Polarization Optics Polarized Light Propagation Partially Polarized Light

Total Page:16

File Type:pdf, Size:1020Kb

Polarization Optics Polarized Light Propagation Partially Polarized Light The physics of polarization optics Polarized light propagation Partially polarized light Polarization Optics N. Fressengeas Laboratoire Mat´eriaux Optiques, Photonique et Syst`emes Unit´ede Recherche commune `al’Universit´ede Lorraine et `aSup´elec Download this document from http://arche.univ-lorraine.fr/ N. Fressengeas Polarization Optics, version 2.0, frame 1 The physics of polarization optics Polarized light propagation Partially polarized light Further reading [Hua94, GB94] A. Gerrard and J.M. Burch. Introduction to matrix methods in optics. Dover, 1994. S. Huard. Polarisation de la lumi`ere. Masson, 1994. N. Fressengeas Polarization Optics, version 2.0, frame 2 The physics of polarization optics Polarized light propagation Partially polarized light Course Outline 1 The physics of polarization optics Polarization states Jones Calculus Stokes parameters and the Poincare Sphere 2 Polarized light propagation Jones Matrices Examples Matrix, basis & eigen polarizations Jones Matrices Composition 3 Partially polarized light Formalisms used Propagation through optical devices N. Fressengeas Polarization Optics, version 2.0, frame 3 The physics of polarization optics Polarization states Polarized light propagation Jones Calculus Partially polarized light Stokes parameters and the Poincare Sphere The vector nature of light Optical wave can be polarized, sound waves cannot The scalar monochromatic plane wave The electric field reads: A cos (ωt kz ϕ) − − A vector monochromatic plane wave Electric field is orthogonal to wave and Poynting vectors Lies in the wave vector normal plane Needs 2 components Ex = Ax cos (ωt kz ϕx ) − − Ey = Ay cos (ωt kz ϕy ) − − N. Fressengeas Polarization Optics, version 2.0, frame 4 The physics of polarization optics Polarization states Polarized light propagation Jones Calculus Partially polarized light Stokes parameters and the Poincare Sphere Linear and circular polarization states In phase components ϕy = ϕx π/2 shift ϕy = ϕx π/2 ± 0.4 1 0.2 -1 -0.5 0.5 1 0.5 -0.2 -0.4 -1 -0.5 0.5 1 π shift ϕy = ϕx + π 0.4 -0.5 0.2 -1 -0.5 0.5 1 -0.2 -1 -0.4 Left or Right N. Fressengeas Polarization Optics, version 2.0, frame 5 The physics of polarization optics Polarization states Polarized light propagation Jones Calculus Partially polarized light Stokes parameters and the Poincare Sphere The elliptic polarization state The polarization state of ANY monochromatic wave ϕy ϕx = π/4 − ± 1 Electric field Ex = Ax cos (ωt kz ϕx ) − − Ey = Ay cos (ωt kz ϕy ) 0.5 − − 4 real numbers Ax ,ϕx -1 -0.5 0.5 1 Ay ,ϕy 2 complex numbers -0.5 Ax exp(˙ıϕx ) Ay exp(˙ıϕy ) -1 N. Fressengeas Polarization Optics, version 2.0, frame 6 The physics of polarization optics Polarization states Polarized light propagation Jones Calculus Partially polarized light Stokes parameters and the Poincare Sphere Polarization states are vectors Monochromatic polarizations belong to a 2D vector space based on the Complex Ring ANY elliptic polarization state Two complex numbers ⇐⇒ A set of two ordered complex numbers is one 2D complex vector Canonical Basis 1 0 Polarization Basis , 0 1 Two independent polarizations : Crossed Linear Link with optics ? Reversed circular These two vectors represent ... two polarization states YOUR choice We must decide which