Phylotranscriptomic Analysis of the Origin and Early Diversification Of

Total Page:16

File Type:pdf, Size:1020Kb

Phylotranscriptomic Analysis of the Origin and Early Diversification Of Phylotranscriptomic analysis of the origin and early PNAS PLUS diversification of land plants Norman J. Wicketta,b,1,2, Siavash Mirarabc,1, Nam Nguyenc, Tandy Warnowc, Eric Carpenterd, Naim Matascie,f, Saravanaraj Ayyampalayamg, Michael S. Barkerf, J. Gordon Burleighh, Matthew A. Gitzendannerh,i, Brad R. Ruhfelh,j,k, Eric Wafulal, Joshua P. Derl, Sean W. Grahamm, Sarah Mathewsn, Michael Melkoniano, Douglas E. Soltish,i,k, Pamela S. Soltish,i,k, Nicholas W. Milesk, Carl J. Rothfelsp,q, Lisa Pokornyp,r, A. Jonathan Shawp, Lisa DeGironimos, Dennis W. Stevensons, Barbara Sureko, Juan Carlos Villarrealt,BéatriceRoureu, Hervé Philippeu,v, Claude W. dePamphilisl, Tao Chenw, Michael K. Deyholosd, Regina S. Baucomx, Toni M. Kutchany, Megan M. Augustiny,JunWangz, Yong Zhangv, Zhijian Tianz,ZhixiangYanz,XiaoleiWuz,XiaoSunz, Gane Ka-Shu Wongd,z,aa,2, and James Leebens-Mackg,2 aChicago Botanic Garden, Glencoe, IL 60022; bProgram in Biological Sciences, Northwestern University, Evanston, IL 60208; cDepartment of Computer Science, University of Texas, Austin, TX 78712; dDepartment of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9; eiPlant Collaborative, Tucson, AZ 85721; fDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721; gDepartment of Plant Biology, University of Georgia, Athens, GA 30602; hDepartment of Biology and iGenetics Institute, University of Florida, Gainesville, FL 32611; jDepartment of Biological Sciences, Eastern Kentucky University, Richmond, KY 40475; kFlorida Museum of Natural History, Gainesville, FL 32611; lDepartment of Biology, Pennsylvania State University, University Park, PA 16803; mDepartment of Botany and qDepartment of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4; nArnold Arboretum of Harvard University, Cambridge, MA 02138; oBotanical Institute, Universität zu Köln, Cologne D-50674, Germany; pDepartment of Biology, Duke University, Durham, NC 27708; rDepartment of Biodiversity and Conservation, Real Jardín Botánico-Consejo Superior de Investigaciones Cientificas, 28014 Madrid, Spain; sNew York Botanical Garden, Bronx, NY 10458; tDepartment fur Biologie, Systematische Botanik und Mykologie, Ludwig-Maximilians-Universitat, 80638 Munich, Germany; uDépartement de Biochimie, Centre Robert-Cedergren, Université de Montréal, Succursale Centre-Ville, Montreal, QC, Canada H3C 3J7; vCNRS, Station d’ Ecologie Expérimentale du CNRS, Moulis, 09200, France; wShenzhen Fairy Lake Botanical Garden, The Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China; xDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109; yDonald Danforth Plant Science Center, St. Louis, MO 63132; zBGI-Shenzhen, Bei shan Industrial Zone, Yantian District, Shenzhen 518083, China; and aaDepartment of Medicine, University of Alberta, Edmonton, AB, Canada T6G 2E1 Edited by Paul O. Lewis, University of Connecticut, Storrs, CT, and accepted by the Editorial Board September 29, 2014 (received for review December 23, 2013) Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, in- Significance cluding the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships Early branching events in the diversification of land plants and remain weakly resolved. Inferring deep phylogenies with bouts of closely related algal lineages remain fundamental and un- rapid diversification can be problematic; however, genome-scale resolved questions in plant evolutionary biology. Accurate data should significantly increase the number of informative charac- reconstructions of these relationships are critical for testing hy- ters for analyses. Recent phylogenomic reconstructions focused on potheses of character evolution: for example, the origins of the the major divergences of plants have resulted in promising but in- embryo, vascular tissue, seeds, and flowers. We investigated consistent results. One limitation is sparse taxon sampling, likely relationships among streptophyte algae and land plants using resulting from the difficulty and cost of data generation. To address the largest set of nuclear genes that has been applied to this this limitation, transcriptome data for 92 streptophyte taxa were problem to date. Hypothesized relationships were rigorously generated and analyzed along with 11 published plant genome tested through a series of analyses to assess systematic errors in sequences. Phylogenetic reconstructions were conducted using up phylogenetic inference caused by sampling artifacts and model to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses misspecification. Results support some generally accepted phy- were performed to test the robustness of phylogenetic inferences to logenetic hypotheses, while rejecting others. This work provides permutations of the data matrix or to phylogenetic method, including a new framework for studies of land plant evolution. supermatrix, supertree, and coalescent-based approaches, maximum- likelihood and Bayesian methods, partitioned and unpartitioned ana- Author contributions: N.J.W., S. Mirarab, T.W., S.W.G., M.M., D.E.S., P.S.S., D.W.S., M.K.D., lyses, and amino acid versus DNA alignments. Among other J.W., G.K.