Lab 8: Polarization of Light

Total Page:16

File Type:pdf, Size:1020Kb

Lab 8: Polarization of Light Lab 8: Polarization of Light 1 Introduction Refer to Appendix D for photos of the appara- tus Polarization is a fundamental property of light and a very important concept of physical optics. Not all sources of light are polarized; for instance, light from an ordinary light bulb is not polarized. In addition to unpolarized light, there is partially polarized light and totally polarized light. Light from a rainbow, reflected sunlight, and coherent laser light are examples of po- larized light. There are three di®erent types of po- larization states: linear, circular and elliptical. Each of these commonly encountered states is characterized Figure 1: (a)Oscillation of E vector, (b)An electromagnetic by a di®ering motion of the electric ¯eld vector with ¯eld. respect to the direction of propagation of the light wave. It is useful to be able to di®erentiate between 2 Background the di®erent types of polarization. Some common de- vices for measuring polarization are linear polarizers and retarders. Polaroid sunglasses are examples of po- Light is a transverse electromagnetic wave. Its prop- larizers. They block certain radiations such as glare agation can therefore be explained by recalling the from reflected sunlight. Polarizers are useful in ob- properties of transverse waves. Picture a transverse taining and analyzing linear polarization. Retarders wave as traced by a point that oscillates sinusoidally (also called wave plates) can alter the type of polar- in a plane, such that the direction of oscillation is ization and/or rotate its direction. They are used in perpendicular to the direction of propagation of the controlling and analyzing polarization states. wave. The oscillating point can be considered to de- scribe the vibration of the electric ¯eld vector E of This experiment consists of a series of basic exercises, the light wave, as shown in Figure 1(a). The magnetic which will introduce important techniques for analyz- ¯eld vector B vibrates in a direction perpendicular to ing the polarization of light. We will study linear and that of the electric ¯eld vector and to the direction circular polarization, using linear polarizers and two of propagation of the wave, as shown in Figure 1(b). types of retarders: quarter-wave and half-wave. The The magnetic ¯eld is very weak and therefore it is ig- ¯rst two parts of the experiment deal with testing the nored in our study of polarization. In ¯gures 1a and polarization of a laser and analyzing it using linear 1b, only one electric ¯eld vector is shown. However, polarizers. In the third part of the experiment, you light emitted from an actual source consists of many will use quarter wave plates to produce circularly po- such electric ¯eld vectors. The polarization of light is larized light and investigate its properties. Finally, de¯ned in terms of the direction of oscillation of the you will use a half-wave plate to rotate the direction electric ¯eld vectors. An ordinary source of light (such of linear polarization. as the Sun) emits light waves in all directions. Conse- quently, the electric ¯eld vectors vibrate randomly in EXERCISES 1-5 PERTAIN TO THE BACK- all directions. Such sources of light are unpolarized GROUND CONCEPTS AND EXERCISES (Figure 2(a)). Partially polarized light occurs if 6-11 PERTAIN TO THE EXPERIMENTAL the E vectors have a preferred direction of oscillation SECTIONS. (Figure 2(b)). Light is totally linearly polarized 8.1 Figure 3: Transmission through a linear polarizer. Figure 2: Polarization of light, z is the direction of propagation. (or plane polarized) if all the electric ¯eld vectors ment. A mathematical treatment of linear and circu- oscillate in the same plane, parallel to a ¯xed direction lar polarization and their interaction with polarizers referred to as the polarization direction. The special and retarders will be presented next. case of vertically polarized light is represented by a vertical arrow (Figure 2(c)), while the special case of Linear polarizers: Certain materials have the prop- horizontally polarized light is represented by a dot in- erty of transmitting an incident unpolarized light in dicating that the E vector oscillates into and out of only one direction. Such materials are called dichroic. the page (Figure 2(d)). For linearly polarized light, Polarizing sheets (which are dichroic) are manufac- the plane of polarization is de¯ned as a plane paral- tured by stretching long-chained polymer molecules lel both to the direction of oscillation of the electric after which they are saturated with dichroic materials ¯eld vector and the direction of propagation of the such as iodine. Then they are saturating with dichroic wave. The behavior of electromagnetic waves can be materials such as iodine. The direction perpendicular studied by considering two orthogonal components to the