Design and Analysis of a Variable Buoyancy System for Efficient
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Interline® 925
APPLICATION GUIDELINES BALLAST TANKS Interline® 925 Revision 13 Issue Date: 1st May 2015 Marine Coatings All products supplied and technical advice or recommendations given are subject to our standard Conditions of Sale. Registered in England No. 63604 Registered Office 26th Floor, Portland House, Bressenden Place, London SW1E 5BG Page 1 Application Guidelines Interline® 925 Revision 13 Date 1st May 2015 CONTENTS Page 1. SCOPE AND PURPOSE 3 2. PRODUCT SPECIFICATION AND PRODUCT CURE GRAPHS 4 2.1 Surface Preparation 4 2.2 Specification 4 2.3 Film Thickness 4 2.4 Holding Primer 4 2.5 Notes 5 2.6 Product Cure Graphs 5 3. COATING APPLICATION PROCEDURES 7 4. TECHNICAL INSPECTION AND PROJECT CONTROL 11 5. GENERAL NOTES 12 5.1 Tank condition 12 5.2 Steelwork Preparation 13 5.3 Scaffolding 14 5.4 Ventilation 14 5.5 Dehumidification 15 5.6 Heating 15 5.7 Lighting 16 5.8 Storage at point of application 16 5.9 Grit Blasting 16 5.10 Cleaning 18 5.11 Paint Application 18 5.12 Stripe Coats 19 5.13 Adhesion Testing 20 5.14 Water Testing 22 6. REPAIR PROCEDURES 23 7. HEALTH & SAFETY 24 Marine Coatings All products supplied and technical advice or recommendations given are subject to our standard Conditions of Sale. Registered in England No. 63604 Registered Office 26th Floor, Portland House, Bressenden Place, London SW1E 5BG Page 2 Application Guidelines Interline® 925 Revision 13 Date 1st May 2015 1. SCOPE AND PURPOSE The International Paint Ballast Tank Coating Application Guidelines are produced and revised in accordance with the Worldwide Marine product range. -
Cruise Summary
doi: 10.25923/3rg3-d269 CRUISE SUMMARY R/V Atlantis / DSV Alvin Expedition AT-41 August 19 to September 2, 2018 for DEEP SEARCH DEEP Sea Exploration to Advance Research on Coral/Canyon/Cold seep Habitats Deepwater Atlantic Habitats II: Continued Atlantic Research and Exploration in Deepwater Ecosystems with Focus on Coral, Canyon and Seep Communities Contract - M17PC00009 Table of Contents Page 1 EXPEDITION BACKGROUND ................................................................................................................. 1 2 NOAA OER QUICK LOOK REPORT ....................................................................................................... 1 3 GENERAL DIVE PLANS .......................................................................................................................... 3 3.1 CANYONS ............................................................................................................................................................................... 3 3.2 CORALS ................................................................................................................................................................................. 3 3.3 SEEPS .................................................................................................................................................................................... 3 4 EXPEDITION ACTIVITIES-NARRATIVE ................................................................................................. 3 4.1 AUGUST 16-18: CRUISE MOBILIZATION -
JUN 2 0 1994 Lonn ;:> (Blank Reverse)
A DESIGN TOOL FOR THE EVALUATION OF ATMOSPHERE INDEPENDENT PROPULSION IN SUBMARINES by Grant B. Thomton, LCDR, USN B.S., Marine Engineering United States Naval Academy, 1979 SUBMITTED TO THE DEPARTMENTS OF OCEAN ENGINEERING AND MECHANICAL ENGINEERING IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREES OF MASTER OF SCIENCE IN NAVAL ARCHITECTURE AND MARINE ENGINEERING and MASTER OF SCIENCE IN MECHANICAL ENGINEERING at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 1994 Copyright © 1994 Grant B. Thomton The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part. Signatureof Author . ... -- .,/../ ~-u-_:.-.;Departments of Ocean and Mechanical Engineering May 6, 1994 Certified by Professor David Gordon Wilson Thesis Reader - . Department of Mechanical Engineering Accepted b!y "-----' PrfessA. DouglasCarmichael Thesis Advisor and Chairma0, Jepartment Committee on Graduate Students ,W1IT;.