ones ! N. Fressengeas Polarization Optics, version 2.0, frame 7 The physics of polarization optics Polarization states Polarized light propagation Jones Calculus Partially polarized light Stokes parameters and the Poincare Sphere Examples : Linear Polarizations Canonical Basis Choice 1 : horizontal linear polarization 0 0 : vertical linear polarization 1 Tilt θ 0.4 cos (θ) 0.2 -0.5 0.5 sin(θ) -0.2 -0.4 Linear polarization Jones vector in a linear polarization basis Linear Polarization : two in phase components N. Fressengeas Polarization Optics, version 2.0, frame 8 The physics of polarization optics Polarization states Polarized light propagation Jones Calculus Partially polarized light Stokes parameters and the Poincare Sphere Examples : Circular Polarizations In the same canonical basis choice : linear polarizations ϕy ϕx = π/2 − ± 1 Electric field 0.5 Ex = Ax cos (ωt kz ϕx ) − − Ey = Ay cos (ωt kz ϕy ) − − Jones vector -1 -0.5 0.5 1 1 1 √2 ı˙ -0.5 ± -1 N. Fressengeas Polarization Optics, version 2.0, frame 9 The physics of polarization optics Polarization states Polarized light propagation Jones Calculus Partially polarized light Stokes parameters and the Poincare Sphere About changing basis A polarization state Jones vector is basis dependent Some elementary algebra The polarization vector space dimension is 2 Therefore : two non colinear vectors form a basis Any polarization state can be expressed as the sum of two non colinear other states Remark : two colinear polarization states are identical Homework Find the transformation matrix between between the two following bases : Horizontal and Vertical Linear Polarizations Right and Left Circular Polarizations N. Fressengeas Polarization Optics, version 2.0, frame 10 The physics of polarization optics Polarization states Polarized light propagation Jones Calculus Partially polarized light Stokes parameters and the Poincare Sphere Relationship between Jones and Poynting vectors Jones vectors also provide information about intensity Choose an orthonormal basis (J1, J2) Hermitian product is null : J J = 0 1 · 2 Each vector norm is unity : J J = J J = 1 1 · 1 2 · 2 Hermitian Norm is Intensity Simple calculations show that : If each Jones component is one complex electric field component The Hermitian norm is proportional to beam intensity N. Fressengeas Polarization Optics, version 2.0, frame 11 The physics of polarization optics Polarization states Polarized light propagation Jones Calculus Partially polarized light Stokes parameters and the Poincare Sphere The Stokes parameters A set of 4 dependent real parameters that can be measured P0 Overall Intensity P1 Intensity Diff´erence P0 = I P = Ix Iy 1 − P 2 in a π/4 Tilted Basis P3 in a Circular Basis P2 = Iπ/4 I π/4 P3 = IL IR − − − N. Fressengeas Polarization Optics, version 2.0, frame 12 The physics of polarization optics Polarization states Polarized light propagation Jones Calculus Partially polarized light Stokes parameters and the Poincare Sphere Relationship between Jones and Stockes Sample Jones Vector 4 dependent parameters Ax exp(+ıϕ/˙ 2) 2 2 2 2 J = P0 = P1 + P2 + P3 Ay exp( ıϕ/˙ 2) − P0 Overall Intensity P1 Intensity Difference P I A2 A2 0 = = x + y 2 2 P = Ix Iy = A A 1 − x − y P2 in a π/4 Tilted Basis P3 in a Circular Basis J = π/4 +ıϕ/˙ 2 ıϕ/˙ 2 +ıϕ/˙ 2 ıϕ/˙ 2 1 Ax e ı˙Ay e− A e + A e JCir x y − = √ +ıϕ/˙ 2 − ıϕ/˙ 2 √2 +ıϕ/˙ 2 ıϕ/˙ 2 2 Ax e + ı˙Ay e− Ax e + Ay e− x x y y −x x y y P3 = JCir JCir