Basket Scales of the Green Alga, Mesostigma Viride: Chemistry and Ultrastructure

Total Page:16

File Type:pdf, Size:1020Kb

Basket Scales of the Green Alga, Mesostigma Viride: Chemistry and Ultrastructure Basket scales of the green alga, Mesostigma viride: chemistry and ultrastructure DAVID S. DOMOZYCH* Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA BRIAN WELLS and PETER J. SHAW Department of Cell Biology, John Innes Institute for Plant Science Research, Colney Lane, Norwich NR4 7UH, UK * Author for correspondence Summary The unicellular green algal flagellate, Mesostigma tially digested scales revealed the presence of two viride, possesses an extracellular matrix consisting protein components, a high Mr, non-migrating form of three layers of highly distinct scales. This study and a form with a Mr of approximately 48000. focused upon the elaborate basket scales. The basket Further biochemical analyses of scales showed the scale is approximately 450-500 nm in height and presence of two major sugars: glucose and the consists of a solid base, two distinct lattices, two unusual keto sugar acid, 3-deoxy-lyxo-2-heptulosaric upper rims and various struts and roots. Pure acid, or DHA. Antibodies to scales were raised in rats preparations of isolated basket scales were obtained and used in immunolabeling studies. It is estimated and used for subsequent chemical and immunologi- from immunofluorescence studies that a cell of 8 /on cal analyses. X-ray microanalyses revealed the scale contains about 800 basket scales. The scales are in a as being mineralized with both calcium and phos- close-packed arrangement resulting in quasi-crystal- phorus. Fourier Transform Infrared Spectroscopic line arrays upon the cell surface. analyses revealed the presence of phosphate, sugges- ting in turn that the basket scale is complexed with Key words: basket scales, extracellular matrix, Mesostigma, calcium phosphate. SDS-gel electrophoresis of par- DHA, calcium phosphate. Introduction 1989). In some genera, hundreds of thousands of scales may coat the surface of a single cell (e.g. see Moestrup and The extracellular matrices of green plants constitute a Walne, 1979). Electron-microscopic studies have revealed heterogeneous assortment of biochemicals and complexed that the scales are processed within the Golgi apparatus minerals. Modern research efforts have shown that these (GA) (Manton, 1966; Manton and Ettl, 1965; for review, coverings range from the polysaccharide/glycoprotein- see Domozych, 1984). Because of their distinctive shape based cell wall meshwork of higher plants, to crystalline and intricate substructure, specific information concern- glycoprotein walls of chlamydomonad flagellates, to ing the precise morphological aspects of GA-mediated mineralized coverings of green algae (Roberts, 1989; processing of individual scale types has been gathered for Roberts et al. 1985; Adair and Snell, 1990; Varner and Lin, some forms (Moestrup and Walne, 1979). However, little if 1989; Simkiss and Wilbur, 1989; Porcella and Walne, anything is known about the chemistry of the various 1980). In addition to understanding the chemical nature scale types or the biochemistry of the unique secretory and polymeric microarchitecture of plant cell coverings, system involved in scale ontogenesis. recent research has just begun to focus upon elucidating Recently, attempts have been made to elucidate the the secretory pathways involved in the intracellular chemical nature of flagellar membrane scales and thecal processing of plant extracellular matrices (Ali et al. 1986; scale components in thecate, green algal flagellates, close Brummel et al. 1990; Moore et al. 1991; Moore and relatives of prasinophycean forms (Becker et al. 1989, Staehelin, 1988; Staehelin and Chapman, 1987; Staehelin 1990). These studies have reported distinct 2-keto-sugar et al. 1990). In the most primitive, extant group of green acid-containing polysaccharides and distinct protein com- plants, the Prasinophyceae or Micromonadophyceae (Mat- ponents. As part of an ongoing study of the secretory tox and