- ;,:^.-- . Department of Ocean Engineering ~:'~!'JUNi":~2 i'"'-1994 JUN 2 0 1994 Lonn_;:> (Blank Reverse) 2 A DESIGN TOOL FOR THE EVALUATION OF ATMOSPHERE INDEPENDENT PROPULSION IN SUBMARINES by Grant Blount Thornton Submitted to the Departments of Ocean Engineering and Mechanical Engineering on May 6, 1994 in partial fulfilment of the requirements for the Degrees of Master of Science in Naval Architecture and Marine Engineering and Master of Science in Mechanical Engineering. ABSTRACT For the United States Navy, submarine propulsion has long since evolved from Diesel Electric to a complete reliance on Nuclear Power. Nuclear propulsion is the ultimate atmosphere independent power source, allowing the submarine to divorce itself from the surface, limited only by the endurance of the crew embarked. -
The Russian Northern Fleet Sources of Radioactive Contamination
NO9600025 Bellona Report Volume 2:1996 NEI-NO--726 \ Sources of Radioactive contamination Thomas Nilsen Igor Kudrik Alexandr Nikitin BELLONA V .., I! V: NO9600025 Bellona Report Volume 2:1996 The Russian Northern Fleet Sources of Radioactive contamination Thomas Nilsen Igor Kudrik Alexandr Nikitin 2 C 1 0 1 The publication of this report is sponsored by: Stiftelsen Fritt Ord/Foundation for Freedom of Expression (Main contributor) Contributors: Norsk Hydro a.s. Petrochemicals Division NORSAS, Norwegian Resource Centre for Waste Aker ASA Management and Recycling Chemical Workers Union of Norway Norsk Sivilingeni0rers Forening Norwegian Seafood Export Council Norges ingeni0rorganisasjon (NITO) FESIL AS Green Sea Operations AS Norwegian Society of Engineers UNI STOREBRAND Confederation of Norwegian Business and Industry AGAAS WASA Forsiikring (Stockholm) OZO Hotwater A/S Norwegian Fishermen's Association Energiforsyningens Fellesorganisasjon EnFO Norwegian Federation of Oilworkers' Trade Union Store Norske Spitsbergen Kullkompani AS Norwegian Polar Institute Svalbard Samfunnsdrift AS Odda Smelteverk Norzink AS Published by: The Bellona Foundation Norway: P.O. Box 2141, Griinerl0kka N-0505 OSLO, Norway. E-mail: [email protected] Russia: Brussels: USA Russia Bellona Europa Bellona USA 183038 Murmansk 142-144 Avenue de Tervueren 310 D Street NE P.O. Box 4310 B-1150Bruxelles Washington, DC 20002 Bellona Russia Belgium USA E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] URL: Photos: Copying permitted when source is http://www.grida.no/ngo/bellona/ John Berg (archive), Thorbj0rn Bj0r- stated. kli, Per Stale Bugjerde, Nils B0hmer, ISBN 82-993138-5-6 The Norwegian Defence, Frederic Comments to this report are welco- ISSN 0806-3451 Hauge, Aleksej Klimov, Igor Kudrik, med. -
AQUATIC NUISANCE SPECIES in BALLAST WATER DISCHARGES: Issues and Options
AQUATIC NUISANCE SPECIES IN BALLAST WATER DISCHARGES: Issues and Options DRAFT REPORT FOR PUBLIC COMMENT September 10, 2001 Prepared by: U.S. Environmental Protection Agency Office of Water Office of Wetlands, Oceans and Watersheds Office of Wastewater Management Washington, DC PREFACE This draft report, Aquatic Nuisance Species in Ballast Water Discharges: Issues and Options was prepared in response to a petition the U.S. Environmental Protection Agency (EPA) received on January 13, 1999, from the Pacific Environmental Advocacy Center. The petition was filed on behalf of fifteen nongovernmental and State and Tribal governmental organizations. The petition asked that EPA eliminate a regulatory exemption that currently prevents ballast water discharges from vessels from needing permits under EPA’s National Pollutant Discharge Elimination System (NPDES) program. The petition was closely followed by a letter from eighteen members of Congress, requesting that EPA examine whether the Clean Water Act can be used to provide effective regulation of aquatic nuisance species in vessel ballast water. In response to the petition, Congress’s inquiry, and the growing national concern about aquatic nuisance species introductions, former Assistant Administrator