JCir JCir = P2 = Jπ/4 Jπ/4 Jπ/4 Jπ/4 = · − · · − · 2Ax Ay sin(ϕ) 2Ax Ay cos (ϕ) N. Fressengeas Polarization Optics, version 2.0, frame 13 The physics of polarization optics Polarization states Polarized light propagation Jones Calculus Partially polarized light Stokes parameters and the Poincare Sphere The Poincare Sphere Polarization states can be described geometrically on a sphere Normalized Stokes parameters (S1, S2, S3) on a unit radius sphere Si = Pi /P0 Unit Radius Sphere 3 2 i=1 Si = 1 General PolarisationP Figures from [Hua94] N. Fressengeas Polarization Optics, version 2.0, frame 14 The physics of polarization optics Jones Matrices Examples Polarized light propagation Matrix, basis & eigen polarizations Partially polarized light Jones Matrices Composition A polarizer lets one component through Polarizer aligned with x : its action on two orthogonal polarizations 1 1 Lets through the linear polarization along x: 0 −→ 0 0 0 Blocks the linear polarization along y : 1 −→ 0 x polarizer Jones matrix in this basis 1 0 0 0 N. Fressengeas Polarization Optics, version 2.0, frame 15 The physics of polarization optics Jones Matrices Examples Polarized light propagation Matrix, basis & eigen polarizations Partially polarized light Jones Matrices Composition A quarter wave plate adds a π/2 phase shift Birefringent material: n1 along x and n2 along y thickness e Linear polarization along x: phase shift is ke = k0n1e Linear polarization along y: phase shift is ke = k0n2e Jones matrix in this basis eı˙k0n1e 0 1 0 1 0 = eı˙k0n1e 0 eı˙k0n2e 0 ı˙ ≈ 0 ı˙ ± ± N. Fressengeas Polarization Optics, version 2.0, frame 16 The physics of polarization optics Jones Matrices Examples Polarized light propagation Matrix, basis & eigen polarizations Partially polarized light Jones Matrices Composition Eigen Polarizations Eigen polarization are polarizations that do not change upon propagation Polarization unchanged Eigen Vectors λ C ∈ J and λJ describe the same v is an eigen vector polarization M v = λv · ⇔ λ is its eigen value Intensity changes Handy basis A matrix is diagonal in its eigen basis Polarizer eigen basis is along its axes Bi-refringent plate eigen basis is along its axes Homework Find the eigen polarizations for an optically active material that rotates any linear polarisation by an angle φ N. Fressengeas Polarization Optics, version 2.0, frame 17 The physics of polarization optics Jones Matrices Examples Polarized light propagation Matrix, basis & eigen polarizations Partially polarized light Jones Matrices Composition A polarizer in a rotated basis In its eigen basis 1 0 Eigen basis Jones matrix : Px = 0 0 When transmitted polarization is θ tilted Change base through θ rotation Transformation Matrix − cos (θ) sin(θ) R (θ)= − sin(θ) cos (θ) 1 0 cos2 (θ) sin(θ) cos (θ) P (θ)= R (θ) R ( θ)= 0 0 − sin(θ) cos (θ) sin2 (θ) N. Fressengeas Polarization Optics, version 2.0, frame 18 The physics of polarization optics Jones Matrices Examples Polarized light propagation Matrix, basis & eigen polarizations Partially polarized light Jones Matrices Composition Changing basis in the general case Using the Transformation Matrix If basis B1 is deduded from basis B0 by transformation P : B1 = PB0 1 Jones Matrix is transformed using J1 = P− J0 P From linear to circular example Optically Active media in a linear basis : cos (φ) sin(φ) J = sin(φ) cos (φ) − 1 1 Transformation Matrix to a circular basis P = I ı˙ − ıφ˙ 1 e 0 P− MP = ıφ˙ 0 e− N.
