Regional Differences in Wild North American River Otter (Lontra Canadensis) Behavior and Communication
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mitochondrial Genomes of the United States Distribution
fevo-09-666800 June 2, 2021 Time: 17:52 # 1 ORIGINAL RESEARCH published: 08 June 2021 doi: 10.3389/fevo.2021.666800 Mitochondrial Genomes of the United States Distribution of Gray Fox (Urocyon cinereoargenteus) Reveal a Major Phylogeographic Break at the Great Plains Suture Zone Edited by: Fernando Marques Quintela, Dawn M. Reding1*, Susette Castañeda-Rico2,3,4, Sabrina Shirazi2†, Taxa Mundi Institute, Brazil Courtney A. Hofman2†, Imogene A. Cancellare5, Stacey L. Lance6, Jeff Beringer7, 8 2,3 Reviewed by: William R. Clark and Jesus E. Maldonado Terrence C. Demos, 1 Department of Biology, Luther College, Decorah, IA, United States, 2 Center for Conservation Genomics, Smithsonian Field Museum of Natural History, Conservation Biology Institute, National Zoological Park, Washington, DC, United States, 3 Department of Biology, George United States Mason University, Fairfax, VA, United States, 4 Smithsonian-Mason School of Conservation, Front Royal, VA, United States, Ligia Tchaicka, 5 Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, United States, 6 Savannah River State University of Maranhão, Brazil Ecology Laboratory, University of Georgia, Aiken, SC, United States, 7 Missouri Department of Conservation, Columbia, MO, *Correspondence: United States, 8 Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States Dawn M. Reding [email protected] We examined phylogeographic structure in gray fox (Urocyon cinereoargenteus) across † Present address: Sabrina Shirazi, the United States to identify the location of secondary contact zone(s) between eastern Department of Ecology and and western lineages and investigate the possibility of additional cryptic intraspecific Evolutionary Biology, University of California Santa Cruz, Santa Cruz, divergences. -
Redalyc.TAPHONOMIC ANALYSIS of RODENT BONES from Lontra
Mastozoología Neotropical ISSN: 0327-9383 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Montalvo, Claudia I.; Vezzosi, Raúl I.; Kin, Marta S. TAPHONOMIC ANALYSIS OF RODENT BONES FROM Lontra longicaudis (MUSTELIDAE, CARNIVORA) SCATS IN FLUVIAL ENVIRONMENTS Mastozoología Neotropical, vol. 22, núm. 2, 2015, pp. 319-333 Sociedad Argentina para el Estudio de los Mamíferos Tucumán, Argentina Available in: http://www.redalyc.org/articulo.oa?id=45743273010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Mastozoología Neotropical, 22(2):319-333, Mendoza, 2015 Copyright ©SAREM, 2015 Versión impresa ISSN 0327-9383 http://www.sarem.org.ar Versión on-line ISSN 1666-0536 Artículo TAPHONOMIC ANALYSIS OF RODENT BONES FROM Lontra longicaudis (MUSTELIDAE, CARNIVORA) SCATS IN FLUVIAL ENVIRONMENTS Claudia I. Montalvo1, Raúl I. Vezzosi2, and Marta S. Kin1 1 Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Avda. Uruguay 151, 6300 Santa Rosa, La Pampa, Argentina [Correspondence: Claudia I. Montalvo <[email protected]>]. 2 Laboratorio de Paleontología de Vertebrados, Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción de Diamante, CONICET, Matteri y España s/n, 3105 Diamante, Entre Ríos, Argentina. ABSTRACT. The Neotropical otter Lontra( longicaudis, Mustelidae, Carnivora) is defined as a generalist carni- vore. Although it is a fish-crustacean feeder, rodents are commonly found in its diet, though less frequently. In order to learn about the effects that this predator produces on its prey’s bones, we conducted taphonomic analysis of bone remains from scats collected in a riparian habitat of Santa Fe, Argentina. -
The 2008 IUCN Red Listings of the World's Small Carnivores