-S.W., and J.L.-M. designed research; N.J.W., S. Mirarab, N.N., T.W., E.C., N.M., S.A., results, we find robust support for a sister-group relationship M.S.B., J.G.B., M.A.G., B.R.R., E.W., J.P.D., S.W.G., S. Mathews, M.M., D.E.S., P.S.S., N.W.M., between land plants and one group of streptophyte green al- C.J.R., L.P., A.J.S., L.D., D.W.S., B.S., J.C.V., B.R., H.P., C.W.d., T.C., M.K.D., M.M.A., J.W., Y.Z., Z.T., Z.Y., X.W., X.S., G.K.-S.W., and J.L.-M. performed research; S. Mirarab, N.N., T.W., N.M., gae, the Zygnematophyceae. Strong and robust support for a S.A., M.S.B., J.G.B., M.A.G., E.W., J.P.D., S.W.G., S. Mathews, M.M., D.E.S., P.S.S., N.W.M., C.J.R., clade comprising liverworts and mosses is inconsistent with a L.P., A.J.S., L.D., D.W.S., B.S., J.C.V., H.P., C.W.d., T.C., M.K.D., R.S.B., T.M.K., M.M.A., J.W., Y.Z., widely accepted view of early land plant evolution, and suggests G.K.-S.W., and J.L.-M. contributed new reagents/analytic tools; N.J.W., S. Mirarab, N.N., E.C., that phylogenetic hypotheses used to understand the evolution of N.M., S.A., M.S.B., J.G.B., M.A.G., B.R.R., E.W., B.R., H.P., and J.L.-M. analyzed data; N.J.W., S. Mirarab, T.W., S.W.G., M.M., D.E.S., D.W.S., H.P., G.K.-S.W., and J.L.-M. wrote the paper; fundamental plant traits should be reevaluated. and N.M. archived data. The authors declare no conflict of interest. land plants | Streptophyta | phylogeny | phylogenomics | transcriptome This article is a PNAS Direct Submission. P.O.L. is a guest editor invited by the Editorial Board. EVOLUTION he origin of embryophytes (land plants) in the Ordovician Freely available online through the PNAS open access option. – Tperiod roughly 480 Mya (1 4) marks one of the most im- Data deposition: The sequences reported in this paper have been deposited in the portant events in the evolution of life on Earth. The early evo- iplant datastore database, mirrors.iplantcollaborative.org/onekp_pilot,andtheNa- tional Center for Biotechnology Information Sequence Read Archive, www.ncbi.nlm. lution of embryophytes in terrestrial environments was facilitated nih.gov/sra [accession no. PRJEB4921 (ERP004258)]. by numerous innovations, including parental protection for the 1N.J.W. and S. Mirarab contributed equally to this work. developing embryo, sperm and egg production in multicellular 2To whom correspondence may be addressed. Email: [email protected], protective structures, and an alternation of phases (often referred to [email protected], or [email protected]. as generations) in which a diploid sporophytic life history stage This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. gives rise to a multicellular haploid gametophytic phase. With 1073/pnas.1323926111/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1323926111 PNAS | Published online October 29, 2014 | E4859–E4868 Downloaded by guest on September 26, 2021 these and subsequent innovations, embryophytes diversified and ancestor and were subsequently lost in most lineages within the lineage ultimately came to dominate and significantly alter the Zygnematophyceae. terrestrial environments (1–4). The origin of embryophytes was Early events in the diversification of embryophytes gave rise to a pivotal event in evolutionary history that spawned the tremen- mosses, liverworts, and hornworts (collectively bryophytes) (25, dous diversity of morphological, physiological, reproductive, and 39–44). Virtually every possible hypothesis of branching order ecological traits we see in both the extant and fossil terrestrial involving these groups has been proposed and supported by flora. Moreover, colonization of land by plants greatly changed the various data. Resolving this uncertainty has implications for global carbon cycle, drawing down atmospheric CO2 concen- understanding evolution of the heteromorphic alternation of life trations (5) and forming the foundation of the vast majority of history phases shared by all embryophytes. Whereas all bryo- terrestrial ecosystems. phyte lineages share a life history in which the haploid phase Subsequent innovations in embryophyte evolution greatly ex- (gametophyte) is dominant, with a diploid phase (sporophyte) panded the diversity of the terrestrial flora. The origin of vascular that is dependent on the maternal gametophyte, vascular plants tissue and antidesiccation features in tracheophytes (vascular instead have a dominant sporophytic phase. A grade of bryo- plants) established a more efficient system for the transport and phytes would support the hypothesis that the gametophyte- retention of water, photosynthate, and other nutrients, as well as dominant life cycle is plesiomorphic in embryophytes (45).