Recommended publications
  • Lab 8: Polarization of Light
    Lab 8: Polarization of Light 1 Introduction Refer to Appendix D for photos of the appara- tus Polarization is a fundamental property of light and a very important concept of physical optics. Not all sources of light are polarized; for instance, light from an ordinary light bulb is not polarized. In addition to unpolarized light, there is partially polarized light and totally polarized light. Light from a rainbow, reflected sunlight, and coherent laser light are examples of po- larized light. There are three di®erent types of po- larization states: linear, circular and elliptical. Each of these commonly encountered states is characterized Figure 1: (a)Oscillation of E vector, (b)An electromagnetic by a di®ering motion of the electric ¯eld vector with ¯eld. respect to the direction of propagation of the light wave. It is useful to be able to di®erentiate between 2 Background the di®erent types of polarization. Some common de- vices for measuring polarization are linear polarizers and retarders. Polaroid sunglasses are examples of po- Light is a transverse electromagnetic wave. Its prop- larizers. They block certain radiations such as glare agation can therefore be explained by recalling the from reflected sunlight. Polarizers are useful in ob- properties of transverse waves. Picture a transverse taining and analyzing linear polarization. Retarders wave as traced by a point that oscillates sinusoidally (also called wave plates) can alter the type of polar- in a plane, such that the direction of oscillation is ization and/or rotate its direction. They are used in perpendicular to the direction of propagation of the controlling and analyzing polarization states.
    [Show full text]
  • Polarization of EM Waves
    Light in different media A short review • Reflection of light: Angle of incidence = Angle of reflection • Refraction of light: Snell’s law Refraction of light • Total internal reflection For some critical angle light beam will be reflected: 1 n2 c sin n1 For some critical angle light beam will be reflected: Optical fibers Optical elements Mirrors i = p flat concave convex 1 1 1 p i f Summary • Real image can be projected on a screen • Virtual image exists only for observer • Plane mirror is a flat reflecting surface Plane Mirror: ip • Convex mirrors make objects smaller • Concave mirrors make objects larger 1 Spherical Mirror: fr 2 Geometrical Optics • “Geometrical” optics (rough approximation): light rays (“particles”) that travel in straight lines. • “Physical” Classical optics (good approximation): electromagnetic waves which have amplitude and phase that can change. • Quantum Optics (exact): Light is BOTH a particle (photon) and a wave: wave-particle duality. Refraction For y = 0 the same for all x, t Refraction Polarization Polarization By Reflection Different polarization of light get reflected and refracted with different amplitudes (“birefringence”). At one particular angle, the parallel polarization is NOT reflected at all! o This is the “Brewster angle” B, and B + r = 90 . (Absorption) o n1 sin n2 sin(90 ) n2 cos n2 tan Polarizing Sunglasses n1 Polarized Sunglasses B Linear polarization Ey Asin(2x / t) Vertically (y axis) polarized wave having an amplitude A, a wavelength of and an angular velocity (frequency * 2) of , propagating along the x axis. Linear polarization Vertical Ey Asin(2x / t) Horizontal Ez Asin(2x / t) Linear polarization • superposition of two waves that have the same amplitude and wavelength, • are polarized in two perpendicular planes and oscillate in the same phase.
    [Show full text]
  • Polarization (Waves)
    Polarization (waves) Polarization (also polarisation) is a property applying to transverse waves that specifies the geometrical orientation of the oscillations.[1][2][3][4][5] In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave.[4] A simple example of a polarized transverse wave is vibrations traveling along a taut string (see image); for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic [6] waves such as light and radio waves, gravitational waves, and transverse Circular polarization on rubber sound waves (shear waves) in solids. thread, converted to linear polarization An electromagnetic wave such as light consists of a coupled oscillating electric field and magnetic field which are always perpendicular; by convention, the "polarization" of electromagnetic waves refers to the direction of the electric field. In linear polarization, the fields oscillate in a single direction. In circular or elliptical polarization, the fields rotate at a constant rate in a plane as the wave travels. The rotation can have two possible directions; if the fields rotate in a right hand sense with respect to the direction of wave travel, it is called right circular polarization, while if the fields rotate in a left hand sense, it is called left circular polarization.