Stewart, 1984; Norris, 1980), many organisms are network in scale-bearing green algae, an analysis of the characterized by a distinct extracellular covering of scales. large, outer body scales of the freshwater prasinophyte, The various scale types often possess elaborate mor- Mesostigma viride, was undertaken. This report describes phology and are often arranged in multiple layers upon structural and chemical analyses of the distinct basket the cell and flagellar surfaces (Pennick, 1984; Domozych, scales. Journal of Cell Science 100, 397-407 (1991) Printed in Great Britain © The Company of Biologists Limited 1991 397 Materials and methods and stored at -80°C or freeze dried. For electron microscope analysis of purity, scales were pelleted down into Beem capsules, General and electron-microscopic analyses fixed with 1 % OsO4/0.05 M cacodylate buffer (pH 7.8), dehydrated Cultures of Mesostigma viride (CCAP 50/1) were routinely in acetone and infiltrated and embedded with Spurr's resin. maintained in sterile Woods Hole medium (Nichols, 1973) Sectioning and TEM observation were performed as above. In enriched with soil extract (9 parts Woods Hole medium to 1 part some instances, scales were dried on a Formvar-coated/carbon- soil extract) in 250 ml sterile Erlenmyer flasks in a Sherer Growth stabilized copper grid and rotary shadowed. chamber (14/10 light-dark cycle, 2000 lux cool white fluorescent light, 17(±1)°C). Transfers were made every 2 weeks. For mass Biochemical and dissolution analyses cultures, Mesostigma cultures were maintained in sterile, 151 Scales were processed for electrophoresis by previously described glass containers under the above conditions. Sterile air was methods (Hames, 1981). Scales were partially dissolved by boiling pumped into the culture solution to maintain suspension for 3 min in 0.0625 M Tris-HCl (pH6.8), 2% SDS, 5% agitation. 2-mercaptoethanol, 10 % glycerol and 0.002 % Bromophenol Blue. Digested scale components were separated on a 5% to 15% Cells were processed for routine transmission electron mi- polyacrylamide gel with a discontinuous buffer system. Total croscopy (TEM) using previously described techniques (Domo- carbohydrate determination was by the method of Kochert zych, 1987). For immunocytochemistry, cells were fixed at 4°C for (1978a) and total protein determination was by the method of 30min in 0.5% glutaraldehyde in 0.05 M cacodylate buffer Kochert (19786). For scale dissolution analyses, a solution of (pH 7.8). Cells were then washed with cold (4°C) cacodylate buffer 1 mgml"1 of scales in distilled water was prepared, separated into three times by gentle resuspension and centrifugation. Cells were 0.2 ml aliquots in 1.5 ml centrifuge tubes and centrifuged in a then pelleted into the tip of a cold beem capsule. Immediately microcentrifuge. The resultant scale pellets were resuspended in: thereafter, cells were sequentially dehydrated to 70 % ethanol in 0.1 M EDTA, 0.1 M EGTA, 200 mM CDTA, 2M KOH, 1M HC1, 1% 10% increments (lOmin/increment) at 4°C. After lOmin in 70% SDS, 67% H2SO4, 0.5 M boric acid, 4 M urea, 2 M sodium ethanol, the beems capsules were brought to -20°C in a cold box perchlorate or distilled water. For room temperature studies, as described by Wells (1985). Dehydration then continued in 10 % tubes were kept at 25 °C for 1-2 h or placed in a boiling water bath increments (20 min/increment) to 100% ethanol. Beem capsules for 5 min or for EGTA and CDTA, placed in a 60 °C oven for 2h. with cells were then sequentially infiltrated with 10 %, 20 %, 30 %, After treatments, the individual tubes, were centrifuged and 50%, 60%, 75%, 90% and 100% London resin (LR White, pellets (if present) were washed with 50 mM Tris-HCl buffer and Medium Grade; Agar Aids, UK) in an ethanol series (2h per recentrifuged. Suspensions of resultant pellets were processed infiltration stage). The London resin was prepared with an and used for TEM and immunoblot analyses as described ultraviolet (UV) accelerator (0.5% benzoin methyl ether). Beem elsewhere in this study. When no pellet was visible, it was