for Water J. Charles Fox directed Office of Water staff to research the issue of aquatic nuisance species in ballast water discharges, and report back what mechanisms are available under the Clean Water Act or other relevant statutes or programs to effectively control the introduction of aquatic nuisance species through ballast water. EPA is seeking public comment on this draft report, and will finalize the report, taking into account public comments received. If you have information or comments, please email them to [email protected], or mail them to: Marine Pollution Control Branch, ATTN: Ballast Water, US Environmental Protection Agency (4504F), 1200 Pennsylvania Avenue, NW, Washington, DC, 20460. -
The Development of Autonomous Underwater Vehicles (AUV); a Brief Summary
The Development of Autonomous Underwater Vehicles (AUV); A Brief Summary D. Richard Blidberg, (blidberg@ausi,org) Autonomous Undersea Systems Institute, Lee New Hampshire, USA Introduction The concept of a submersible vehicle is not a new idea. The first American submarine was called “Turtle.” It was built at Saybrook, Connecticut in 1775 by David Bushnell and his brother, Ezra. The Turtle was a little egg-shaped wooden submarine held together by iron straps. Turtle bobbed like a cork in rough surface winds and seas even though she was lead weighted at the bottom. In this hand and foot-operated contraption, one person could descend by operating a valve to admit water into the ballast tank and ascend with the use of pumps to eject the water. Two flap-type air vents at the top opened when the hatch was clear of water and closed when it was as not. The air supply lasted only 30 minutes. The Turtle's first engagement, which took place in New York Harbor in 1776, was also the first naval battle in history involving a submarine. [Pararas] In November of 1879, the Reverend George W. Garrett designed, what was considered by some to be the world's first practical powered submarine, the “Resurgam.” It was built at the Brittannia Engine Works and Foundry of J. B. Cochran in Birkenhead, England and was powered by a Lamm 'fireless' steam engine, and could travel for some ten hours on power stored in an insulated tank. After these historic underwater vehicles, there have been many more submersibles developed and used operationally for a number of different tasks. -
Study on the Control Methods of a Water Hydraulic Variable Ballast System for Submersible Vehicles
Ocean Engineering 108 (2015) 648–661 Contents lists available at ScienceDirect Ocean Engineering journal homepage: www.elsevier.com/locate/oceaneng Study on the control methods of a water hydraulic variable ballast system for submersible vehicles Yinshui Liu a, Xufeng Zhao a, Defa Wu a,n, Donglin Li a, Xiaohui Li b a School of Mechanical Science and Engineering, Huazhong University of Science and Technology, No.1037, Luoyu Road, Wuhan 430074, China b Shenzhen Research Institute of Xiamen University, A600-602, Virtual University Park, South Zone of High-tech, Shenzhen, China article info abstract Article history: The water hydraulics is a competitive mechanism to adjust the ballast water and also is the only choice Received 13 January 2015 for ultra-deep sea applications. In order to improve the control performance and reduce the energy Accepted 25 August 2015 consumption of the water hydraulic variable ballast system (WHVBS), a novel type WHVBS, which Available online 18 September 2015 introduces a servo motor to drive the pump and uses four fast response direct-acting solenoid valves to Keywords: control the water flow direction, has been proposed. The proposed WHVBS has two novel flow control Variable ballast system modes: changing the speed of servo motors (pump controlled mode) or changing the opening time of Seawater hydraulics solenoid valves (valve controlled mode). The mathematical model of WHVBS was built up for the pur- Generalized predictive control pose of predicting the flow rate under both control modes. A generalized predictive controller with Pump-controlled hydraulic system forgetting factor recursive least square (FFRLSGPC) was proposed for WHVBS to improve the control On–off valve controlled hydraulic system performance. -