    [Show full text]
  • Lecture 14: Polarization
    Matthew Schwartz Lecture 14: Polarization 1 Polarization vectors In the last lecture, we showed that Maxwell’s equations admit plane wave solutions ~ · − ~ · − E~ = E~ ei k x~ ωt , B~ = B~ ei k x~ ωt (1) 0 0 ~ ~ Here, E0 and B0 are called the polarization vectors for the electric and magnetic fields. These are complex 3 dimensional vectors. The wavevector ~k and angular frequency ω are real and in the vacuum are related by ω = c ~k . This relation implies that electromagnetic waves are disper- sionless with velocity c: the speed of light. In materials, like a prism, light can have dispersion. We will come to this later. In addition, we found that for plane waves 1 B~ = ~k × E~ (2) 0 ω 0 This equation implies that the magnetic field in a plane wave is completely determined by the electric field. In particular, it implies that their magnitudes are related by ~ ~ E0 = c B0 (3) and that ~ ~ ~ ~ ~ ~ k · E0 =0, k · B0 =0, E0 · B0 =0 (4) In other words, the polarization vector of the electric field, the polarization vector of the mag- netic field, and the direction ~k that the plane wave is propagating are all orthogonal. To see how much freedom there is left in the plane wave, it’s helpful to choose coordinates. We can always define the zˆ direction as where ~k points. When we put a hat on a vector, it means the unit vector pointing in that direction, that is zˆ=(0, 0, 1). Thus the electric field has the form iω z −t E~ E~ e c = 0 (5) ~ ~ which moves in the z direction at the speed of light.
    [Show full text]
  • Outline • Types of Polarization • Jones' Matrices • Birefringence • Polarizing Optical Components • Polarization in Scattering
    Polarization Ivan Bazarov Cornell Physics Department / CLASSE Outline • Types of polarization • Jones’ matrices • Birefringence • Polarizing optical components • Polarization in scattering 1 Polarization P3330 Exp Optics FA’2016 Polarization ellipse For light traveling along z direction: k E = vB ⇥ with a complex amplitude: The electric field traces out an ellipse: 2 Polarization P3330 Exp Optics FA’2016 Polarization ellipse Polarization types: • linearly polarized light • circularly polarized light • unpolarized light (non-laser) 3 Polarization P3330 Exp Optics FA’2016 Linear & circular polarizations linearly polarized light circularly polarized light Right CCW Left CW 4 Polarization P3330 Exp Optics FA’2016 Unpolarized light? Unpolarized light means random (time-changing) polarization direction, e.g. excited atoms in a solid (a light bulb) emit randomly polarized light packets. 5 Polarization P3330 Exp Optics FA’2016 Jones vector We can represent any monochromatic wave polarization as a Jones’ vector: For normalized intensity : E.g. orthogonal polarizations whenever J0 J =0 1 · 2 6 Polarization P3330 Exp Optics FA’2016 Exercises Ex1: Check that HLP and VLP are orthogonal as well as RCP and LCP. Q: What does it mean? A: can use either as a basis to represent arbitrary polarization! Ex2: How to obtain the light intensity from its Jones vector (if in vacuum)? Ax 2 2 J0 J =[Ax⇤ Ay⇤] = Ax + Ay · Ay | | | | 7 Polarization P3330 Exp Optics FA’2016 Jones matrix (don’t work with unpolarized light!) Normal modes: TJ = µJ 8 Polarization P3330 Exp Optics FA’2016 Combining polarization devices & tilt Simply multiply the matrices in the reverse order: T1 T2 T3 T = T3T2T1 If polarization device is rotated, use: Proof: using , we get 9 Polarization P3330 Exp Optics FA’2016 Linear polarizer Linear polarizer in x-direction A polarizer rotated by angle q 10 Polarization P3330 Exp Optics FA’2016 Polarization retarders or wave plates These devices do not affect one polarization component (fast axis) but add a retarding phase to the other component (slow axis).
