Polarization (Waves)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Polarization Optics Polarized Light Propagation Partially Polarized Light
The physics of polarization optics Polarized light propagation Partially polarized light Polarization Optics N. Fressengeas Laboratoire Mat´eriaux Optiques, Photonique et Syst`emes Unit´ede Recherche commune `al’Universit´ede Lorraine et `aSup´elec Download this document from http://arche.univ-lorraine.fr/ N. Fressengeas Polarization Optics, version 2.0, frame 1 The physics of polarization optics Polarized light propagation Partially polarized light Further reading [Hua94, GB94] A. Gerrard and J.M. Burch. Introduction to matrix methods in optics. Dover, 1994. S. Huard. Polarisation de la lumi`ere. Masson, 1994. N. Fressengeas Polarization Optics, version 2.0, frame 2 The physics of polarization optics Polarized light propagation Partially polarized light Course Outline 1 The physics of polarization optics Polarization states Jones Calculus Stokes parameters and the Poincare Sphere 2 Polarized light propagation Jones Matrices Examples Matrix, basis & eigen polarizations Jones Matrices Composition 3 Partially polarized light Formalisms used Propagation through optical devices N. Fressengeas Polarization Optics, version 2.0, frame 3 The physics of polarization optics Polarization states Polarized light propagation Jones Calculus Partially polarized light Stokes parameters and the Poincare Sphere The vector nature of light Optical wave can be polarized, sound waves cannot The scalar monochromatic plane wave The electric field reads: A cos (ωt kz ϕ) − − A vector monochromatic plane wave Electric field is orthogonal to wave and Poynting vectors -
Optical Gyroscopes: Sensing Rotation Without Moving Parts Abstract
Abstract The desire for accurate navigation has been one of the great technology drivers since ancient times. Astronomy, timekeeping, magnetic sensors, the GPS system, MEMs, and spinning- mass gyroscopes are all familiar methods to measure position. The sensing of rotation by Optical Gyroscopes: optical means was first demonstrated by Sagnac in 1913, and in 1925 Michelson and Gale measured the rotation of the Earth with a 2km loop interferometer. The Sagnac effect was relegated to being a physics curiosity, until the 1960s and the advent of the laser and optical Sensing Rotation fiber. One of the great achievements of navigation engineering was the harnessing of the Sagnac effect, to make practical and extremely sensitive yet rugged optical rotation sensors. Without Moving Parts The Sagnac effect is very small, and it is necessary to measure on the order of one part out of 1020 to reach high-accuracy requirements. The design and manufacturing of practical optical gyroscopes is a tour-de-force of physics and engineering. Basic concepts such as symmetry, relativity, and reciprocity, and considerable interdisciplinary effort are needed in order to create a design such that every perturbation cancels out except rotation. Optical gyroscopes, Robert Dahlgren and their research and production contracts, were an early driver for many ultra-high- performance optical technologies. Such commonplace items as low-scatter mirrors, ultrasonic Silicon Valley Photonics, Ltd. machining of glass, lithium niobate integrated optics, polarization-maintaining fiber, superluminescent and narrow-linewidth lasers found their first major applications and customers in these sensors. Presented to the IEEE SCV Preceding Image: Monolithic Ring Laser Gyro (MRLG). -
Daytime Sky Polarization Calibration Limitations
Daytime sky polarization calibration limitations David M. Harrington Jeffrey R. Kuhn Arturo López Ariste David M. Harrington, Jeffrey R. Kuhn, Arturo López Ariste, “Daytime sky polarization calibration limitations,” J. Astron. Telesc. Instrum. Syst. 3(1), 018001 (2017), doi: 10.1117/1.JATIS.3.1.018001. Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 08 May 2019 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Journal of Astronomical Telescopes, Instruments, and Systems 3(1), 018001 (Jan–Mar 2017) Daytime sky polarization calibration limitations David M. Harrington,a,b,c,* Jeffrey R. Kuhn,d and Arturo López Aristee aNational Solar Observatory, 3665 Discovery Drive, Boulder, Colorado 80303, United States bKiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg, Germany cUniversity of Hawaii, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, Hawaii 96822, United States dUniversity of Hawaii, Institute for Astronomy Maui, 34 Ohia Ku Street, Pukalani, Hawaii 96768, United States eIRAP CNRS, UMR 5277, 14, Avenue E Belin, Toulouse, France Abstract. The daytime sky has recently been demonstrated as a useful calibration tool for deriving polarization cross-talk properties of large astronomical telescopes. The Daniel K. Inouye Solar Telescope and other large telescopes under construction can benefit from precise polarimetric calibration of large mirrors. Several atmos- pheric phenomena and instrumental errors potentially limit the technique’s accuracy. At the 3.67-m AEOS telescope on Haleakala, we performed a large observing campaign with the HiVIS spectropolarimeter to identify limitations and develop algorithms for extracting consistent calibrations. Effective sampling of the telescope optical configurations and filtering of data for several derived parameters provide robustness to the derived Mueller matrix calibrations. -
Lab 8: Polarization of Light
Lab 8: Polarization of Light 1 Introduction Refer to Appendix D for photos of the appara- tus Polarization is a fundamental property of light and a very important concept of physical optics. Not all sources of light are polarized; for instance, light from an ordinary light bulb is not polarized. In addition to unpolarized light, there is partially polarized light and totally polarized light. Light from a rainbow, reflected sunlight, and coherent laser light are examples of po- larized light. There are three di®erent types of po- larization states: linear, circular and elliptical. Each of these commonly encountered states is characterized Figure 1: (a)Oscillation of E vector, (b)An electromagnetic by a di®ering motion of the electric ¯eld vector with ¯eld. respect to the direction of propagation of the light wave. It is useful to be able to di®erentiate between 2 Background the di®erent types of polarization. Some common de- vices for measuring polarization are linear polarizers and retarders. Polaroid sunglasses are examples of po- Light is a transverse electromagnetic wave. Its prop- larizers. They block certain radiations such as glare agation can therefore be explained by recalling the from reflected sunlight. Polarizers are useful in ob- properties of transverse waves. Picture a transverse taining and analyzing linear polarization. Retarders wave as traced by a point that oscillates sinusoidally (also called wave plates) can alter the type of polar- in a plane, such that the direction of oscillation is ization and/or rotate its direction. They are used in perpendicular to the direction of propagation of the controlling and analyzing polarization states. -
Crosspolarization and Depolarization in Ellipsometry at Inner Boundaries
Crosspolarization and Depolarization in Ellipsometry at Inner Boundaries • Introduction and Motivation • In optics we never measure the fields! • Decoherence • Temporal and Spatial • Depolarization • Temporal • Depolarization Kurt Hingerl & Razvigor Ossikovski • Spatial University Linz & Ecole Polytechnique • Summary [email protected] Opt. Lett. 41, 219, (2016), Opt. Lett. 41, 4044, (2016), Paul Dirac „Quantum Mechanics“: ~ 1935 “each photon then interferes only with itself. Interference between different photons never occurs.” Albert Einstein to his friend Michael Besso 1954: “All these fifty years of conscious brooding have brought me no nearer to the answer to the question, 'What are light quanta?' Nowadays every Tom, Dick and Harry thinks he knows it, but he is mistaken.” R. Feynman QED- the strange theory matter and light, 1985 When a photon comes down, it interacts with electrons throughout the glass, not just on the surface. The photon and electrons do some kind of dance, the net result of which is the same as if the photon hit only on the surface. W.E. Lamb 1995, Appl. Phys B “Photons cannot be localized in any meaningful manner, and they do not behave at all like particles, whether described by a wave function or not." Roy Glauber „Nobel lecture: Quantum Mechanics“: 2005 “….if we get a click in a detector, we know that at that very moment the photon is just there….” What does depolarization mean? Partial state of polarization produced by the interaction of polarized light and an optical element (depolarizer). Case 1 Case 2 Two phase system: semi-infinite material & air Totally polarized Depolarization E r 22s sin ( ) cos( ) sin ( ) Ei r pp a : tan ei Ersrs 2 2 sin ( ) cos( ) sin ( ) Ei s a Case 1: For nondepolarising system fully equivalent Mueller matrix formalism Jones formalism Sin Sout M Sout M Sin Ex v s MMMM s v out J v in 00 11 12 13 14 E y s MMMM s 11 21 22 23 24 . -
