Numerical and Experimental Studies of Sail Aerodynamics
Total Page:16
File Type:pdf, Size:1020Kb
Departamento de Arquitectura y Construcci´onNavales Escuela T´ecnicaSuperior de Ingenieros Navales Universidad Polit´ecnicade Madrid PhD Thesis Numerical and Experimental Studies of Sail Aerodynamics By Ms. Patricia Izaguirre Alza M.Sc. in Naval Architecture Supervisor: Prof. Luis P´erezRojas Ph.D. in Naval Architecture Professor in Ship Theory 2012 ii Abstract The purpose of this investigation was the determination of the aerodynamic performance of sails and gain knowledge of the phenomena involved in order to improve the aerody- namic characteristics. In this research, the airflow around different sails in four scenarios was studied. The method to analyze these scenarios was the combination of numerical simulations and experimental tests by taking advantage of the best of each tool. Two different Com- putational Fluid Dynamic codes were utilized: the ANSYS-CFX and the CD-Adapco's STAR-CCM+. The experimental tests were conducted in the Atmospheric Boundary Layer Wind Tunnel at the Universidad de Granada (Spain), the Twisted Flow Wind Tunnel at the University of Auckland (New Zealand) and the A9 Wind Tunnel at the Universidad Polit´ecnicade Madrid (Spain). Through this research, it was found the three-dimensional effect of the mast on the aerodynamic performance of an IMS Class boat. The pressure distribution on a Transpac 52 Class mainsail was also determined. Moreover, the aerodynamic perfor- mance of the 43ft and 60ft Dhow Classes was obtained. Finally, a feasibility study was conducted to use a structural wing in combination with conventional propulsions systems. The main conclusion was that this research clarified gaps on the knowledge of the aerodynamic performance of sails. Moreover, since commercial codes were not specifically designed to study sails, a procedure was developed. On the other hand, innovative experimental techniques were used and applied to model-scale sails. The achievements of this thesis are promising and some of the results are already in use by the industry on a daily basis. iii iv Resumen El prop´osito de este estudio era determinar el comportamiento aerodin´amico de unas velas y mejorar el conocimiento de los fen´omenosque suceden para optimizar las caracter´ısticasaerodin´amicasde dichas velas. En esta investigaci´onse estudi´oel flujo de aire alrededor de diferentes velas en cuatro escenarios. El m´etodo para analizar estos escenarios fue la combinaci´on de simulaciones num´ericasy ensayos experimentales mediante el aprovechamiento de las ventajas de cada herramienta. Se utilizaron dos c´odigosde din´amica de fluidos computacional: el ANSYS-CFX y el STAR-CCM+ de la empresa CD-Adapco. Los ensayos experimentales se desarrollaron en el t´unelde viento de capa l´ımite de la Universidad de Granada (Espa~na),el t´unelde viento de la Universidad de Auckland (Nueva Zelanda) y en el t´unelA9 de la Universidad Polit´ecnicade Madrid (Espa~na). Mediante esta investigaci´on,se determin´oel efecto tridimensional del m´astilen un velero de la clase IMS. Tambi´ense describi´ola distribuci´onde presiones sobre una mayor de un Transpac 52. Adem´as,se obtuvo el comportamiento aerodin´amicode las clases 43ft y 60ft de los veleros Dhows. Finalmente, se llev´oa cabo un estudio de viabilidad de la utilizaci´on de un ala estructural en combinaci´on con sistemas de propulsi´on convencionales. La conclusi´onprincipal de esta investigaci´onfue la capacidad de explicar ciertas lagunas en el conocimiento del comportamiento aerodin´amicode las velas en diferentes escenarios. Adem´as,dado que los c´odigoscomerciales no est´anespec´ıficamente dise~nados para el estudio de velas, se desarroll´oun procedimiento a tal efecto. Por otro lado, se han utilizado innovadoras t´ecnicasexperimentales y se han aplicado a modelos de velas a escala. Los logros de esta investigaci´onson prometedores y algunos de los resultados obtenidos ya est´ansiendo utilizados por la industr´ıaen su d´ıaa d´ıa. Acknowledgments I'm very grateful to the following people and institutions for their assistance during this research: • Professor Luis P´erezRojas, my supervisor and boss. I will never be able to thank him enough for his support, encouragement and guidance. <Gracias jefe! • The members of the CEHINAV group (Juan, Paco, Rian, Ricardo A., Ricardo Z., Jorge, . ) . They have not only helped on the research but they have looked after me during this process. I need to highlight the contribution of Alberto Torres and Adriana Oliva, who have helped me obtaining some of the results of this