    [Show full text]
  • Polarization of Light Demonstration This Demonstration Explains Transverse Waves and Some Surprising Properties of Polarizers
    Polarization of Light Demonstration This demonstration explains transverse waves and some surprising properties of polarizers. Number of Participants: Unlimited Audience: Middle (ages 11-13) and up Duration: 5-10 min Microbehunter Difficulty: Level 1 Materials Required: • 3 sheets of polarizing film – at least (20mm)2 • Long spring or Slinky Setup: 1. If necessary, prepare polarizing sheets by cutting a larger sheet into smaller pieces. While larger pieces of polarizing material are preferred, the demonstration works with smaller pieces. Presenter Brief: Light is a transverse wave because its two components, electric and magnetic fields, oscillate perpendicular to the direction of propagation. In general, a beam of light will consist of many photons traveling in the same direction but with arbitrary alignment of their electric and magnetic fields. Specifically, for an unpolarized light beam the electromagnetic components of each photon, while confined to a plane, are not aligned. If light is polarized, photons have aligned electromagnetic components and travel in the same direction. Polarization of Light Vocabulary: • Light – Electromagnetic radiation, which can be in the visible range. • Electromagnetic – A transverse wave consisting of oscillating electric and magnetic components. • Transverse wave – A wave consisting of oscillations perpendicular to the direction of propagation. • Polarized light – A beam of photons propagating with aligned oscillating components.Polarizer – A material which filters homogenous light along a singular axis and thus blocks arbitrary orientations and allows a specific orientation of oscillations. Physics & Explanation: Middle (ages 11-13) and general public: Light, or an electromagnetic wave, is a transverse wave with oscillating electric and magnetic components. Recall that in a transverse wave, the vibrations,” or oscillations, are perpendicular to the direction of propagation.
    [Show full text]
  • Glossary of Terms Used in Photochemistry, 3Rd Edition (IUPAC
    Pure Appl. Chem., Vol. 79, No. 3, pp. 293–465, 2007. doi:10.1351/pac200779030293 © 2007 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC AND BIOMOLECULAR CHEMISTRY DIVISION* SUBCOMMITTEE ON PHOTOCHEMISTRY GLOSSARY OF TERMS USED IN PHOTOCHEMISTRY 3rd EDITION (IUPAC Recommendations 2006) Prepared for publication by S. E. BRASLAVSKY‡ Max-Planck-Institut für Bioanorganische Chemie, Postfach 10 13 65, 45413 Mülheim an der Ruhr, Germany *Membership of the Organic and Biomolecular Chemistry Division Committee during the preparation of this re- port (2003–2006) was as follows: President: T. T. Tidwell (1998–2003), M. Isobe (2002–2005); Vice President: D. StC. Black (1996–2003), V. T. Ivanov (1996–2005); Secretary: G. M. Blackburn (2002–2005); Past President: T. Norin (1996–2003), T. T. Tidwell (1998–2005) (initial date indicates first time elected as Division member). The list of the other Division members can be found in <http://www.iupac.org/divisions/III/members.html>. Membership of the Subcommittee on Photochemistry (2003–2005) was as follows: S. E. Braslavsky (Germany, Chairperson), A. U. Acuña (Spain), T. D. Z. Atvars (Brazil), C. Bohne (Canada), R. Bonneau (France), A. M. Braun (Germany), A. Chibisov (Russia), K. Ghiggino (Australia), A. Kutateladze (USA), H. Lemmetyinen (Finland), M. Litter (Argentina), H. Miyasaka (Japan), M. Olivucci (Italy), D. Phillips (UK), R. O. Rahn (USA), E. San Román (Argentina), N. Serpone (Canada), M. Terazima (Japan). Contributors to the 3rd edition were: A. U. Acuña, W. Adam, F. Amat, D. Armesto, T. D. Z. Atvars, A. Bard, E. Bill, L. O. Björn, C. Bohne, J. Bolton, R. Bonneau, H.