Transverse-Mode Coupling Effects in Scanning Cavity Microscopy
PAPER • OPEN ACCESS Transverse-mode coupling effects in scanning cavity microscopy To cite this article: Julia Benedikter et al 2019 New J. Phys. 21 103029 View the article online for updates and enhancements. This content was downloaded from IP address 130.183.90.175 on 07/01/2020 at 15:23 New J. Phys. 21 (2019) 103029 https://doi.org/10.1088/1367-2630/ab49b4 PAPER Transverse-mode coupling effects in scanning cavity microscopy OPEN ACCESS Julia Benedikter1,2, Thea Moosmayer2, Matthias Mader1,3, Thomas Hümmer1,3 and David Hunger2 RECEIVED 1 Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstraße4, D-80799München, Germany 5 August 2019 2 Karlsruher Institut für Technologie, Physikalisches Institut, Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe, Germany REVISED 3 Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str.1, D-85748Garching, Germany 11 September 2019 ACCEPTED FOR PUBLICATION E-mail: [email protected] 1 October 2019 Keywords: optical microcavities, Fabry–Perot resonators, mode mixing, fiber cavity PUBLISHED 15 October 2019 Supplementary material for this article is available online Original content from this work may be used under Abstract the terms of the Creative Commons Attribution 3.0 Tunable open-access Fabry–Pérot microcavities enable the combination of cavity enhancement with licence. high resolution imaging. To assess the limits of this technique originating from background variations, Any further distribution of this work must maintain we perform high-finesse scanning cavity microscopy of pristine planar mirrors. We observe spatially attribution to the author(s) and the title of localized features of strong cavity transmission reduction for certain cavity mode orders, and periodic the work, journal citation background patterns with high spatial frequency. -
Polarization of EM Waves
Light in different media A short review • Reflection of light: Angle of incidence = Angle of reflection • Refraction of light: Snell’s law Refraction of light • Total internal reflection For some critical angle light beam will be reflected: 1 n2 c sin n1 For some critical angle light beam will be reflected: Optical fibers Optical elements Mirrors i = p flat concave convex 1 1 1 p i f Summary • Real image can be projected on a screen • Virtual image exists only for observer • Plane mirror is a flat reflecting surface Plane Mirror: ip • Convex mirrors make objects smaller • Concave mirrors make objects larger 1 Spherical Mirror: fr 2 Geometrical Optics • “Geometrical” optics (rough approximation): light rays (“particles”) that travel in straight lines. • “Physical” Classical optics (good approximation): electromagnetic waves which have amplitude and phase that can change. • Quantum Optics (exact): Light is BOTH a particle (photon) and a wave: wave-particle duality. Refraction For y = 0 the same for all x, t Refraction Polarization Polarization By Reflection Different polarization of light get reflected and refracted with different amplitudes (“birefringence”). At one particular angle, the parallel polarization is NOT reflected at all! o This is the “Brewster angle” B, and B + r = 90 . (Absorption) o n1 sin n2 sin(90 ) n2 cos n2 tan Polarizing Sunglasses n1 Polarized Sunglasses B Linear polarization Ey Asin(2x / t) Vertically (y axis) polarized wave having an amplitude A, a wavelength of and an angular velocity (frequency * 2) of , propagating along the x axis. Linear polarization Vertical Ey Asin(2x / t) Horizontal Ez Asin(2x / t) Linear polarization • superposition of two waves that have the same amplitude and wavelength, • are polarized in two perpendicular planes and oscillate in the same phase. -