oriented molecular chains is called the trans- of the electric ¯eld vector. The phase relationship be- mission axis of the polarizer. A polarizing sheet has tween these two components can explain the di®erent a characteristic polarizing direction along its trans- states of polarization. For example, if the phase rela- mission axis. The sheet transmits only the com- tionship is random, light is not polarized. If the phase ponent of the electric ¯eld vector parallel to relationship is random, but more of one component is its transmission axis. The component perpendic- present, the light is partially polarized. If the phase ular to the transmission axis is completely absorbed relationship is constant, the light is completely polar- (this is called selective absorption). Therefore, light ized. More speci¯cally, if the phase di®erence is 0 or emerging from the polarizer is linearly polarized in the 180 degrees, the light is linearly polarized. If the direction parallel to the transmission axis. Figure 3 phase di®erence is 90 or 270 degrees and both compo- illustrates this idea. The linear polarizer is oriented nents have the same amplitude, the light is circularly such that its transmission axis is horizontal. Light in- polarized. If a constant phase di®erence other than 0, cident on the polarizer is unpolarized. However, the 90, 180 or 270 degrees exists and/or the amplitudes E vectors of the unpolarized light can be resolved into of the components are not equal, then the light is el- two orthogonal components, one parallel to the trans- liptically polarized. In case of circular or elliptical mission axis of the polarizer, and the other perpendic- polarization, the plane of polarization rotates, in con- ular to it. Light emerging from this linear polarizer trast to linear polarization where the plane of polar- is lineraly polarized in the horizontal direction. It is ization is ¯xed. There are two directions of circularly also worth noting that polarizers reduce the intensity (or elliptically) polarized light. Right-hand circularly of the incident light beam to some extent. polarized light is de¯ned such that the electric ¯eld is rotating clockwise as seen by an observer towards Retarders (waveplates): A retarder (or waveplate) whom the wave is moving. Left-hand circularly po- resolves a light wave into two orthogonal linear polar- larized light is de¯ned such that the electric ¯eld is ization components by producing a phase shift be- rotating counterclockwise as seen by an observer to- tween them. Depending on the induced phase di®er- wards whom the wave is moving0. ence, the transmitted light may have a di®erent type of polarization than the incident beam. Note that re- Elliptical polarization is not studied in this experi- tarders do not polarize unpolarized light and ideally 8.2 Figure 5: Conversion of linear polarization to elliptical polar- ization. Figure 4: Splitting of linearly polarized light into two compo- retarder; linear polarization is thus converted to ellip- nents as it enters a birefringent crystal. tical polarization due to the arbitrary phase shift. The phase di®erence depends on the incident wavelength, the refractive indices (along the two di®erent direc- they don't reduce the intensity of the incident light tions) and the thickness of the crystal. The phase dif- beam. ference can be expressed as a path di®erence between the two components. To understand how retarders function, it is instructive to consider the nature of the materials used in their There are many types of retarders. Some common re- construction. A material such as glass has an index tarders are quarter-wave (¸=4) plates and half-wave of refraction n, which is the same in all directions of (¸=2) plates. A quarter-wave plate is used to con- propagation through the material. Therefore when vert linear polarization to circular polarization and light enters glass, its speed will be the same in all di- vice-versa. Recall from a previous discussion that in rections (v=c/n). Such materials having one index order to obtain circular polarization, the amplitudes of refraction are called isotropic. Certain materials of the two E vector components must be equal and such as quartz exhibit double refraction or birefrin- their phase di®erence must be 90 or 270 degrees. A gence and are characterized by two indices of refrac- quarter-wave plate is capable of introducing a phase tion (along directions of crystalline symmetry): an or- di®erence of 90 degrees between the two components dinary index and an extraordinary index. These ma- of incident light. However, this is not enough to pro- terials are called anisotropic and the speed of light duce circular polarization. The direction of polariza- through them is di®erent in di®erent directions. Nor- tion of the incident light with respect to the optic mally, as light enters such a material, it splits into axis of the quarter-wave plate is equally important.