    [Show full text]
  • Ellipsometric Characterization of Silicon and Carbon Junctions for Advanced Electronics Alexander G
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research from Electrical & Computer Engineering, Department of Electrical & Computer Engineering Winter 12-7-2015 Ellipsometric Characterization of Silicon and Carbon Junctions for Advanced Electronics Alexander G. Boosalis University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/elecengtheses Part of the Electromagnetics and Photonics Commons, and the Semiconductor and Optical Materials Commons Boosalis, Alexander G., "Ellipsometric Characterization of Silicon and Carbon Junctions for Advanced Electronics" (2015). Theses, Dissertations, and Student Research from Electrical & Computer Engineering. 68. http://digitalcommons.unl.edu/elecengtheses/68 This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research from Electrical & Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ELLIPSOMETRIC CHARACTERIZATION OF SILICON AND CARBON JUNCTIONS FOR ADVANCED ELECTRONICS by Alexander George Boosalis A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Electrical Engineering Under the Supervision of Professors Mathias Schubert and Tino Hofmann Lincoln, Nebraska December, 2015 ELLIPSOMETRIC CHARACTERIZATION OF SILICON AND CARBON JUNCTIONS FOR ADVANCED ELECTRONICS Alexander George Boosalis, Ph.D. University of Nebraska, 2015 Advisers: Mathias Schubert, Tino Hofmann Ellipsometry has long been a valuable technique for the optical characterization of layered systems and thin films. While simple systems like epitaxial silicon diox- ide are easily characterized, complex systems of silicon and carbon junctions have proven difficult to analyze.
    [Show full text]
  • 3.3 Mueller Matrix Spectro-Polarimeter (MMSP)
    Characterization of Turbid Media Using Stokes and Mueller-Matrix Polarimetry Manzoor Ahmad A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad 45650, Pakistan. 2014 Dedicated to My Parents, Wife and sweet kids Muhammad Hassaan and Muhammad Abdullah, my inspirations ii Declaration I hereby declare that the work contained in this thesis and the intellectual content of this thesis are the product of my own work. This thesis has not been previously published in any form nor does it contain any verbatim of the published resources which could be treated as infringement of the international copyright law. I also declare that I do understand the terms ‘copyright’ and ‘plagiarism’, and that in case of any copyright violation or plagiarism found in this work, I will be held fully responsible of the consequences of any such violation. Signature : _______________________ Name: _____ Manzoor Ahmad___ Date: _______________________ Place: _______________________ iii Certificate This is to certify that the work contained in this thesis entitled: Characterization of turbid media using Stokes and Mueller-matrix polarimetry was carried out by Mr. Manzoor Ahmad, and in my opinion, it is fully adequate, in scope and quality, for the degree of Doctor in Philosophy. Dr Masroor Ikram Dr Shamaraz Firdous Supervisor Co-Supervisor Department of Physics and Applied National Institute of Laser and Mathematics, Pakistan Institute of Optoronics Engineering and Applied Sciences, Islamabad, Pakistan Islamabad, Pakistan Dr Shahid Qamar Head of Department, Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan iv Acknowledgments First and foremost, I would like to articulate-my-heartedly thanks to Almighty Allah for His blessings in achieving my goals.
    [Show full text]
  • Instrumental Optics
    Instrumental optics lecture 3 13 March 2020 Lecture 2 – summary 1. Optical materials (UV, VIS, IR) 2. Anisotropic media (ctd) • Double refraction 2. Anisotropic media • Refractive index: no, ne() • Permittivity tensor • Birefringent materials – calcite, • Optical axis YVO4, quartz • Ordinary wave Polarization perpendicular to o.a.-푘 plane • Extraordinary wave Polarization in o.a.