1992 RVOC Annual Meeting Summary Report
UNIVERSITY - NATIONAL OCEANOGRAPHIC LABORATORY SYSTEM Research Vessel Operator's Committee Summary Report of the 1992 Annual Meeting Hosted by The University of Delaware College of Marine Studies Sessions held at the Verden Center College of Marine Studies Lewes, DE CONTENTS: Minutes of the 1992 Annual Meeting APPENDICES I. Agenda II. List of Attendees III. AAUS Information and Dive Statistics - Michael Lang IV. Regulatory Update - George Ireland V. Kevlar - Larry Cleary VI. UNOLS Wire Pool and Fiber Optics - Don Moller VII. Winch Control Questionnaire - Mike Markey VIII. Coastal Marine Science Workshop - Don Wright/Jack Bash IX. Letter to UNOLS Chair and RVOC Resolution - Mike Prince X. Chronology of RVOC Meetings - Dean Letzring MINUTES OF THE 1992 ANNUAL RVOC MEETING GRADUATE COLLEGE OF MARINE STUDIES UNIVERSITY OF DELAWARE LEWES, DELAWARE OCTOBER 20 - 22, 1992 WELCOMING REMARKS The meeting was called to order by Chairman Jim Williams, Marine Superintendent of Scripps Institute of Oceanography. Wadsworth Owen, Director of Facilities and Services for the University of Delaware's Graduate College of Marine Studies welcomed the RVOC to Lewes after trying for over fifteen years to have the opportunity to host the meeting. He introduced Dr. Carolyn Thoroughgood, Dean of the Graduate College of Marine Studies. Dr. Thoroughgood welcomed the RVOC and gave a brief history and overview of the University of Delaware and the Graduate School of Marine Studies. AGENDA The meeting followed the Agenda outlined in Appendix I. Registered attendees are listed in Appendix II. OLD BUSINESS 1991 Meeting Minutes A motion was made, seconded and passed to accept the minutes of the 1991 meeting. -
An Eighteenth-Century Ballast Pile Site, Chandeleur Islands, Louisiana
Study MMS 89-0092 An Eighteenth-Century Ballast Pile Site, Chandeteur Islands, Louisiana An Instrumental and Archaeological Study Y"""f"" Irr1 1 LOV~t! "M" flOtlOA 7tZ~7 J v ,iir ' ` ------------- --\ r[ .S. Department of the Interior MineralsU Management Service Gulf of Mexico OCS Region OCS Study MMS 89-0092 An Eighteenth-Century Ballast Pile Site, Chandeleur Islands, Louisiana An Instrumental and Archaeological Study Authors Ervan G . Garrison Charles P . Giammona James Jobling Anthony R . Tripp Ed N . Weinstein Gary A . Wolff Prepared under MMS Contract 14-12-001-30330 by Texas A&M Research Foundation Box 3578 College Station, Texas 77843 Published by U.S. Department of the Interior New Orleans Minerals Management Service December 1989 Gulf of Mexico OCS Regional Office DISCLAIMER This report was prepared under contract between the Minerals Management Service (MMS) and the Texas A&M Research Foundation . This report has been technically reviewed by the MMS and approved for publication . Approval does not signify that contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use . It is, however, exempt from review and compliance with MMS editorial standards . REPORT AVAILABILITY Extra copies of the report may be obtained from the Public Information Unit (Mail Stop OPS-3-4) at the following address: U .S . Department of the Interior Minerals Management Service Gulf of Mexico OCS Regional Office 1201 Elmwood Park Boulevard New Orleans, Louisiana 70123-2394 Attention : Public Information Unit (OPS-3-4) (Telephone Number : (504) 736-2519) CITATION Suggested citation : Garrison, E.G ., C.P . -
Offshore Racing Congress