Applied Sciences
applied sciences Article Analysis of Hybrid Vector Beams Generated with a Detuned Q-Plate Julio César Quiceno-Moreno 1,2 , David Marco 1 , María del Mar Sánchez-López 1,3,* , Efraín Solarte 2 and Ignacio Moreno 1,4 1 Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, 03202 Elche, Spain; [email protected] (J.C.Q.-M.); [email protected] (D.M.); [email protected] (I.M.) 2 Departamento de Física, Universidad del Valle, Cali 760032, Colombia; [email protected] 3 Departamento de Física Aplicada, Universidad Miguel Hernández de Elche, 03202 Elche, Spain 4 Departamento de Ciencia de Materiales, Óptica y Tecnología Electrónica, Universidad Miguel Hernández de Elche, 03202 Elche, Spain * Correspondence: [email protected]; Tel.: +34-96-665-8329 Received: 7 April 2020; Accepted: 11 May 2020; Published: 15 May 2020 Featured Application: Optical Communications; Snapshot Polarimetry; Micromachining; Particle Manipulation. Abstract: We use a tunable commercial liquid-crystal device tuned to a quarter-wave retardance to study the generation and dynamics of different types of hybrid vector beams. The standard situation where the q-plate is illuminated by a Gaussian beam is compared with other cases where the input beam is a vortex or a pure vector beam. As a result, standard hybrid vector beams but also petal-like hybrid vector beams are generated. These beams are analyzed in the near field and compared with the far field distribution, where their hybrid nature is observed as a transformation of the intensity and polarization patterns. Analytical calculations and numerical results confirm the experiments. We include an approach that provides an intuitive physical explanation of the polarization patterns in terms of mode superpositions and their transformation upon propagation based on their different Gouy phase. -
Lecture 14: Polarization
Matthew Schwartz Lecture 14: Polarization 1 Polarization vectors In the last lecture, we showed that Maxwell’s equations admit plane wave solutions ~ · − ~ · − E~ = E~ ei k x~ ωt , B~ = B~ ei k x~ ωt (1) 0 0 ~ ~ Here, E0 and B0 are called the polarization vectors for the electric and magnetic fields. These are complex 3 dimensional vectors. The wavevector ~k and angular frequency ω are real and in the vacuum are related by ω = c ~k . This relation implies that electromagnetic waves are disper- sionless with velocity c: the speed of light. In materials, like a prism, light can have dispersion. We will come to this later. In addition, we found that for plane waves 1 B~ = ~k × E~ (2) 0 ω 0 This equation implies that the magnetic field in a plane wave is completely determined by the electric field. In particular, it implies that their magnitudes are related by ~ ~ E0 = c B0 (3) and that ~ ~ ~ ~ ~ ~ k · E0 =0, k · B0 =0, E0 · B0 =0 (4) In other words, the polarization vector of the electric field, the polarization vector of the mag- netic field, and the direction ~k that the plane wave is propagating are all orthogonal. To see how much freedom there is left in the plane wave, it’s helpful to choose coordinates. We can always define the zˆ direction as where ~k points. When we put a hat on a vector, it means the unit vector pointing in that direction, that is zˆ=(0, 0, 1). Thus the electric field has the form iω z −t E~ E~ e c = 0 (5) ~ ~ which moves in the z direction at the speed of light. -
Problem 9 - Optical Compass
Team Brazil – University of Campinas Problem 9 - Optical Compass Maria Carolina Volpato and Denise Christovam 1 Team Brazil – University of Campinas Problem Statement Bees locate themselves in space using their eyes’ sensitivity to light polarization. Design an inexpensive optical compass using polarization effects to obtain the best accuracy. How would the presence of clouds in the sky change this accuracy? 