capsules were then left overnight at — 20 °C in 100 % London resin. assumed that the scales were digested. After a fresh change of London resin the next morning, the beem capsule-cell preparations were hardened by 24 h of indirect UV A carbohydrate analysis of the scales was performed at the light treatment at -20°C followed by an additional indirect UV Complex Carbohydrate Research Center (Athens, Georgia, USA). polymerization at room temperature for an additional 24 h. For glycosyl composition and linkage analysis, two methods were Antimonate labeling preparations and subsequent control used: trimethylsilyl (TMS) methylglycoside analysis (for identifi- EGTA digestion analyses were performed by the method of Wick cation of acidic sugars, amino sugars and neutral sugars) and alditol acetate analysis (for neutral sugars) (York etal. 1985). The and Hepler (1980). In addition, dissolution of antimonate preparation of TMS methylglycosides was accomplished by precipitates in sections with 200 mM CDTA (trans-l,2-diamino- dissolving the sample in 1M HC1 in methanol at 100 °C for 18 h. cyclohexane-./V,iV,iv'',iV'-tetraacetic acid) was also undertaken. The solvents were evaporated, the sample was then iV-acetylated For all TEM preparations, sections were cut using a Reichert using pyridine/acetic anhydride in methanol. The solvents were Ultratome ultramicrotome and viewed on a JEOL 1200 EX TEM then again evaporated. The sample was then reacted with Tri-Sil at 80 kV. For routine analyses, sections were stained with reagent (Pierce Chem.) at 80°C for 20 min. The solvents were then standard uranyl acetate/lead citrate prior to TEM viewing. evaporated and the samples were dissolved in hexane and analyzed by gas chromatography (GC) and GC/mass spectral Basket scale isolation analysis (MS). Alditol acetates were prepared by hydrolyzing the sample in 2 M trifluoroacetic acid (TFA) at 120 °C for 2h. Solvents Basket scale isolation was performed as follows: cells from mass were evaporated. The sample was reduced with sodium boro- cultures were harvested using a Sorvall continuous-flow centrifu- deuteride in acetic acid. Borate was removed by repeated gation device (type KSB Szent-Gyorgiyi and Blum) attached to an evaporations with methanol/acetic acid.
Recommended publications
  • Complete Plastome Sequences Of
    Karol et al. BMC Evolutionary Biology 2010, 10:321 http://www.biomedcentral.com/1471-2148/10/321 RESEARCH ARTICLE Open Access Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages Kenneth G Karol1*, Kathiravetpillai Arumuganathan2, Jeffrey L Boore3,4, Aaron M Duffy5, Karin DE Everett6, John D Hall1, S Kellon Hansen5, Jennifer V Kuehl7, Dina F Mandoli6,8, Brent D Mishler9, Richard G Olmstead6, Karen S Renzaglia10, Paul G Wolf5 Abstract Background: Despite considerable progress in our understanding of land plant phylogeny, several nodes in the green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset of major land plant clades. Here we examine early land plant evolution using complete plastome sequences including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of land plants and their plastomes, we examined aligned nucleotide sequences, indels, gene and nucleotide composition, inversions, and gene order at the boundaries of the inverted repeats. Results: We present the plastome sequences of Equisetum arvense, a horsetail, and of Isoetes flaccida,a heterosporous lycophyte. Phylogenetic analysis of aligned nucleotides from 49 plastome genes from 43 taxa supported monophyly for the following clades: embryophytes (land plants), lycophytes, monilophytes (leptosporangiate ferns + Angiopteris evecta + Psilotum nudum + Equisetum arvense), and seed plants. Resolution among the four monilophyte lineages remained moderate, although nucleotide analyses suggested that P. nudum and E. arvense form a clade sister to A. evecta + leptosporangiate ferns. Results from phylogenetic analyses of nucleotides were consistent with the distribution of plastome gene rearrangements and with analysis of sequence gaps resulting from insertions and deletions (indels).