Recommended publications
  • Chapter 1-1 Introduction
    Glime, J. M. 2017. Introduction. Chapt. 1. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook sponsored 1-1-1 by Michigan Technological University and the International Association of Bryologists. Last updated 25 April 2021 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 1-1 INTRODUCTION TABLE OF CONTENTS Thinking on a New Scale .................................................................................................................................... 1-1-2 Adaptations to Land ............................................................................................................................................ 1-1-3 Minimum Size..................................................................................................................................................... 1-1-5 Do Bryophytes Lack Diversity?.......................................................................................................................... 1-1-6 The "Moss".......................................................................................................................................................... 1-1-7 What's in a Name?............................................................................................................................................... 1-1-8 Phyla/Divisions............................................................................................................................................ 1-1-8 Role of Bryology................................................................................................................................................
    [Show full text]
  • Early Photosynthetic Eukaryotes Inhabited Low-Salinity Habitats
    Early photosynthetic eukaryotes inhabited PNAS PLUS low-salinity habitats Patricia Sánchez-Baracaldoa,1, John A. Ravenb,c, Davide Pisanid,e, and Andrew H. Knollf aSchool of Geographical Sciences, University of Bristol, Bristol BS8 1SS, United Kingdom; bDivision of Plant Science, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; cPlant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia; dSchool of Biological Sciences, University of Bristol, Bristol BS8 1TH, United Kingdom; eSchool of Earth Sciences, University of Bristol, Bristol BS8 1TH, United Kingdom; and fDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138 Edited by Peter R. Crane, Oak Spring Garden Foundation, Upperville, Virginia, and approved July 7, 2017 (received for review December 7, 2016) The early evolutionary history of the chloroplast lineage remains estimates for the origin of plastids ranging over 800 My (7). At the an open question. It is widely accepted that the endosymbiosis that same time, the ecological setting in which this endosymbiotic event established the chloroplast lineage in eukaryotes can be traced occurred has not been fully explored (8), partly because of phy- back to a single event, in which a cyanobacterium was incorpo- logenetic uncertainties and preservational biases of the fossil re- rated into a protistan host. It is still unclear, however, which cord. Phylogenomics and trait evolution analysis have pointed to a Cyanobacteria are most closely related to the chloroplast, when the freshwater origin for Cyanobacteria (9–11), providing an approach plastid lineage first evolved, and in what habitats this endosym- to address the early diversification of terrestrial biota for which the biotic event occurred.