The 2008 IUCN red listings of the world’s small carnivores Jan SCHIPPER¹*, Michael HOFFMANN¹, J. W. DUCKWORTH² and James CONROY³ Abstract The global conservation status of all the world’s mammals was assessed for the 2008 IUCN Red List. Of the 165 species of small carni- vores recognised during the process, two are Extinct (EX), one is Critically Endangered (CR), ten are Endangered (EN), 22 Vulnerable (VU), ten Near Threatened (NT), 15 Data Deficient (DD) and 105 Least Concern. Thus, 22% of the species for which a category was assigned other than DD were assessed as threatened (i.e. CR, EN or VU), as against 25% for mammals as a whole. Among otters, seven (58%) of the 12 species for which a category was assigned were identified as threatened. This reflects their attachment to rivers and other waterbodies, and heavy trade-driven hunting. The IUCN Red List species accounts are living documents to be updated annually, and further information to refine listings is welcome. Keywords: conservation status, Critically Endangered, Data Deficient, Endangered, Extinct, global threat listing, Least Concern, Near Threatened, Vulnerable Introduction dae (skunks and stink-badgers; 12), Mustelidae (weasels, martens, otters, badgers and allies; 59), Nandiniidae (African Palm-civet The IUCN Red List of Threatened Species is the most authorita- Nandinia binotata; one), Prionodontidae ([Asian] linsangs; two), tive resource currently available on the conservation status of the Procyonidae (raccoons, coatis and allies; 14), and Viverridae (civ- world’s biodiversity. In recent years, the overall number of spe- ets, including oyans [= ‘African linsangs’]; 33). The data reported cies included on the IUCN Red List has grown rapidly, largely as on herein are freely and publicly available via the 2008 IUCN Red a result of ongoing global assessment initiatives that have helped List website (www.iucnredlist.org/mammals). -
Diversity of Mammals and Birds Recorded with Camera-Traps in the Paraguayan Humid Chaco
Bol. Mus. Nac. Hist. Nat. Parag. Vol. 24, nº 1 (Jul. 2020): 5-14100-100 Diversity of mammals and birds recorded with camera-traps in the Paraguayan Humid Chaco Diversidad de mamíferos y aves registrados con cámaras trampa en el Chaco Húmedo Paraguayo Andrea Caballero-Gini1,2,4, Diego Bueno-Villafañe1,2, Rafaela Laino1 & Karim Musálem1,3 1 Fundación Manuel Gondra, San José 365, Asunción, Paraguay. 2 Instituto de Investigación Biológica del Paraguay, Del Escudo 1607, Asunción, Paraguay. 3 WWF. Bernardino Caballero 191, Asunción, Paraguay. 4Corresponding author. Email: [email protected] Abstract.- Despite its vast extension and the rich fauna that it hosts, the Paraguayan Humid Chaco is one of the least studied ecoregions in the country. In this study, we provide a list of birds and medium-sized and large mammals recorded with camera traps in Estancia Playada, a private property located south of Occidental region in the Humid Chaco ecoregion of Paraguay. The survey was carried out from November 2016 to April 2017 with a total effort of 485 camera-days. We recorded 15 mammal and 20 bird species, among them the bare-faced curassow (Crax fasciolata), the giant anteater (Myrmecophaga tridactyla), and the neotropical otter (Lontra longicaudis); species that are globally threatened in different dregrees. Our results suggest that Estancia Playada is a site with the potential for the conservation of birds and mammals in the Humid Chaco of Paraguay. Keywords: Species inventory, Mammals, Birds, Cerrito, Presidente Hayes. Resumen.- A pesar de su vasta extensión y la rica fauna que alberga, el Chaco Húmedo es una de las ecorregiones menos estudiadas en el país. -
Food Habits of the North American River Otter (Lontra Canadensis)
Food Habits of the North American River Otter (Lontra canadensis) Heidi Hansen Graduate Program, Department of Zoology and Physiology University of Wyoming 2003 Introduction The North American river otter (Lontra canadensis) is a predator adapted to hunting in water, feeding on aquatic and semi-aquatic animals. The vulnerability and seasonal availability of prey animals primarily determines the food habits and prey preference of the river otter (Erlinge 1968; Melquist and Hornocker 1983). There are many studies that document the food habits of the river otter for most of their present range in North America. Among many, a few areas of study include southeastern Alaska (Larsen 1984); Arkansas (Tumlison and Karnes 1987); northeastern Alberta, Canada (Reid et al. 1994); Colorado (Berg 1999); Idaho (Melquist and Hornocker 1983); Minnesota (Route and Peterson 1988); Oregon (Toweill 1974); and