    [Show full text]
  • Botany Without Bias
    editorial Botany without bias In the Gospel According to Matthew Chapter seven, Verse fve, Jesus says “frst cast out the beam out of thine own eye; and then shalt thou see clearly to cast out the mote out of thy brother’s eye”. We should remember this entreaty before too casually casting accusations of ‘plant blindness’. anguage usage helps maintain unconscious biases. In plant biology Lfor example, there is the careless use of the term ‘higher plants’, without thinking about its meaning or implication. If there is a definition of ‘higher plants’ then it is synonymous with vascular plants, but the image it conjures is of upstanding, leafy land-dwelling plants. The problem is that ‘higher’ is a charged term implying superiority of this group over their non-vascular cousins. This stratification is a manifestation of orthogenesis, the idea that evolution has both a direction and a goal. A perfect illustration of orthogenesis is the frequent meme of The Road to Homo Sapiens, the original version of which was drawn by Rudolph Zallinger for a 1965 edition of Life Nature Library1. Also known as The March of Progress, it shows a line of assumed human ancestors, starting with a gibbon-like in their News and Views3, “innovations spend much of their discussions on what Pliopithecus, processing from left to right, associated with improving water use the similarities of these organisms to becoming taller and more upright in stance, efficiency […] may be more fundamental angiosperms can tell about the history and culminating in a modern human. to the evolution of vascular plants than the of plants’ colonization of dry land, and The implication is clear, our evolutionary vascular system from which they derive much less on their characteristics and ancestors are only of interest as waypoints their name”.
    [Show full text]
  • Green Appendix I
    Appendix I. Chromsome number and nuclear DNA content in species of Chlorophyta DNA amount Original Original Entry ref. for 1C 1C 2C 4C ref. for C- Standard number Species(a) 2n (b) 2n (Mbp)(c) (pg)(d) (pg)(d) (pg)(d) value(e) species(f) Method(g) Charophycean Green Algae CHARALES Characeae 1 Chara aspera Detharding ex Willdenow 28 44 7056 7.2* 14.4 28.8 44 Allium Fe 2 Chara contraria Kützing 56 44 19208 19.6* 39.2 78.4 44 Allium Fe 3 Chara fragilis Desvaux 56 44 18914 19.3* 38.6 77.2 44 Allium Fe 4a Chara tomentosa Linnaeus 28 44 7252 7.4* 14.8 29.6 44 Allium Fe 4b Chara tomentosa (male) 28 Kun 2001 7252 7.4* 14.8 29.6 Kun 2001 Chara MI:EB 4c Chara tomentsoa (female) 28 Kun 2001 6860 7.0* 14.0 28.0 Kun 2001 Chara MI:EB 5 Chara vulgaris Linnaeus 56 44 13230 13.5* 27 54 44 Allium Fe CHLOROKYBALES 6 Chlorokybus atmosphyticus Geitler 98 0.1 0.2* 0.4 43 COLEOCHAETALES Coleochaetaceae 7 Chaetosphaeridium globosum (Nordstedt) Klebahn 1.2* * Gallus MI:DAPI 8 Coleochaete nitellarum Jost 84 49 343 0.35 0.7 1.4* * Gallus MI:DAPI 9a Coleochaete orbicularis Pringsheim 48 49 98 0.1 0.20* 0.4 43 9b C. orbicularis 686 0.7 1.5 3.0* * Gallus MI:DAPI 10 Coleochaete scutata Brébisson 1287 1.3 2.7 5.5* * Gallus MI:DAPI DESMIDIALES1 Closteriaceae 11 Closterium ehrenbergii Meneghini ex Ralfs 60 19 1323 1.40* 2.70* 5.4 19 Mus MI:DAPI Desmidiaceae 12 Cosmarium cucumis Corda 44 39 1960 2.0 4.0* 8 28 Gallus MI:DAPI 13 Cosmarium subcostatum Nordstedt 10 16 539 0.6 1.1* 2.2 28 Gallus MI:DAPI 14 Desmidium swartzii (C.