World Leader in Rating Technology OFFSHORE RACING CONGRESS ORC VPP Documentation 2018 5 2 Copyright c 2018 Offshore Racing Congress All rights reserved. Reproduction in whole or in part is only with the permission of the Offshore Racing Congress. CONTENTS 1 Background 13 2 Introduction 15 2.1 Scope . 15 2.2 Overview . 15 2.3 Layout . 15 3 VPP Methodology 17 3.1 Solution Method . 17 3.2 Boat Model . 18 3.2.1 Functional relationships . 19 3.3 Equations of Equilibrium . 20 3.3.1 Driving Force - Drag . 21 3.3.2 Heeling Moment - Rolling Moment . 22 3.4 Water Ballast and Canting Keel Yachts . 23 3.4.1 Canting Keel . 23 3.4.2 Daggerboard (Centreline lifting appendage) . 23 3.4.3 Daggerboard and Bilge boards . 23 3.4.4 Water ballast . 23 3.4.5 Measurement . 24 3.5 Dynamic Allowance (DA) . 24 3.5.1 Credits (2012) . 24 3.5.2 Calculation Procedure . 25 3.6 Non Manual Power . 25 4 Lines Processing Program 27 4.1 Hydrostatics . 27 4.2 LPP Output parameter definitions . 28 4.2.1 Measurement Trim . 28 4.2.2 Sailing Trim . 28 4.2.3 Second Moment Length (LSM) . 28 4.2.4 Appendage stripping . 28 4.2.5 Beam Depth Ratio (BTR) . 29 4.2.6 Maximum Effective Draft (MHSD) . 30 4.2.7 Bulb/Wing Effects . 31 4.3 Appendage wetted areas and lengths . 34 4.3.1 Conventional Fin keel and rudder . 34 4.3.2 Other appendages . 34 4.4 Righting Moment . 34 4.4.1 Righting Arm Curve . -
Naval Accidents 1945-1988, Neptune Papers No. 3
-- Neptune Papers -- Neptune Paper No. 3: Naval Accidents 1945 - 1988 by William M. Arkin and Joshua Handler Greenpeace/Institute for Policy Studies Washington, D.C. June 1989 Neptune Paper No. 3: Naval Accidents 1945-1988 Table of Contents Introduction ................................................................................................................................... 1 Overview ........................................................................................................................................ 2 Nuclear Weapons Accidents......................................................................................................... 3 Nuclear Reactor Accidents ........................................................................................................... 7 Submarine Accidents .................................................................................................................... 9 Dangers of Routine Naval Operations....................................................................................... 12 Chronology of Naval Accidents: 1945 - 1988........................................................................... 16 Appendix A: Sources and Acknowledgements........................................................................ 73 Appendix B: U.S. Ship Type Abbreviations ............................................................................ 76 Table 1: Number of Ships by Type Involved in Accidents, 1945 - 1988................................ 78 Table 2: Naval Accidents by Type -
Optimization and Control Design of an Autonomous Underwater Vehicle Ashish Palooparambil Worcester Polytechnic Institute
Worcester Polytechnic Institute Digital WPI Major Qualifying Projects (All Years) Major Qualifying Projects April 2010 Optimization and Control Design of an Autonomous Underwater Vehicle Ashish Palooparambil Worcester Polytechnic Institute Daniel S. Moussette Worcester Polytechnic Institute Jarred James Raymond Worcester Polytechnic Institute Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all Repository Citation Palooparambil, A., Moussette, D. S., & Raymond, J. J. (2010). Optimization and Control Design of an Autonomous Underwater Vehicle. Retrieved from https://digitalcommons.wpi.edu/mqp-all/294 This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact [email protected]. Project Number: AE- IIH-0003 Optimization and Control Design of an Autonomous Underwater Vehicle A Major Qualifying Project Report: submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science in Aerospace Engineering by Daniel Moussette Ashish Palooparambil Jarred Raymond Date: Thursday, April 29, 2010 Approved: Professor Islam Hussein, Major Advisor Keywords Professor William Michalson, Co-Advisor 1. Autonomous 2. Submarine 3. Hydrodynamic Certain materials are included under the fair use exemption of the U.S. Copyright Law and have been prepared according to the fair use guidelines and are restricted from further use. Abstract Autonomous vehicles are increasingly being investigated for use in oceanographic studies, underwater surveillance, and search operations. Research currently being done in the area of autonomous underwater craft is often hindered by expense.