    [Show full text]
  • The Chloroplast Rpl23 Gene Cluster of Spirogyra Maxima (Charophyceae) Shares Many Similarities with the Angiosperm Rpl23 Operon
    Algae Volume 17(1): 59-68, 2002 The Chloroplast rpl23 Gene Cluster of Spirogyra maxima (Charophyceae) Shares Many Similarities with the Angiosperm rpl23 Operon Jungho Lee* and James R. Manhart Department of Biology, Texas A&M University, College Station, TX, 77843-3258, U.S.A. A phylogenetic affinity between charophytes and embryophytes (land plants) has been explained by a few chloro- plast genomic characters including gene and intron (Manhart and Palmer 1990; Baldauf et al. 1990; Lew and Manhart 1993). Here we show that a charophyte, Spirogyra maxima, has the largest operon of angiosperm chloroplast genomes, rpl23 operon (trnI-rpl23-rpl2-rps19-rpl22-rps3-rpl16-rpl14-rps8-infA-rpl36-rps11-rpoA) containing both embryophyte introns, rpl16.i and rpl2.i. The rpl23 gene cluster of Spirogyra contains a distinct eubacterial promoter sequence upstream of rpl23, which is the first gene of the green algal rpl23 gene cluster. This sequence is completely absent in angiosperms but is present in non-flowering plants. The results imply that, in the rpl23 gene cluster, early charophytes had at least two promoters, one upstream of trnI and another upstream of rpl23, which partially or completely lost its function in land plants. A comparison of gene clusters of prokaryotes, algal chloroplast DNAs and land plant cpDNAs indicated a loss of numerous genes in chlorophyll a+b eukaryotes. A phylogenetic analysis using presence/absence of genes and introns as characters produced trees with a strongly supported clade contain- ing chlorophyll a+b eukaryotes. Spirogyra and embryophytes formed a clade characterized by the loss of rpl5 and rps9 and the gain of trnI (CAU) and introns in rpl2 and rpl16.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Neuropharmacological and Antibacterial
    Sharmin et al. Clinical Phytoscience (2018) 4:22 https://doi.org/10.1186/s40816-018-0083-x ORIGINAL CONTRIBUTION Open Access Neuropharmacological and antibacterial effects of the ethyl acetate extract of Diospyros malabarica (Ebenaceae) seeds Tusnova Sharmin1, Razia Sultana2, Farzana Hossain3, Shahriar Kabir Shakil2, Foysal Hossen4 and Md. Mamun Or Rashid1* Abstract Background: Diospyros malabarica is a well known flowering plant indigenous to Indian subcontinent which is used in folklore medicine for several purposes. Our study is designed to assess the neuropharmacological and antibacterial efficacy of the ethyl acetate extract of D. malabarica seeds. Methods: The behavioral anxiolytic activities of the extract were assessed by using open field (OFT), hole cross (HCT), elevated plus maze (EPZ), hole board (HBT), light dark test (LDT); and antidepressant activities through forced swimming (FST) and tail suspension test (TST). Antimicrobial potential was assessed through disc diffusion method. Results: In OFT and HCT, the extract treated groups significantly (*p < 0.05) decrease the movement of animals when compared to vehicle-treated group. Higher dose (400 mg/kg b.w.) of extract greatly increased the spending time in open arm of EPZ, which endorses anxiolytic-like behavior of extract. The observed effect may be due to binding of any phytoconstituent with GABAA receptor. HBT and LDT results support the exploratory behavior of mice. The extract significantly decreased the immobility time in FST (20.71% for 200 mg/kg, and 31.59% for 400 mg/kg extract) and TST, which indicates the occupancy of antidepressant-active constituents. Gram negative bacteria were susceptible to extract than Gram positive strains; however the antimicrobial effect is not significant, hence trivial to declare.
    [Show full text]
  • Nutritional Stoichiometry and Growth of Filamentous Green Algae (Family Zygnemataceae) in Response to Variable Nutrient Supply
    Nutritional stoichiometry and growth of filamentous green algae (Family Zygnemataceae) in response to variable nutrient supply A Thesis Submitted to the Committee on Graduate Studies in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Faculty of Arts and Science TRENT UNIVERSITY Peterborough, Ontario, Canada © Copyright by Colleen Middleton 2014 Environmental and Life Sciences M.Sc. Program September 2014 ABSTRACT Nutritional stoichiometry and growth of filamentous green algae (Family Zygnemataceae) in response to variable nutrient supply. Colleen Middleton In this study, I investigate the effects of nitrogen (N) and phosphorus (P) on the nutritional stoichiometry and growth of filamentous green algae of the family Zygnemataceae in situ and ex situ . I found a mean of Carbon (C):N:P ratio of 1308:66:1 for populations growing in the Kawartha Lakes of southern Ontario during the summer of 2012. FGA stoichiometry was variable, with much of the variation in algal P related to sediment P ( p < 0.005, R 2 = 0.58). Despite large variability in their cellular nutrient stoichiometry, laboratory analysis revealed that Mougeotia growth rates remained relatively consistent around 0.28 day -1. In addition, Mougeotia was found to be weakly homeostatic with respect to TDN:TDP supply (1/H NP = 0.32). These results suggest that FGA stoichiometry and growth rates are affected by sediment and water N and P. However, they will likely continue to grow slowly throughout the summer despite variable nutrient supply. Keywords: Filamentous green algae, Mougeotia , Spirogyra , Zygnemataceae, nutrient supply, sediment nutrients, dissolved nutrients, nutritional stoichiometry, growth rates, chlorophyll concentration, homeostatic regulation.