    [Show full text]
  • From Algae to Flowering Plants
    PP62CH23-Popper ARI 4 April 2011 14:20 Evolution and Diversity of Plant Cell Walls: From Algae to Flowering Plants Zoe¨ A. Popper,1 Gurvan Michel,3,4 Cecile´ Herve,´ 3,4 David S. Domozych,5 William G.T. Willats,6 Maria G. Tuohy,2 Bernard Kloareg,3,4 and Dagmar B. Stengel1 1Botany and Plant Science, and 2Molecular Glycotechnology Group, Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland; email: [email protected] 3CNRS and 4UPMC University Paris 6, UMR 7139 Marine Plants and Biomolecules, Station Biologique de Roscoff, F-29682 Roscoff, Bretagne, France 5Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866 6Department of Plant Biology and Biochemistry, Faculty of Life Sciences, University of Copenhagen, Bulowsvej,¨ 17-1870 Frederiksberg, Denmark Annu. Rev. Plant Biol. 2011. 62:567–90 Keywords First published online as a Review in Advance on xyloglucan, mannan, arabinogalactan proteins, genome, environment, February 22, 2011 multicellularity The Annual Review of Plant Biology is online at plant.annualreviews.org Abstract This article’s doi: All photosynthetic multicellular Eukaryotes, including land plants 10.1146/annurev-arplant-042110-103809 by Universidad Veracruzana on 01/08/14. For personal use only. and algae, have cells that are surrounded by a dynamic, complex, Copyright c 2011 by Annual Reviews. carbohydrate-rich cell wall. The cell wall exerts considerable biologi- All rights reserved cal and biomechanical control over individual cells and organisms, thus Annu. Rev. Plant Biol. 2011.62:567-590. Downloaded from www.annualreviews.org 1543-5008/11/0602-0567$20.00 playing a key role in their environmental interactions.
    [Show full text]
  • The Chloroplast and Mitochondrial Genome Sequences of The
    The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: Insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants Monique Turmel*, Christian Otis, and Claude Lemieux Canadian Institute for Advanced Research, Program in Evolutionary Biology, and De´partement de Biochimie et de Microbiologie, Universite´Laval, Que´bec, QC, Canada G1K 7P4 Edited by Jeffrey D. Palmer, Indiana University, Bloomington, IN, and approved June 19, 2002 (received for review April 5, 2002) The land plants and their immediate green algal ancestors, the organelle DNAs (mainly for the cpDNA of Spirogyra maxima,a charophytes, form the Streptophyta. There is evidence that both member of the Zygnematales; refs. 11–13), it is difficult to predict the chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) the timing of the major events that shaped the architectures of underwent substantial changes in their architecture (intron inser- land-plant cpDNAs and mtDNAs. tions, gene losses, scrambling in gene order, and genome expan- Mesostigma cpDNA is highly similar in size and gene organization sion in the case of mtDNA) during the evolution of streptophytes; to the cpDNAs of the 10 photosynthetic land plants examined thus however, because no charophyte organelle DNAs have been se- far (the bryophyte Marchantia polymorpha and nine vascular plants; quenced completely thus far, the suite of events that shaped see www.ncbi.nlm.nih.gov͞PMGifs͞Genomes͞organelles.html), streptophyte organelle genomes remains largely unknown. Here, but lacks any introns and contains Ϸ20 extra genes (7). Chloroplast we have determined the complete cpDNA (131,183 bp) and mtDNA gene loss is an ongoing process in the Streptophyta, with indepen- (56,574 bp) sequences of the charophyte Chaetosphaeridium glo- dent losses occurring in multiple lineages (14, 15).