research. I'm particularly grateful to Jos´eLuis Cerc´osfor his invaluable assistance in my computers. • Professor Richard G.J. Flay, David J. Le Pelley and the Yacht Research Unit of the University of Auckland (New Zealand). They gave me a warm welcome to their research group. They helped me grow as a person and as a researcher. Furthermore, they gave me the opportunity to discover New Zealand, one of the most beautiful places that I have ever visited. • Shaun Connolly, David Parr and Calibre Sails Ltd. They provided the dhow sails for free and guided me during the investigation. Thanks Shaun, for letting me meet your family and share with them the \kiwi" lifestyle. • Volker H. Rosenkranz and the EU-CargoXpress project. The collaboration with Volker and the project have allowed me not only obtaining very interesting results but traveling and meeting inspiring people. • Jos´eMar´ıaTerr´es,Jessika Garc´ıaand the Wind Engineering group of the Centro Andaluz de Medio Ambiente (Spain). I have to thank them for accepting me and opening the doors of their facilities for my investigation. They helped, support and guided me during the research. • Sebasti´anFranchini, Javier P´erezand the Instituto Universitario de Microgravedad \Ignacio Da Riva" at the Universidad Polit´ecnicade Madrid (Spain). I'm grateful for their work on the experimental tests and their valuable suggestions. v vi • Professor Yutaka Masuyama. He provided me worthwhile information and his per- mission to use his experimental results. • I have to highlight that this research has been partially funded by a PhD scholarship of the Universidad Polit´ecnicade Madrid. • Quiero agradecer a mi aita, a mi ama, a Gloria, a toda mi familia, por el amor, el apoyo incondicional, por aguantarme, por mantenerme, por todo, eskerrik asko! Y c´omono, a Israel, mi compa~nero, el que ha soportado cada l´agrima, cada ataque de ansiedad, cada momento de histeria y siempre ha estado a mi lado. Esta tesis ha sido posible gracias a todos vosotros. Contents 1 INTRODUCTION 1 1.1 General problem . 2 1.2 Motivation . 3 1.3 Scope . 4 1.4 Contributions . 4 1.5 Outline of the thesis . 5 2 SAILING CONCEPTS 7 2.1 Nomenclature . 7 2.2 Balance of the aero/hydrodynamic forces . 9 2.3 Aerodynamic Force . 10 2.4 Sail Interaction . 15 2.5 Apparent Wind . 16 2.6 Conclusion . 18 3 LITERATURE REVIEW 21 3.1 Performance Prediction . 21 3.1.1 Wind Tunnel Tests . 22 3.1.2 Full-scale Tests . 25 3.1.3 Numerical Simulations . 25 3.2 Aeroelastic Analysis . 33 3.2.1 Fluid Structure Interaction (FSI) . 34 3.3 Optimization approaches . 35 4 WIND TUNNEL TESTS 39 4.1 Nomenclature . 39 4.2 History . 40 4.3 Types . 42 4.3.1 Based on the airflow speed . 42 4.3.2 Based on the return circuit . 42 4.3.3 Based on the test section . 43 4.3.4 Special-purpose tunnels . 43 4.4 Operation and design . 45 4.4.1 Operation . 46 vii viii CONTENTS 4.4.2 Design . 48 4.5 Measurements and Instrumentation . 50 5 COMPUTATIONAL FLUID DYNAMIC SIMULATIONS 55 5.1 Nomenclature . 59 5.2 Mathematical Model . 62 5.2.1 General conservation law . 62 5.2.2 Levels of approximation . 65 5.2.3 Boundary Conditions . 66 5.3 Space Discretization . 67 5.3.1 Types . 68 5.3.2 STAR-CCM+ Mesh . 69 5.3.3 Mesh Validity and Quality . 70 5.4 Discretization of Equations . 71 5.4.1 Continuity Equation . 72 5.4.2 Momentum Equation . 75 5.4.3 RANS Turbulence Models . 79 5.4.4 Wall Treatment . 82 5.4.5 Gradient Computation . 84 5.4.6 SIMPLE Solver Algorithm . 87 5.5 Solution: Time Integration Method . 88 5.6 Solution: Algebraic System of Equations . 89 6 INFLUENCE OF THE MAST 93 6.1 Introduction . 93 6.2 Nomenclature . 95 6.3 Measurements of full-scale performance and sail shape . 96 6.4 Tests with ANSYS-CFX . 99 6.4.1 Domain and mesh . 100 6.4.2 Boundary conditions . 101 6.4.3 Numerical scheme . 102 6.4.4 Results and comparison . 102 6.5 Tests with STAR-CCM+ . 110 6.5.1 Domain and mesh . 111 6.5.2 Boundary conditions . 112 6.5.3 Numerical scheme . 113 6.5.4 Results and comparison . 113 6.6 Conclusions . 122 7 PRESSURE DISTRIBUTION ON A TP52 MAINSAIL 123 7.1 Introduction . 123 7.2 Nomenclature . 125 7.3 Transpac 52 Class . 125 7.3.1 Brief History . 127 CONTENTS ix 7.4 Experimental tests . 128 7.4.1 Wind tunnel description . 128 7.4.2 The model . 129 7.4.3 Experimental set-up and test description . 132 7.4.4 Results . 133 7.5 Numerical simulations . 136 7.5.1 Domain and mesh . 136 7.5.2 Boundary conditions . 137 7.5.3 Numerical scheme . 137 7.5.4 Comparison between simulations and experiments . 138 7.6 Conclusions . 141 8 AERODYNAMICS OF SAILING DHOWS 143 8.1 Introduction . 143 8.2 Nomenclature . 145 8.3 The Dhow . ..