Pennsylvania (Serfass et al. 1990). The diet of the river otter has been determined by analyzing either scat collected in the field (Berg 1999; Larsen 1984; Reid et al. 1994; Serfass et al. 1990; Tumlison and Karnes 1987) or gut contents obtained from trapper-caught otters (Toweill 1974). The contents were identified to family (fish, crustacean, etc.) and species if possible in order to determine the prey selection and the frequency of occurrence in the diet of the river otter. Fish are the most important prey items for river otters, occurring in the diet throughout the year (Larsen 1984; Reid et al. 1994; Route and Peterson 1988; Serfass et al. 1990, Toweill 1974, Tumlison and Karnes 1987). This has been documented by every study done on river otter food habits. -
Evolutionary History of Carnivora (Mammalia, Laurasiatheria) Inferred
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 Manuscript for review in PLOS One 2 3 Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred 4 from mitochondrial genomes 5 6 Alexandre Hassanin1*, Géraldine Véron1, Anne Ropiquet2, Bettine Jansen van Vuuren3, 7 Alexis Lécu4, Steven M. Goodman5, Jibran Haider1,6,7, Trung Thanh Nguyen1 8 9 1 Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, 10 MNHN, CNRS, EPHE, UA, Paris. 11 12 2 Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, 13 United Kingdom. 14 15 3 Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, 16 University of Johannesburg, South Africa. 17 18 4 Parc zoologique de Paris, Muséum national d’Histoire naturelle, Paris. 19 20 5 Field Museum of Natural History, Chicago, IL, USA. 21 22 6 Department of Wildlife Management, Pir Mehr Ali Shah, Arid Agriculture University 23 Rawalpindi, Pakistan. 24 25 7 Forest Parks & Wildlife Department Gilgit-Baltistan, Pakistan. 26 27 28 * Corresponding author. E-mail address: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. -
Mercury Poisoning in a Free-Living Northern River Otter (Lontra Canadensis)
Journal of Wildlife Diseases, 46(3), 2010, pp. 1035–1039 # Wildlife Disease Association 2010 Mercury Poisoning in a Free-Living Northern River Otter (Lontra canadensis) Jonathan M. Sleeman,1,5,6 Daniel A. Cristol,2 Ariel E. White,2 David C. Evers,3 R. W. Gerhold,4 and Michael K. Keel41Virginia Department of Game and Inland Fisheries, Richmond, Virginia 23230, USA; 2 Department of Biology, The College of William & Mary, Williamsburg, Virginia 23187, USA; 3 BioDiversity Research Institute, Gorham, Maine 04038, USA; 4 Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, The University of Georgia, Athens, Georgia 30602, USA; 5 Current address: USGS National Wildlife Health Center, 6006 Schroeder Road, Madison, Wisconsin 53711, USA; 6 Corresponding author (email: [email protected]) ABSTRACT: A moribund 5-year-old female increasing (Basu et al., 2007; Wolfe et al., northern river otter (Lontra canadensis) was 2007). Background levels of mercury in found on the bank of a river known to be otters in ecosystems contaminated primar- extensively contaminated with mercury. It exhibited severe ataxia and scleral injection, ily through atmospheric deposition are made no attempt to flee, and died shortly under 9.0 mg/g (wet weight [ww]) in the thereafter of drowning. Tissue mercury levels liver (Yates et al., 2005) and lower in the were among the highest ever reported for a kidney (Kucera, 1983). Levels of mercury free-living terrestrial mammal: kidney, 353 mg/ g; liver, 221 mg/g; muscle, 121 mg/g; brain (three in ecosystems contaminated with point replicates from cerebellum), 142, 151, 151 mg/g sources can result in mortalities, as (all dry weights); and fur, 183 ug/g (fresh reported for a dead otter from Ontario weight). -
Brazil: the Pantanal and Amazon July-Aug 2016