    [Show full text]
  • Complete Plastome Sequences Of
    Karol et al. BMC Evolutionary Biology 2010, 10:321 http://www.biomedcentral.com/1471-2148/10/321 RESEARCH ARTICLE Open Access Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages Kenneth G Karol1*, Kathiravetpillai Arumuganathan2, Jeffrey L Boore3,4, Aaron M Duffy5, Karin DE Everett6, John D Hall1, S Kellon Hansen5, Jennifer V Kuehl7, Dina F Mandoli6,8, Brent D Mishler9, Richard G Olmstead6, Karen S Renzaglia10, Paul G Wolf5 Abstract Background: Despite considerable progress in our understanding of land plant phylogeny, several nodes in the green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset of major land plant clades. Here we examine early land plant evolution using complete plastome sequences including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of land plants and their plastomes, we examined aligned nucleotide sequences, indels, gene and nucleotide composition, inversions, and gene order at the boundaries of the inverted repeats. Results: We present the plastome sequences of Equisetum arvense, a horsetail, and of Isoetes flaccida,a heterosporous lycophyte. Phylogenetic analysis of aligned nucleotides from 49 plastome genes from 43 taxa supported monophyly for the following clades: embryophytes (land plants), lycophytes, monilophytes (leptosporangiate ferns + Angiopteris evecta + Psilotum nudum + Equisetum arvense), and seed plants. Resolution among the four monilophyte lineages remained moderate, although nucleotide analyses suggested that P. nudum and E. arvense form a clade sister to A. evecta + leptosporangiate ferns. Results from phylogenetic analyses of nucleotides were consistent with the distribution of plastome gene rearrangements and with analysis of sequence gaps resulting from insertions and deletions (indels).
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward.
    [Show full text]
  • Additional Occurrences of the Bog Clubmosses in Southern Arkansas James R
    Journal of the Arkansas Academy of Science Volume 47 Article 33 1993 Additional Occurrences of the Bog Clubmosses in Southern Arkansas James R. Bray Henderson State University Daniel L. Marsh Henderson State University Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Plant Biology Commons Recommended Citation Bray, James R. and Marsh, Daniel L. (1993) "Additional Occurrences of the Bog Clubmosses in Southern Arkansas," Journal of the Arkansas Academy of Science: Vol. 47 , Article 33. Available at: http://scholarworks.uark.edu/jaas/vol47/iss1/33 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This General Note is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected]. Journal of the Arkansas Academy of Science, Vol. 47 [1993], Art. 33 Additional Occurrences of the Bog Clubmosses in Southern Arkansas James R. Bray and Daniel L.Marsh Department of Biology Henderson State University Arkadelphia, AR 71999-0001 Field studies by Peck et al. (1987) from 1985 until 1987 trata (Harper) Cranfill (all inSection Lycopodiella) and L. demonstrated that the bog clubmosses of southern caroliniana (L.) Pichi-Serm., isolated in Section Arkansas were represented by four distinctive species and Caroliniana (Bruce) B.
    [Show full text]
  • Towards Resolving Lamiales Relationships
    Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales.
    [Show full text]
  • Botany Without Bias
    editorial Botany without bias In the Gospel According to Matthew Chapter seven, Verse fve, Jesus says “frst cast out the beam out of thine own eye; and then shalt thou see clearly to cast out the mote out of thy brother’s eye”. We should remember this entreaty before too casually casting accusations of ‘plant blindness’. anguage usage helps maintain unconscious biases. In plant biology Lfor example, there is the careless use of the term ‘higher plants’, without thinking about its meaning or implication. If there is a definition of ‘higher plants’ then it is synonymous with vascular plants, but the image it conjures is of upstanding, leafy land-dwelling plants. The problem is that ‘higher’ is a charged term implying superiority of this group over their non-vascular cousins. This stratification is a manifestation of orthogenesis, the idea that evolution has both a direction and a goal. A perfect illustration of orthogenesis is the frequent meme of The Road to Homo Sapiens, the original version of which was drawn by Rudolph Zallinger for a 1965 edition of Life Nature Library1. Also known as The March of Progress, it shows a line of assumed human ancestors, starting with a gibbon-like in their News and Views3, “innovations spend much of their discussions on what Pliopithecus, processing from left to right, associated with improving water use the similarities of these organisms to becoming taller and more upright in stance, efficiency […] may be more fundamental angiosperms can tell about the history and culminating in a modern human. to the evolution of vascular plants than the of plants’ colonization of dry land, and The implication is clear, our evolutionary vascular system from which they derive much less on their characteristics and ancestors are only of interest as waypoints their name”.
    [Show full text]
  • JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green
    UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups.
    [Show full text]