    [Show full text]
  • Phylotranscriptomic Analysis of the Origin and Early PNAS PLUS Diversification of Land Plants
    Phylotranscriptomic analysis of the origin and early PNAS PLUS diversification of land plants Norman J. Wicketta,b,1,2, Siavash Mirarabc,1, Nam Nguyenc, Tandy Warnowc, Eric Carpenterd, Naim Matascie,f, Saravanaraj Ayyampalayamg, Michael S. Barkerf, J. Gordon Burleighh, Matthew A. Gitzendannerh,i, Brad R. Ruhfelh,j,k, Eric Wafulal, Joshua P. Derl, Sean W. Grahamm, Sarah Mathewsn, Michael Melkoniano, Douglas E. Soltish,i,k, Pamela S. Soltish,i,k, Nicholas W. Milesk, Carl J. Rothfelsp,q, Lisa Pokornyp,r, A. Jonathan Shawp, Lisa DeGironimos, Dennis W. Stevensons, Barbara Sureko, Juan Carlos Villarrealt,BéatriceRoureu, Hervé Philippeu,v, Claude W. dePamphilisl, Tao Chenw, Michael K. Deyholosd, Regina S. Baucomx, Toni M. Kutchany, Megan M. Augustiny,JunWangz, Yong Zhangv, Zhijian Tianz,ZhixiangYanz,XiaoleiWuz,XiaoSunz, Gane Ka-Shu Wongd,z,aa,2, and James Leebens-Mackg,2 aChicago Botanic Garden, Glencoe, IL 60022; bProgram in Biological Sciences, Northwestern University, Evanston, IL 60208; cDepartment of Computer Science, University of Texas, Austin, TX 78712; dDepartment of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9; eiPlant Collaborative, Tucson, AZ 85721; fDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721; gDepartment of Plant Biology, University of Georgia, Athens, GA 30602; hDepartment of Biology and iGenetics Institute, University of Florida, Gainesville, FL 32611; jDepartment of Biological Sciences, Eastern Kentucky University, Richmond, KY 40475; kFlorida Museum of
    [Show full text]
  • Embryophyta - Jean Broutin
    PHYLOGENETIC TREE OF LIFE – Embryophyta - Jean Broutin EMBRYOPHYTA Jean Broutin UMR 7207, CNRS/MNHN/UPMC, Sorbonne Universités, UPMC, Paris Keywords: Embryophyta, phylogeny, classification, morphology, green plants, land plants, lineages, diversification, life history, Bryophyta, Tracheophyta, Spermatophyta, gymnosperms, angiosperms. Contents 1. Introduction to land plants 2. Embryophytes. Characteristics and diversity 2.1. Human Use of Embryophytes 2.2. Importance of the Embryophytes in the History of Life 2.3. Phylogenetic Emergence of the Embryophytes: The “Streptophytes” Concept 2.4. Evolutionary Origin of the Embryophytes: The Phyletic Lineages within the Embryophytes 2.5. Invasion of Land and Air by the Embryophytes: A Complex Evolutionary Success 2.6. Hypotheses about the First Appearance of Embryophytes, the Fossil Data 3. Bryophytes 3.1. Division Marchantiophyta (liverworts) 3.2. Division Anthocerotophyta (hornworts) 3.3. Division Bryophyta (mosses) 4. Tracheophytes (vascular plants) 4.1. The “Polysporangiophyte Concept” and the Tracheophytes 4.2. Tracheophyta (“true” Vascular Plants) 4.3. Eutracheophyta 4.3.1. Seedless Vascular Plants 4.3.1.1. Rhyniophyta (Extinct Group) 4.3.1.2. Lycophyta 4.3.1.3. Euphyllophyta 4.3.1.4. Monilophyta 4.3.1.5. Eusporangiate Ferns 4.3.1.6. Psilotales 4.3.1.7. Ophioglossales 4.3.1.8. Marattiales 4.3.1.9. Equisetales 4.3.1.10. Leptosporangiate Ferns 4.3.1.11. Polypodiales 4.3.1.12. Cyatheales 4.3.1.13. Salviniales 4.3.1.14. Osmundales 4.3.1.15. Schizaeales, Gleicheniales, Hymenophyllales. 5. Progymnosperm concept: the “emblematic” fossil plant Archaeopteris. 6. Seed plants 6.1. Spermatophyta 6.1.1. Gymnosperms ©Encyclopedia of Life Support Systems (EOLSS) PHYLOGENETIC TREE OF LIFE – Embryophyta - Jean Broutin 6.1.2.