Tropical Birding Trip Report Brazil: The Pantanal and Amazon July-Aug 2016 A Tropical Birding SET DEPARTURE tour Brazil: The Pantanal and Amazon 18 July – 1 August 2016 TOUR LEADER: ANDRES VASQUEZ Photos by Andres Vasquez One of the top 3 birds of the trip as voted by the participants, the astonishing Hyacinth Macaw www.tropicalbirding.com +1-409-515-9110 [email protected] Page 1 Tropical Birding Trip Report Brazil: The Pantanal and Amazon July-Aug 2016 Introduction: It is difficult to put into words a trip like this, when you have seen many of South America’s most iconic animals and birds in only 15 days of focused birding. While searching for every possible species, we repeatedly got out of our vans for another Red-legged Seriema or Giant Anteater, and on other occasions we birded from the comfort of canoes that ride along some of the most scenic rivers, to find Giant Otters, Sunbitterns, Agami Herons, Sungrebes, and the most wanted of all mammals in the region, the majestic Jaguar. We did, in fact, cover three distinct biomes during the trip: the start of the tour visited the scrubby, dry Cerrado, then we continued to the vast Amazon rainforest, with its huge biodiversity enclosed in a mosaic of micro ecosystems, and finished in the Pantanal where the open nature of the country let us scan long distances to see running Greater Rheas, Southern Screamers, Jaguarundi, and an uncountable amount of waterbirds concentrated on the remaining waterholes, co-existing with large number of caiman laying along the banks. -
Os Nomes Galegos Dos Carnívoros 2019 2ª Ed
Os nomes galegos dos carnívoros 2019 2ª ed. Citación recomendada / Recommended citation: A Chave (20192): Os nomes galegos dos carnívoros. Xinzo de Limia (Ourense): A Chave. https://www.achave.ga"/wp#content/up"oads/achave_osnomes!a"egosdos$carnivoros$2019.pd% Fotografía: lince euroasiático (Lynx lynx ). Autor: Jordi Bas. &sta o'ra est( su)eita a unha licenza Creative Commons de uso a'erto* con reco+ecemento da autor,a e sen o'ra derivada nin usos comerciais. -esumo da licenza: https://creativecommons.or!/"icences/'.#n #nd//.0/deed.!". Licenza comp"eta: https://creativecommons.or!/"icences/'.#n #nd//.0/"e!a"code0"an!ua!es. 1 Notas introdutorias O que cont n este documento Neste documento fornécense denominacións galegas para diferentes especies de mamíferos carnívoros. Primeira edición (2018): En total! ac"éganse nomes para 2#$ especies! %&ue son practicamente todos os carnívoros &ue "ai no mundo! salvante os nomes das focas% e $0 subespecies. Os nomes galegos das focas expóñense noutro recurso léxico da +"ave dedicado só aos nomes das focas! manatís e dugongos. ,egunda edición (201-): +orríxese algunha gralla! reescrí'ense as notas introdutorias e incorpórase o logo da +"ave ao deseño do documento. A estrutura En primeiro lugar preséntase a clasificación taxonómica das familias de mamíferos carnívoros! onde se apunta! de maneira xeral! os nomes dos carnívoros &ue "ai en cada familia. seguir vén o corpo do documento! unha listaxe onde se indica! especie por especie, alén do nome científico! os nomes galegos e ingleses dos diferentes mamíferos carnívoros (nalgún caso! tamén, o nome xenérico para un grupo deles ou o nome particular dalgunhas subespecies). -
Northern River Otter, Lontra Canadensis
Lontra canadensis (Schreber, 1777) Margaret K. Trani and Brian R. Chapman CONTENT AND TAXONOMIC COMMENTS The Nearctic northern river otter was recognized as distinct from Eurasian genera by van Zyll de Jong (1972, 1987). Wozencraft (1993) and Baker et al. (2003) followed van Zyll de Jong in using Lontra as the generic name. However, some authors (e.g., Whitaker and Hamilton 1998) continue to place the species in genus Lutra. Seven subspecies currently are recog- nized (Hall 1981, Lariviere and Walton 1998); one subspecies (L. c. lataxina) occurs in the South. The life history of the northern river otter is reviewed by Toweill and Tabor (1982), Melquist and Dronkert (1987), Lariviere and Walton (1998), and Melquist et al. (2003). DISTINGUISHING CHARACTERISTICS The northern river otter has a large, long body with short legs and a hydrodynamic shape that distin- guishes it from other mustelids. Feet are pentadactyl and plantigrade with interdigital webbing pronounced on the longer toes of the hind foot (Melquist et al. 2003). The tail is about one-third of total length and tapered from base to tip. Measurements are: total length, 890–1200 mm; tail, 350–520 mm; hind foot, 100–140 mm; ear, 20–30 mm; weight, 4.5–15 kg. Females are 3–21% smaller than males (Blundell et al. 2002). The short, thick, and glossy pelage ranges from dark brown to dark reddish-brown dorsally, and pale brown to silver-gray ventrally. The throat and muzzle often are silvery gray to brownish-white. The ears are round and inconspicuous. The small eyes are positioned anteriorly (Lariviere and Walton 1998). -