-푘 plane • Birefringent walk-off 3. Polarization of light • Wave vector ellipsoid • states of polarization Polarization of light linear circular elliptical 휋 휋 Δ휙 = 0, sin Θ = 퐸 /퐸 Δ휙 = , 퐸 = 퐸 Δ휙 ∈ (0, ) 푦 푥 2 푥 푦 2 Plane wave, 푘||푧, 푧 = const: • Fully polarized light 푖(휔푡+휙푥) 퐸푥(푡) 퐸0푥푒 퐸0푥 • Partially polarized light 푖(휔푡+휙 ) i(휔푡+휙푥) iΔ휙 퐸 푡 = 퐸푦(푡) = 퐸 푒 푦 =e 퐸 e • Fully depolarized light 0푦 0푦 0 0 0 Δ휙 = 휙푦 − 휙푥 Note: electric polarization 푃(퐸) vs. polarization of a wave! Linear polarizers Key parameter: Other parameters: 퐼 extinction coefficient, 푦 • Spectral range, 퐼푥 • damage threshold, (assumption: incident light is • angle of incidence, unpolarized!) • beam geometry For polarizing beamsplitters: 2 extinction coefficients, reflection typically worse • clear aperture Polarizer types: • Dichroic • Crystalline • Thin-film Dichroic polarizers Dichroic polarizer: • Made from material with anisotropic absorption (or reflection) coefficient long, „conductive” molecules/structures • Polaroid: polyvinyl alcohol + iodine – one polarization component is absorbed. • Cheap, large aperture, broadband, poor extinction, low damage threshold • Wire grid / nanowire:
    [Show full text]
  • Lab #6 Polarization
    EELE482 Fall 2014 Lab #6 Lab #6 Polarization Contents: Pre-laboratory exercise 2 Introduction 2 1. Polarization of the HeNe laser 3 2. Polarizer extinction ratio 4 3. Wave Plates 4 4. Pseudo Isolator 5 References 5 Polarization Page 1 EELE482 Fall 2014 Lab #6 Pre-Laboratory Exercise Bring a pair of polarized sunglasses or other polarized optics to measure in the lab. Introduction The purpose of this lab it to gain familiarity with the concept of polarization, and with various polarization components including glass-film polarizers, polarizing beam splitters, and quarter wave and half wave plates. We will also investigate how reflections can change the polarization state of light. Within the paraxial limit, light propagates as an electromagnetic wave with transverse electric and magnetic (TEM) field directions, where the electric field component is orthogonal to the magnetic field component, and to the direction of propagation. We can account for this vector (directional) nature of the light wave without abandoning our scalar wave treatment if we assume that the x^ -directed electric field component and y^ -directed electric field component are independent of each other. This assumption is valid within the paraxial approximation for isotropic linear media. The “polarization” state of the light wave describes the relationship between these x^ -directed and y^ -directed components of the wave. If the light wave is monochromatic, the x and y components must have a fixed phase relationship to each other. If the tip of the electric field vector E = Ex x^ + Ey y^ were observed over time at a particular z plane, one would see that it traces out an ellipse.
    [Show full text]
  • Development of Instrumentation for Mueller Matrix Ellipsometry
    Author Frantz Stabo-Eeg Title SDevelopmentubtitle? Subtitle? S uofbti tinstrumentationle? Subtitle? Subtitle? Subtitle? Subtitle? Subtitle? for Mueller matrix ellipsometry Thesis for the degree of Philosophiae Doctor Trondheim, February 2009 Thesis for the degree of Philosophiae Doctor Norwegian University of Science and Technology FTrondheim,aculty of FebruaryXXXXXXX 2009XXXXXXXXXXXXXXXXX Department of XXXXXXXXXXXXXXXXXXXXX Norwegian University of Science and Technology Faculty of Natural Sciences and Technology Department of Physics NTNU Norwegian University of Science and Technology Thesis for the degree of Philosophiae Doctor Faculty of Natural Sciences and Technology Department of Physics © Frantz Stabo-Eeg ISBN 978-82-471-1432-2 (printed ver.) ISBN 978-82-471-1434-6 (electronic ver.) ISSN 1503-8181 Doctoral theses at NTNU, 2009:32 Printed by NTNU-trykk Abstract This thesis gives an introduction to the Mueller-Stokes calculus, which is used to describe partially and fully polarized light. It describes how polarized light inter- acts with various sample configurations resulting in a Mueller matrix, and how this can be measured by using appropriate instrumentation. Specifically, two such Mueller matrix ellipsometers have been realized. One system is based on rotating Fresnel bi-prism and the other on Ferro-electric liquid crystals. The systems are unique in different ways. The rotating Fresnel bi-prism Mueller matrix ellipsome- ter is an optimal UV-NIR achromatic suitable for high power angular scattering measurements. The Ferro-electric liquid crystals Mueller matrix ellipsometer is a fast acquisition system capable of measuring Mueller matrices at 50 Hz. The thesis gives an introduction to the topics discussed in the attached six scientific papers. The first three papers report on construction and design of the ellipsometers.
    [Show full text]