Recommended publications
  • Polarization Optics Polarized Light Propagation Partially Polarized Light
    The physics of polarization optics Polarized light propagation Partially polarized light Polarization Optics N. Fressengeas Laboratoire Mat´eriaux Optiques, Photonique et Syst`emes Unit´ede Recherche commune `al’Universit´ede Lorraine et `aSup´elec Download this document from http://arche.univ-lorraine.fr/ N. Fressengeas Polarization Optics, version 2.0, frame 1 The physics of polarization optics Polarized light propagation Partially polarized light Further reading [Hua94, GB94] A. Gerrard and J.M. Burch. Introduction to matrix methods in optics. Dover, 1994. S. Huard. Polarisation de la lumi`ere. Masson, 1994. N. Fressengeas Polarization Optics, version 2.0, frame 2 The physics of polarization optics Polarized light propagation Partially polarized light Course Outline 1 The physics of polarization optics Polarization states Jones Calculus Stokes parameters and the Poincare Sphere 2 Polarized light propagation Jones Matrices Examples Matrix, basis & eigen polarizations Jones Matrices Composition 3 Partially polarized light Formalisms used Propagation through optical devices N. Fressengeas Polarization Optics, version 2.0, frame 3 The physics of polarization optics Polarization states Polarized light propagation Jones Calculus Partially polarized light Stokes parameters and the Poincare Sphere The vector nature of light Optical wave can be polarized, sound waves cannot The scalar monochromatic plane wave The electric field reads: A cos (ωt kz ϕ) − − A vector monochromatic plane wave Electric field is orthogonal to wave and Poynting vectors
    [Show full text]
  • Processor U.S
    USOO5926295A United States Patent (19) 11 Patent Number: 5,926,295 Charlot et al. (45) Date of Patent: Jul. 20, 1999 54) HOLOGRAPHIC PROCESS AND DEVICE 4,602,844 7/1986 Sirat et al. ............................. 350/3.83 USING INCOHERENT LIGHT 4,976,504 12/1990 Sirat et al. .. ... 350/3.73 5,011,280 4/1991 Hung.............. ... 356/345 75 Inventors: Didier Charlot, Paris; Yann Malet, 5,081,540 1/1992 Dufresne et al. ... ... 359/30 Saint Cyr l’Ecole, both of France 5,081,541 1/1992 Sirat et al. ...... ... 359/30 5,216,527 6/1993 Sharnoff et al. ... 359/10 73 Assignee: Le Conoscope SA, Paris, France 5,223,966 6/1993 Tomita et al. .......................... 359/108 5,291.314 3/1994 Agranat et al. ......................... 359/100 21 Appl. No.: 08/681,926 22 Filed: Jul. 29, 1996 Primary Examiner Jon W. Henry Attorney, Agent, or Firm Michaelson & Wallace; Peter L. Related U.S. Application Data Michaelson; John C. Pokotylo 62 Division of application No. 08/244.249, filed as application 57 ABSTRACT No. PCT/FR92/01095, Nov. 25, 1992, Pat. No. 5,541,744. An optical device for generating a signal based on a distance 30 Foreign Application Priority Data of an object from the optical device. The optical device includes a first polarizer, a birefringent crystal positioned Nov. 27, 1991 FR France ................................... 91. 14661 optically downstream from the first polarizer, and a Second 51) Int. Cl. .............................. G03H 1/26; G01B 9/021 polarizer arranged optically downstream from the birefrin 52 U.S. Cl. ................................... 359/30; 359/11; 359/1; gent crystal.