Mammals of New York State – Efb 483
MAMMALS OF NEW YORK STATE – EFB 483 ORDER DIDELPHIMORPHIA Family: Didelphidae 1. Virginia opossum (Didelphis virginiana) ORDER SORICOMORPHA Family Soricidae 2. Masked shrew (Sorex cinereus) 3. Pygmy shrew (Sorex hoyi) 4. Long-tailed shrew (Sorex dispar) 5. Smoky shrew (Sorex fumeus) 6. Water shrew (Sorex palustris) 7. Northern short-tailed shrew (Blarina brevicauda) 8. Least shrew (Cryptotis parva) Family Talpidae 9. Eastern mole (Scalopus aquaticus) 10. Hairy-tailed mole (Parascalops breweri) 11. Star-nosed mole (Condylura cristata) ORDER CHIROPTERA Family: Vespertilionidae 12. Little brown myotis (Myotis lucifugus) 13. Northern myotis (Myotis septrionalis) 14. Indiana myotis (Myotis sodalis) 15. Small-footed myotis (Myotis leibii) 16. Eastern red bat (Lasiurus borealis) 17. Hoary bat (Lasiurus cinereus) 18. Big brown bat (Eptesicus fuscus) 19. Eastern pipistrellus (Pipistrellus (Perimyotis) subflavus) 20. Silver-haired bat (Lasionycteris noctivagans) ORDER CARNIVORA Family: Canidae 21. Coyote (Canis latrans) 22. Red fox (Vulpes vulpes) 23. Gray fox (Urocyon cinereoargenteus) Family: Ursidae 24. American black bear (Ursus americanus) Family: Procyonidae 25. Raccoon (Procyon lotor) Family: Mustelidae 26. Fisher (Martes pennanti) 27. American marten (Martes americana) 28. Mink (Neovison vison) 29. Long-tailed weasel (Mustela frenata) 30. Short-tailed weasel (Mustela erminea) 31. River otter (Lontra canadensis) Family: Mephitidae 32. Striped skunk (Mephitis mephitis) Family: Felidae 33. Bobcat (Lynx rufus) ORDER ARTIODACTYL Family: Cervidae 34. White-tailed deer (Odocoileus virginianus) 35. Moose (Alces alces) ORDER RODENTIA Family: Sciuridae 36. Red squirrel: (Tamiasciurus hudsonicus) 37. Eastern gray squirrel (Sciurus carolinensis) 38. Fox squirrel (Sciurus niger) 39. Northern flying squirrel (Glaucomys sabrinus) 40. Southern flying squirrel (Glaucomys volans) 41. Eastern chipmunk (Tamias striatus) 42. -
2012 Annual Report Conservation Science 1 TABLE of CONTENTS
2012 Annual Report conservation science 1 TABLE OF CONTENTS 3 Introduction 5 BACK FROM THE BRINK Blue Iguanas 8 SCIENCE SAVES SPECIES 10 FIELD CONSERVATION PROJECTS — International 13 RESTORING A FRESHWATER NATIVE Southern Appalachian Brook Trout 15 FIELD CONSERVATION PROJECTS — United States 56 A DISEASE-FREE FUTURE FOR ETHIOPIAN WOLVES A Wolf Vaccine in Sheep’s Clothing 58 JAVAN WARTY PIG Conservation and Recovery Cover Photo: Attwater’s Prairie Chicken © Stephanie Adams, Houston Zoo INTRODUCTION The 2012 Annual Report on Conservation Science Zoos and aquariums accredited by the Association of Zoos and Aquariums (AZA) serve as conservation centers that are concerned about ecosystem health, take responsibility for species survival, contribute to research, conservation, and education, and provide communities the opportunity to develop personal connections with the animals in their care. Whether breeding and reintroducing endangered species; rescuing, rehabilitating, and releasing sick and injured animals; maintaining far-reaching educational and outreach programs; or supporting and conducting in-situ and ex-situ research and field conservation projects, accredited zoos and aquariums play a vital role in maintaining our planet’s diverse wildlife and natural habitats while engaging the public to appreciate and participate in conservation. The 2012 Annual Report on Conservation Science (ARCS) focuses exclusively on those conservation projects that have a direct impact on animals in the wild. The report is based on survey data submitted by 179 of AZA’s 223 accredited zoos and aquariums and 15 certified- related facilities. Each of the more than 2,700 project submissions listed in this report were reviewed by at least one member of AZA’s Field Conservation Committee (FCC) to ensure that the project met the criteria of having a direct impact on animals in the wild.