů. U některých druhů (Carabus coriaceus, Carabus violaceus, Pterostichus niger, Pterostichus oblongopunctatus) bylo zjištěno výrazné pronikání do vyšších poloh, než je známo z dosud zveřejněných poznatků. Studie přispívá k potenciálnímu využití střevlíkovitých jako doplňkové složky geobiocenologického typologického systému.

Klíčová slova: střevlíkovití; Carabidae; lesní vegetační stupeň; Krušné hory

Pro studium střevlíkovitých v lesních vegetačních stup- kou úroveň faunistické podobnosti na sebe navazujících ních (lvs) východního Krušnohoří bylo vybráno 20 bře- lvs (tab. 3 a 4). zových porostů zastupujících pět lesních vegetačních V charakteristice jednotlivých lvs se projevil význam stupňů (tab. 1), ve kterých bylo v r. 2003 zachyceno dominantních a recedentních druhů. Bylo zjištěno, že 5 373 jedinců 64 druhů střevlíkovitých (tab. 2). druhové spektrum eudominantních až recedentních dru- Z celkového odchytu byl zjištěn zřetelný rozdíl v abun- hů bylo poměrně stabilní, na rozdíl od hodnot dominance danci mezi 3. lvs a 5.–8. lvs (tab. 2) a diference v poč- jednotlivých druhů, kde se měnil jejich poměr tím více, tu druhů (nejbohatší byl 7. lvs – 42 druhů). Sörensenův čím vzdálenější byly od sebe jednotlivé lvs (tab. 5). Rod index a Renkonenovo číslo poukázaly na relativně vyso- Carabus měl výsadní postavení ve 3. a 5. lvs, kde se na

462 J. FOR. SCI., 50, 2004 (10): 456–463 jeho celkové dominanci podílely druhy C. hortensis a C. Ve sledovaném území východního Krušnohoří byl – nemoralis. Ve vyšších lvs se celková dominance rodu oproti dosud známým údajům – zaznamenán významný Carabus snižovala a naopak se zvyšovala celková domi- výskyt ve vyšších polohách u Carabus violaceus, Cara- nance rodu Pterostichus, který jej nahrazoval. Mezi vý- bus coriaceus, Pterostichus niger a Pterostichus oblon- znamné se řadí i rod Abax s eudominantním postavením gopunctatus (tab. 6). (3., 5.–6. lvs, v 7.–8. lvs chyběl).

Corresponding author:

Prof. Ing. EMANUEL KULA, CSc., Mendelova zemědělská a lesnická univerzita, Lesnická a dřevařská fakulta, Lesnická 37, 613 00 Brno, Česká republika tel.: + 420 545 134 127, fax: + 420 545 211 422, e-mail: [email protected]

J. FOR. SCI., 50, 2004 (10): 456–463 463