    [Show full text]
  • Polarizer QWP Mirror Index Card
    PH 481 Physical Optics Winter 2014 Laboratory #8 Week of March 3 Read: pp. 336-344, 352-356, and 360-365 of "Optics" by Hecht Do: 1. Experiment VIII.1: Birefringence and Optical Isolation 2. Experiment VIII.2: Birefringent crystals: double refraction 3. Experiment VIII.3: Optical activity: rotary power of sugar Experiment VIII.1: Birefringence and Optical Isolation In this experiment the birefringence of a material will be used to change the polarization of the laser beam. You will use a quarter-wave plate and a polarizer to build an optical isolator. This is a useful device that ensures that light is not reflected back into the laser. This has practical importance since light reflected back into a laser can perturb the laser operation. A quarter-wave plate is a specific example of a retarder, a device that introduces a phase difference between waves with orthogonal polarizations. A birefringent material has two different indices of refraction for orthogonal polarizations and so is well suited for this task. We will refer to these two directions as the fast and slow axes. A wave polarized along the fast axis will move through the material faster than a wave polarized along the slow axis. A wave that is linearly polarized along some arbitrary direction can be decomposed into its components along the slow and fast axes, resulting in part of the wave traveling faster than the other part. The wave that leaves the material will then have a more general elliptical polarization. A quarter-wave plate is designed so that the fast and slow Laser components of a wave will experience a relative phase shift of Index Card π/2 (1/4 of 2π) upon traversing the plate.
    [Show full text]
  • Static and Dynamic Effects of Chirality in Dielectric Media
    Static and dynamic effects of chirality in dielectric media R. S. Lakes Department of Engineering Physics, Department of Materials Science, University of Wisconsin, 1500 Engineering Drive, Madison, WI 53706-1687 [email protected] January 31, 2017 adapted from R. S. Lakes, Modern Physics Letters B, 30 (24) 1650319 (9 pages) (2016). Abstract Chiral dielectrics are considered from the perspective of continuum representations of spatial heterogeneity. Static effects in isotropic chiral dielectrics are predicted, provided the electric field has nonzero third spatial derivatives. The effects are compared with static chiral phenomena in Cosserat elastic materials which obey generalized continuum constitutive equations. Dynamic monopole - like magnetic induction is predicted in chiral dielectric media. keywords: chirality, dielectric, Cosserat 1 Introduction Chirality is well known in electromagnetics 1; it gives rise to optical activity in which left or right handed cir- cularly polarized waves propagate at different velocities. Known effects are dynamic only; there is considered to be no static effect 2. The constitutive equations for a directionally isotropic chiral material are 3, 4. @H D = kE − g (1) @t @E B = µH + g (2) @t in which E is electric field, D is electric displacement, B is magnetic field, H is magnetic induction, k is the dielectric permittivity, µ is magnetic permeability and g is a measure of the chirality. Optical rotation of polarized light of wavelength λ by an angle Φ (in radians per meter) is given by Φ = (2π/λ)2cg with c as the speed of light. The quantity g embodies the length scale of the chiral structure because cg has dimensions of length.
    [Show full text]
  • Principles of Retarders
    Polarizers PRINCIPLES OF RETARDERS etarders are used in applications where control or Ranalysis of polarization states is required. Our retarder products include innovative polymer and liquid crystal materials. Crystalline materials such as quartz and Retarders magnesium fluoride are also available upon request. Please call for a custom quote. A retarder (or waveplate) is an optical device that resolves a light wave into two orthogonal linear polarization components and produces a phase shift between them. The resulting light wave is generally of a different polarization form. Ideally, retarders do not polarize, nor do they induce an intensity change in the Crystals Liquid light beam, they simply change its polarization form. state. The transmitted light leaves the retarder elliptically All standard catalog Meadowlark Optics’ retarders are polarized. made from birefringent, uniaxial materials having two Retardance (in waves) is given by: different refractive indices – the extraordinary index ne = ␤tր␭ and the ordinary index no. Light traveling through a retarder has a velocity v where: dependent upon its polarization direction given by ␤ = birefringence (ne - no) Spatial Light ␭ Modulators v = c/n = wavelength of incident light (in nanometers) t = thickness of birefringent element where c is the speed of light in a vacuum and n is the (in nanometers) refractive index parallel to that polarization direction. Retardance can also be expressed in units of length, the By definition, ne > no for a positive uniaxial material. distance that one polarization component is delayed For a positive uniaxial material, the extraordinary axis relative to the other. Retardance is then represented by: is referred to as the slow axis, while the ordinary axis is ␦Ј ␦␭ ␤ referred to as the fast axis.