    [Show full text]
  • Phylotranscriptomic Analysis of the Origin and Early Diversification Of
    Phylotranscriptomic analysis of the origin and early PNAS PLUS diversification of land plants Norman J. Wicketta,b,1,2, Siavash Mirarabc,1, Nam Nguyenc, Tandy Warnowc, Eric Carpenterd, Naim Matascie,f, Saravanaraj Ayyampalayamg, Michael S. Barkerf, J. Gordon Burleighh, Matthew A. Gitzendannerh,i, Brad R. Ruhfelh,j,k, Eric Wafulal, Joshua P. Derl, Sean W. Grahamm, Sarah Mathewsn, Michael Melkoniano, Douglas E. Soltish,i,k, Pamela S. Soltish,i,k, Nicholas W. Milesk, Carl J. Rothfelsp,q, Lisa Pokornyp,r, A. Jonathan Shawp, Lisa DeGironimos, Dennis W. Stevensons, Barbara Sureko, Juan Carlos Villarrealt,BéatriceRoureu, Hervé Philippeu,v, Claude W. dePamphilisl, Tao Chenw, Michael K. Deyholosd, Regina S. Baucomx, Toni M. Kutchany, Megan M. Augustiny,JunWangz, Yong Zhangv, Zhijian Tianz,ZhixiangYanz,XiaoleiWuz,XiaoSunz, Gane Ka-Shu Wongd,z,aa,2, and James Leebens-Mackg,2 aChicago Botanic Garden, Glencoe, IL 60022; bProgram in Biological Sciences, Northwestern University, Evanston, IL 60208; cDepartment of Computer Science, University of Texas, Austin, TX 78712; dDepartment of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9; eiPlant Collaborative, Tucson, AZ 85721; fDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721; gDepartment of Plant Biology, University of Georgia, Athens, GA 30602; hDepartment of Biology and iGenetics Institute, University of Florida, Gainesville, FL 32611; jDepartment of Biological Sciences, Eastern Kentucky University, Richmond, KY 40475; kFlorida Museum of
    [Show full text]
  • Evolutionary Transitions Between States of Structural and Developmental Characters Among the Algal Charophyta (Viridiplantae)
    ABSTRACT Title of Thesis: EVOLUTIONARY TRANSITIONS BETWEEN STATES OF STRUCTURAL AND DEVELOPMENTAL CHARACTERS AMONG THE ALGAL CHAROPHYTA (VIRIDIPLANTAE). Jeffrey David Lewandowski, Master of Science, 2004 Thesis Directed By: Associate Profe ssor, Charles F. Delwiche, Cell Biology and Molecular Genetics The Charophyta comprise green plant representatives ranging from familiar complex -bodied land plants to subtle and simple forms of green algae, presumably the closest phylogenetic relatives of land plants. This biological lineage provides a unique opportunity to investigate evolutionary transition series that likely facilitated once -aquatic green plants to colonize and diversify in terrestrial environments. A literature review summarizes fu ndamental structural and developmental transitions observed among the major lineages of algal Charophyta. A phylogenetic framework independent of morphological and ontological data is necessary for testing hypotheses about the evolution of structure and development. Thus, to further elucidate the branching order of the algal Charophyta, new DNA sequence data are used to test conflicting hypotheses regarding the phylogenetic placement of several enigmatic taxa, including the algal charophyte genera Mesosti gma , Chlorokybus, Coleochaete , and Chaetosphaeridium. Additionally, technical notes on developing RNA methods for use in studying algal Charophyta are included. EVOLUTIONARY TRANSITIONS BETWEEN STATES OF STRUCTURAL AND DEVELOPMENTAL CHARACTERS AMONG THE ALGAL CHAROPHYTA (VIRIDIPLANTAE). By Jeffrey David Lewandowski Thesis submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Master of Science 2004 Advisory Committee: Associate Professor Charles F. Delwiche, Chair Professor Todd J. Cooke Assistant Professor Eric S. Haag © Copyright by Jeffrey D. Lewandowski 2004 Preface The following are examples from several of the works that have provided philosophical inspiration for this document.
    [Show full text]
  • Angiosperm Phylogeny Inferred from Sequences of Four Mitochondrial Genes 1Yin-Long QIU∗ 1Libo LI 1Bin WANG 1,2Jia-Yu XUE 1Tory A
    Journal of Systematics and Evolution 48 (6): 391–425 (2010) doi: 10.1111/j.1759-6831.2010.00097.x Angiosperm phylogeny inferred from sequences of four mitochondrial genes 1Yin-Long QIU∗ 1Libo LI 1Bin WANG 1,2Jia-Yu XUE 1Tory A. HENDRY 1Rui-Qi LI 1Joseph W. BROWN 1Ya n g L I U 1Geordan T. HUDSON 3Zhi-Duan CHEN 1(Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA) 2(School of Life Sciences, Nanjing University, Nanjing 210093, China) 3(Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China) Abstract An angiosperm phylogeny was reconstructed in a maximum likelihood analysis of sequences of four mitochondrial genes, atp1, matR, nad5, and rps3, from 380 species that represent 376 genera and 296 families of seed plants. It is largely congruent with the phylogeny of angiosperms reconstructed from chloroplast genes atpB, matK, and rbcL, and nuclear 18S rDNA. The basalmost lineage consists of Amborella and Nymphaeales (including Hydatellaceae). Austrobaileyales follow this clade and are sister to the mesangiosperms, which include Chloranthaceae, Ceratophyllum, magnoliids, monocots, and eudicots. With the exception of Chloranthaceae being sister to Ceratophyllum, relationships among these five lineages are not well supported. In eudicots, Ranunculales, Sabiales, Proteales, Trochodendrales, Buxales, Gunnerales, Saxifragales, Vitales, Berberidopsidales, and Dilleniales form a basal grade of lines that diverged before the diversification of rosids and asterids. Within rosids, the COM (Celastrales–Oxalidales–Malpighiales) clade is sister to malvids (or rosid II), instead of to the nitrogen-fixing clade as found in all previous large-scale molecular analyses of angiosperms. Santalales and Caryophyllales are members of an expanded asterid clade.