2 Team Brazil – University of Campinas Visualization of the phenomenon Problem 9- Optical Compass 3 Team Brazil – University of Campinas Light Scattering Incident Scattered Backward Forward scattering scattering Scattered Light Incoming Light 4 Problem 9- Optical Compass Particle Team Brazil – University of Campinas Light Scattering Rayleigh Scattering Mie Scattering Conditions to Rayleigh scattering are satisfied! Problem 9- Optical Compass 5 Team Brazil – University of Campinas Linear Polarization ➔ For the observer at PMP polarization plane collapses into a line ➔ 90o from the source of light Problem 9- Optical Compass 6 Team Brazil – University of Campinas Mapping the sky ➔ Rayleigh sky model describes how the maximally polarized light stripe varies with rotation Degree of polarization at sunset or sunrise. https://en.wikipedia.org/wiki/Rayleigh_sky_model Problem 9- Optical Compass 7 Team Brazil – University of Campinas Materials and design ➔ Polarizing sheets ➔ Guillotine Paper Cutting Machine ➔ Adhesive tape ~ R$ 30.00 ($6.00) ➔ Cardboard A4 (120 g/m²) o 12 petals – 30 72 petals – 5o 18 petals – 20o Problem 9- Optical Compass -
Stitching Type Large Aperture Depolarizer for Gas Monitoring Imaging Spectrometer
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China STITCHING TYPE LARGE APERTURE DEPOLARIZER FOR GAS MONITORING IMAGING SPECTROMETER Xiaolin Liu*, Ming Li, Ning An, Tingcheng Zhang, Guili Cao, Shaoyuan Cheng Beijing Institute of Space Mechanics & Electricity, Beijing Key Laboratory of Advanced Optical Remote Sensing Technology, China – (mojiexiaolin, 13521820892, anningji, tczhang1217, bitlitian,csycf) @163.com Commission III, WG III/8 KEY WORDS: Polarization, Depolarizer, Muller matrix, Imaging Spectrometer, Stitching, Numerical Analysis ABSTRACT: To increase the accuracy of radiation measurement for gas monitoring imaging spectrometer, it is necessary to achieve high levels of depolarization of the incoming beam. The preferred method in space instrument is to introduce the depolarizer into the optical system. It is a combination device of birefringence crystal wedges. Limited to the actual diameter of the crystal, the traditional depolarizer cannot be used in the large aperture imaging spectrometer (greater than 100mm). In this paper, a stitching type depolarizer is presented. The design theory and numerical calculation model for dual babinet depolarizer were built. As required radiometric accuracies of the imaging spectrometer with 250mm×46mm aperture, a stitching type dual babinet depolarizer was design in detail. Based on designing the optimum structural parmeters,the tolerance of wedge angle, refractive index, and central thickness were given. The analysis results show that the maximum residual polarization degree of output light from depolarizer is less than 2%. The design requirements of polarization sensitivity is satisfied. 1. -
Polarization Control of Light with a Liquid Crystal Display Spatial Light Modulator by Charles E
POLARIZATION CONTROL OF LIGHT WITH A LIQUID CRYSTAL DISPLAY SPATIAL LIGHT MODULATOR A Thesis Presented to the Faculty of San Diego State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Physics by Charles E. Granger Summer 2013 iii Copyright c 2013 by Charles E. Granger iv When you know that all is light, you are enlightened. -Anonymous A strangely appropriate quote from the tag of some tea I was drinking while writing this v ABSTRACT OF THE THESIS Polarization Control of Light with a Liquid Crystal Display Spatial Light Modulator by Charles E. Granger Master of Science in Physics San Diego State University, 2013 In this work, we use a programmable liquid crystal display spatial light modulator to provide nearly complete polarization control of the undiffracted order for the case where the beam only makes a single pass through the liquid crystal element. This is done by programming and modifying a diffraction grating on the liquid crystal display, providing the amplitude and phase control necessary for polarization control. Experiments show that for the undiffracted order we can create linearly polarized light at nearly any angle, as well as elliptically polarized light. Furthermore, the versatility of the liquid crystal display allows for the screen to be sectioned, which we utilize for the creation of radially polarized-type beams. Such polarization control capabilities could be useful to applications in optical communications or polarimetry. Through the experiments, we also uncover the disadvantages of the single pass system, which include some limitations on the range of linear polarization angles, large intensity variations between different polarization angles, and the inability to create a pure radially polarized beam.