    [Show full text]
  • Observation of Elliptically Polarized Light from Total Internal Reflection in Bubbles
    Observation of elliptically polarized light from total internal reflection in bubbles Item Type Article Authors Miller, Sawyer; Ding, Yitian; Jiang, Linan; Tu, Xingzhou; Pau, Stanley Citation Miller, S., Ding, Y., Jiang, L. et al. Observation of elliptically polarized light from total internal reflection in bubbles. Sci Rep 10, 8725 (2020). https://doi.org/10.1038/s41598-020-65410-5 DOI 10.1038/s41598-020-65410-5 Publisher NATURE PUBLISHING GROUP Journal SCIENTIFIC REPORTS Rights Copyright © The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License. Download date 29/09/2021 02:08:57 Item License https://creativecommons.org/licenses/by/4.0/ Version Final published version Link to Item http://hdl.handle.net/10150/641865 www.nature.com/scientificreports OPEN Observation of elliptically polarized light from total internal refection in bubbles Sawyer Miller1,2 ✉ , Yitian Ding1,2, Linan Jiang1, Xingzhou Tu1 & Stanley Pau1 ✉ Bubbles are ubiquitous in the natural environment, where diferent substances and phases of the same substance forms globules due to diferences in pressure and surface tension. Total internal refection occurs at the interface of a bubble, where light travels from the higher refractive index material outside a bubble to the lower index material inside a bubble at appropriate angles of incidence, which can lead to a phase shift in the refected light. Linearly polarized skylight can be converted to elliptically polarized light with efciency up to 53% by single scattering from the water-air interface. Total internal refection from air bubble in water is one of the few sources of elliptical polarization in the natural world.
    [Show full text]
  • Polarization of EM Waves
    Light in different media A short review • Reflection of light: Angle of incidence = Angle of reflection • Refraction of light: Snell’s law Refraction of light • Total internal reflection For some critical angle light beam will be reflected: 1 n2 c sin n1 For some critical angle light beam will be reflected: Optical fibers Optical elements Mirrors i = p flat concave convex 1 1 1 p i f Summary • Real image can be projected on a screen • Virtual image exists only for observer • Plane mirror is a flat reflecting surface Plane Mirror: ip • Convex mirrors make objects smaller • Concave mirrors make objects larger 1 Spherical Mirror: fr 2 Geometrical Optics • “Geometrical” optics (rough approximation): light rays (“particles”) that travel in straight lines. • “Physical” Classical optics (good approximation): electromagnetic waves which have amplitude and phase that can change. • Quantum Optics (exact): Light is BOTH a particle (photon) and a wave: wave-particle duality. Refraction For y = 0 the same for all x, t Refraction Polarization Polarization By Reflection Different polarization of light get reflected and refracted with different amplitudes (“birefringence”). At one particular angle, the parallel polarization is NOT reflected at all! o This is the “Brewster angle” B, and B + r = 90 . (Absorption) o n1 sin n2 sin(90 ) n2 cos n2 tan Polarizing Sunglasses n1 Polarized Sunglasses B Linear polarization Ey Asin(2x / t) Vertically (y axis) polarized wave having an amplitude A, a wavelength of and an angular velocity (frequency * 2) of , propagating along the x axis. Linear polarization Vertical Ey Asin(2x / t) Horizontal Ez Asin(2x / t) Linear polarization • superposition of two waves that have the same amplitude and wavelength, • are polarized in two perpendicular planes and oscillate in the same phase.