    [Show full text]
  • The Origin of Plants: Body Plan Changes Contributing to a Major Evolutionary Radiation
    Review The origin of plants: Body plan changes contributing to a major evolutionary radiation Linda E. Graham*†, Martha E. Cook‡, and James S. Busse§ *Department of Botany, University of Wisconsin, Madison, WI 53706-1381; ‡Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120; §Department of Biochemistry, University of Wisconsin, Madison, WI 53706-1381 Edited by Andrew H. Knoll, Harvard University, Cambridge, MA, and approved February 22, 2000 (received for review January 10, 2000) lants (land plants, embryophytes) are of monophyletic origin considered to be early divergent and not in the green algal Pfrom a freshwater ancestor that, if still extant, would be ancestors of plants. Early divergent plant forms include bryo- classified among the charophycean green algae. Plants, but not phytes (liverworts, hornworts, mosses), simple rootless plants charophyceans, possess a life history involving alternation of two considered to lack specialized food and lignified water conduct- morphologically distinct developmentally associated bodies, ing cells (vascular tissue), as well as simple vascular plants that sporophyte and gametophyte. Body plan evolution in plants has produce spores rather than seeds. Later-appearing vascular plant involved fundamental changes in the forms of both gametophyte groups are characterized by multicellular shoot and root apical and sporophyte and the evolutionary origin of regulatory sys- meristems. Vascular plants differ from bryophytes in possessing tems that generate different body plans in sporophytes and two types of apical meristem, those of the shoot and root. Woody gametophytes of the same species. Comparative analysis, based vascular plants possess two additional forms of meristematic on molecular phylogenetic information, identifies fundamental tissues, the vascular and cork cambia.
    [Show full text]
  • 0521641098.Pdf
    Cambridge University Press 0521641098 - Green Plants: Their Origin and Diversity, Second Edition - Peter R. Bell and Alan R. Hemsley Frontmatter/Prelims More information Green Plants Their Origin and Diversity The central theme of Green Plants is the astonishing to reflect current views on the origin of the major diversity of forms found in the plant kingdom, from groups of plants and includes information arising the simplicity of prokaryotic algae to the myriad from more recently developed techniques such as complexities of flowering plants. To help the reader cladistic analyses. As such, it provides an up-to-date appreciate this remarkable diversity, the book is and timely resource for students of botany, and also arranged according to generally accepted classifica- for researchers needing a comprehensive reference tion schemes, beginning with algae (both prokary- to the plant kingdom. otic and eukaryotic) and moving through liverworts, hornworts, mosses, fern allies, ferns and gym- Peter Bell is Emeritus Professor of Botany at nosperms to flowering plants. Copiously illustrated University College London. He has spent many years throughout with clear line diagrams and instructive studying plants, particularly the reproductive cells photographs, Green Plants provides a concise account of land plants, and has travelled extensively through- of all algae and land plants, with information on out the world in his capacity as a botanist. He is topics from cellular structure to life cycles and repro- author of The Diversity of Green Plants (1968, 1983, duction. The authors maintain a refreshingly cau- 1992), co-translator of Strasburger’s Textbook of Botany tious and objective approach in discussions of (8th English edition, 1976) and editor of and contrib- possible phylogenetic relationships.
    [Show full text]