    [Show full text]
  • (EM) Waves Are Forms of Energy That Have Magnetic and Electric Components
    Physics 202-Section 2G Worksheet 9-Electromagnetic Radiation and Polarizers Formulas and Concepts Electromagnetic (EM) waves are forms of energy that have magnetic and electric components. EM waves carry energy, not matter. EM waves all travel at the speed of light, which is about 3*108 m/s. The speed of light is often represented by the letter c. Only small part of the EM spectrum is visible to us (colors). Waves are defined by their frequency (measured in hertz) and wavelength (measured in meters). These quantities are related to velocity of waves according to the formula: 풗 = 흀풇 and for EM waves: 풄 = 흀풇 Intensity is a property of EM waves. Intensity is defined as power per area. 푷 푺 = , where P is average power 푨 o Intensity is related the magnetic and electric fields associated with an EM wave. It can be calculated using the magnitude of the magnetic field or the electric field. o Additionally, both the average magnetic and average electric fields can be calculated from the intensity. ퟐ ퟐ 푩 푺 = 풄휺ퟎ푬 = 풄 흁ퟎ Polarizability is a property of EM waves. o Unpolarized waves can oscillate in more than one orientation. Polarizing the wave (often light) decreases the intensity of the wave/light. o When unpolarized light goes through a polarizer, the intensity decreases by 50%. ퟏ 푺 = 푺 ퟏ ퟐ ퟎ o When light that is polarized in one direction travels through another polarizer, the intensity decreases again, according to the angle between the orientations of the two polarizers. ퟐ 푺ퟐ = 푺ퟏ풄풐풔 휽 this is called Malus’ Law.
    [Show full text]
  • Finding the Optimal Polarizer
    Finding the Optimal Polarizer William S. Barbarow Meadowlark Optics Inc., 5964 Iris Parkway, Frederick, CO 80530 (Dated: January 12, 2009) ”I have an application requiring polarized light. What type of polarizer should I use?” This is a question that is routinely asked in the field of polarization optics. Many applications today require polarized light, ranging from semiconductor wafer processing to reducing the glare in a periscope. Polarizers are used to obtain polarized light. A polarizer is a polarization selector; generically a tool or material that selects a desired polarization of light from an unpolarized input beam and allows it to transmit through while absorbing, scattering or reflecting the unwanted polarizations. However, with five different varieties of linear polarizers, choosing the correct polarizer for your application is not easy. This paper presents some background on the theory of polarization, the five different polarizer categories and then concludes with a method that will help you determine exactly what polarizer is best suited for your application. I. POLARIZATION THEORY - THE TYPES OF not ideal, they transmit less than 50% of unpolarized POLARIZATION light or less than 100% of optimally polarized light; usu- ally between 40% and 98% of optimally polarized light. Light is a transverse electromagnetic wave. Every light Polarizers also have some leakage of the light that is not wave has a direction of propagation with electric and polarized in the desired direction. The ratio between the magnetic fields that are perpendicular to the direction transmission of the desired polarization direction and the of propagation of the wave. The direction of the electric undesired orthogonal polarization direction is the other 2 field oscillation is defined as the polarization direction.
    [Show full text]
  • Polarization (Waves)
    Polarization (waves) Polarization (also polarisation) is a property applying to transverse waves that specifies the geometrical orientation of the oscillations.[1][2][3][4][5] In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave.[4] A simple example of a polarized transverse wave is vibrations traveling along a taut string (see image); for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic [6] waves such as light and radio waves, gravitational waves, and transverse Circular polarization on rubber sound waves (shear waves) in solids. thread, converted to linear polarization An electromagnetic wave such as light consists of a coupled oscillating electric field and magnetic field which are always perpendicular; by convention, the "polarization" of electromagnetic waves refers to the direction of the electric field. In linear polarization, the fields oscillate in a single direction. In circular or elliptical polarization, the fields rotate at a constant rate in a plane as the wave travels. The rotation can have two possible directions; if the fields rotate in a right hand sense with respect to the direction of wave travel, it is called right circular polarization, while if the fields rotate in a left hand sense, it is called left circular polarization.
    [Show full text]
  • Lecture 14: Polarization
    Matthew Schwartz Lecture 14: Polarization 1 Polarization vectors In the last lecture, we showed that Maxwell’s equations admit plane wave solutions ~ · − ~ · − E~ = E~ ei k x~ ωt , B~ = B~ ei k x~ ωt (1) 0 0 ~ ~ Here, E0 and B0 are called the polarization vectors for the electric and magnetic fields. These are complex 3 dimensional vectors. The wavevector ~k and angular frequency ω are real and in the vacuum are related by ω = c ~k . This relation implies that electromagnetic waves are disper- sionless with velocity c: the speed of light. In materials, like a prism, light can have dispersion. We will come to this later. In addition, we found that for plane waves 1 B~ = ~k × E~ (2) 0 ω 0 This equation implies that the magnetic field in a plane wave is completely determined by the electric field. In particular, it implies that their magnitudes are related by ~ ~ E0 = c B0 (3) and that ~ ~ ~ ~ ~ ~ k · E0 =0, k · B0 =0, E0 · B0 =0 (4) In other words, the polarization vector of the electric field, the polarization vector of the mag- netic field, and the direction ~k that the plane wave is propagating are all orthogonal. To see how much freedom there is left in the plane wave, it’s helpful to choose coordinates. We can always define the zˆ direction as where ~k points. When we put a hat on a vector, it means the unit vector pointing in that direction, that is zˆ=(0, 0, 1). Thus the electric field has the form iω z −t E~ E~ e c = 0 (5) ~ ~ which moves in the z direction at the speed of light.
    [Show full text]
  • Circular Polarization and Nonreciprocal Propagation in Magnetic Media Circular Polarization and Nonreciprocal Propagation in Magnetic Media Gerald F
    • DIONNE, ALLEN, Haddad, ROSS, AND LaX Circular Polarization and Nonreciprocal Propagation in Magnetic Media Circular Polarization and Nonreciprocal Propagation in Magnetic Media Gerald F. Dionne, Gary A. Allen, Pamela R. Haddad, Caroline A. Ross, and Benjamin Lax n The polarization of electromagnetic signals is an important feature in the design of modern radar and telecommunications. Standard electromagnetic theory readily shows that a linearly polarized plane wave propagating in free space consists of two equal but counter-rotating components of circular polarization. In magnetized media, these circular modes can be arranged to produce the nonreciprocal propagation effects that are the basic properties of isolator and circulator devices. Independent phase control of right-hand (+) and left-hand (–) circular waves is accomplished by splitting their propagation velocities through differences in the e±m± parameter. A phenomenological analysis of the permeability m and permittivity e in dispersive media serves to introduce the corresponding magnetic- and electric-dipole mechanisms of interaction length with the propagating signal. As an example of permeability dispersion, a Lincoln Laboratory quasi-optical Faraday- rotation isolator circulator at 35 GHz (l ~ 1 cm) with a garnet-ferrite rotator element is described. At infrared wavelengths (l = 1.55 mm), where fiber-optic laser sources also require protection by passive isolation of the Faraday-rotation principle, e rather than m provides the dispersion, and the frequency is limited to the quantum energies of the electric-dipole atomic transitions peculiar to the molecular structure of the magnetic garnet. For optimum performance, bismuth additions to the garnet chemical formula are usually necessary. Spectroscopic and molecular theory models developed at Lincoln Laboratory to explain the bismuth effects are reviewed.
    [Show full text]