
<p><a href="#4_0">The physics of polarization optics </a><br><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p>Polarization Optics </p><p>N. Fressengeas </p><p>Laboratoire Mat´eriaux Optiques, Photonique et Syst`emes <br>Unit´e de Recherche commune `a l’Universit´e de Lorraine et `a Sup´elec </p><p>Download this document from </p><p><a href="/goto?url=http://arche.univ-lorraine.fr/" target="_blank">http://arche.univ-lorraine.fr/ </a></p><p>N. Fressengeas </p><p><a href="#0_0">Polarization Optics, version 2.0, frame 1 </a></p><p><a href="#4_0">The physics of polarization optics </a><br><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p>Further reading </p><p>[<a href="#2_0">Hua94</a>, <a href="#2_1">GB94] </a></p><p>A. Gerrard and J.M. Burch. </p><p>Introduction to matrix methods in optics. </p><p>Dover, 1994. </p><p>S. Huard. </p><p>Polarisation de la lumi`ere. </p><p>Masson, 1994. </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 2 </a></p><p><a href="#4_0">The physics of polarization optics </a><br><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p>Course Outline </p><p>123</p><p><a href="#4_0">The physics of polarization optics </a><br><a href="#4_0">Polarization states </a><a href="#7_0">Jones Calculus </a><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#15_0">Jones Matrices Examples </a><a href="#17_0">Matrix, basis & eigen polarizations </a><a href="#21_0">Jones Matrices Composition </a></p><p><a href="#22_0">Partially polarized light </a><br><a href="#22_0">Formalisms used </a><a href="#26_0">Propagation through optical devices </a></p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 3 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a></p><p><a href="#7_0">Jones Calculus </a><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>The vector nature of light </p><p>Optical wave can be polarized, sound waves cannot </p><p>The scalar monochromatic plane wave </p><p>The electric field reads: </p><p>A cos (ωt − kz − ϕ) </p><p>A vector monochromatic plane wave </p><p>Electric field is orthogonal to wave and Poynting vectors Lies in the wave vector normal plane </p><p>Needs 2 components </p><p>E<sub style="top: 0.1245em;">x </sub>= A<sub style="top: 0.1245em;">x </sub>cos (ωt − kz − ϕ<sub style="top: 0.1245em;">x </sub>) E<sub style="top: 0.1245em;">y </sub>= A<sub style="top: 0.1245em;">y </sub>cos (ωt − kz − ϕ<sub style="top: 0.1245em;">y </sub>) </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 4 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a></p><p><a href="#7_0">Jones Calculus </a><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>Linear and circular polarization states </p><p>In phase components </p><p>ϕ<sub style="top: 0.1363em;">y </sub>= ϕ<sub style="top: 0.1363em;">x </sub></p><p>π/2 shift </p><p>ϕ<sub style="top: 0.1363em;">y </sub>= ϕ<sub style="top: 0.1363em;">x </sub>π/2 </p><p>π shift </p><p>ϕ<sub style="top: 0.1363em;">y </sub>= ϕ<sub style="top: 0.1363em;">x </sub>+ π </p><p>Left or Right </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 5 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a></p><p><a href="#7_0">Jones Calculus </a><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>The elliptic polarization state </p><p>The polarization state of ANY monochromatic wave </p><p>ϕ<sub style="top: 0.1363em;">y </sub>− ϕ<sub style="top: 0.1363em;">x </sub>= π/4 </p><p>Electric field </p><p>E<sub style="top: 0.1364em;">x </sub>= A<sub style="top: 0.1364em;">x </sub>cos (ωt − kz − ϕ<sub style="top: 0.1364em;">x </sub>) E<sub style="top: 0.1364em;">y </sub>= A<sub style="top: 0.1364em;">y </sub>cos (ωt − kz − ϕ<sub style="top: 0.1364em;">y </sub>) </p><p>4 real numbers </p><p>A<sub style="top: 0.1364em;">x </sub>,ϕ<sub style="top: 0.1364em;">x </sub>A<sub style="top: 0.1364em;">y </sub>,ϕ<sub style="top: 0.1364em;">y </sub></p><p>2 complex numbers </p><p>A<sub style="top: 0.1363em;">x </sub>exp (ı˙ϕ<sub style="top: 0.1363em;">x </sub>) A<sub style="top: 0.1363em;">y </sub>exp (ı˙ϕ<sub style="top: 0.1363em;">y </sub>) </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 6 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a></p><p><a href="#7_0">Jones Calculus </a></p><p><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>Polarization states are vectors </p><p>Monochromatic polarizations belong to a 2D vector space based on the Complex Ring </p><p>ANY elliptic polarization state </p><p>⇐⇒ </p><p>Two complex numbers </p><p>A set of two ordered complex numbers is one 2D complex vector </p><p>Canonical Basis </p><p>ꢀꢁ ꢂ ꢁ ꢂꢃ </p><p>Polarization Basis </p><p>Two independent polarizations : <br>Crossed Linear <br>10<br>01</p><p>,</p><p>Reversed circular . . . </p><p>Link with optics ? </p><p>These two vectors represent two polarization states <br>YOUR choice </p><p>We must decide which ones ! </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 7 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a></p><p><a href="#7_0">Jones Calculus </a></p><p><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>Examples : Linear Polarizations </p><p>Canonical Basis Choice </p><p>ꢁ ꢂ </p><p>10<br>: horizontal linear polarization </p><p>ꢁ ꢂ </p><p>0<br>: vertical linear polarization <br>1</p><p>Tilt </p><p>θ</p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>cos (θ) sin (θ) </p><p></p><ul style="display: flex;"><li style="flex:1">Linear polarization Jones vector </li><li style="flex:1">in a linear polarization basis </li></ul><p></p><p>Linear Polarization : two in phase components </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 8 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a></p><p><a href="#7_0">Jones Calculus </a></p><p><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>Examples : Circular Polarizations </p><p>In the same canonical basis choice : linear polarizations </p><p>ϕ<sub style="top: 0.1363em;">y </sub>− ϕ<sub style="top: 0.1363em;">x </sub>= π/2 </p><p>Electric field </p><p>E<sub style="top: 0.1364em;">x </sub>= A<sub style="top: 0.1364em;">x </sub>cos (ωt − kz − ϕ<sub style="top: 0.1364em;">x </sub>) E<sub style="top: 0.1364em;">y </sub>= A<sub style="top: 0.1364em;">y </sub>cos (ωt − kz − ϕ<sub style="top: 0.1364em;">y </sub>) </p><p>Jones vector </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>1ı˙ </p><p>1<br>2</p><p>√</p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 9 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a></p><p><a href="#7_0">Jones Calculus </a></p><p><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>About changing basis </p><p>A polarization state Jones vector is basis dependent </p><p>Some elementary algebra </p><p>The polarization vector space dimension is 2 Therefore : two non colinear vectors form a basis Any polarization state can be expressed as the sum of two non colinear other states </p><p>Remark : two colinear polarization states are identical <br>Homework Find the transformation matrix between between the two following bases : </p><p>Horizontal and Vertical Linear Polarizations Right and Left Circular Polarizations </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 10 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a></p><p><a href="#7_0">Jones Calculus </a></p><p><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>Relationship between Jones and Poynting vectors </p><p>Jones vectors also provide information about intensity </p><p></p><ul style="display: flex;"><li style="flex:1">Choose an orthonormal basis </li><li style="flex:1">(J<sub style="top: 0.1363em;">1</sub>, J<sub style="top: 0.1363em;">2</sub>) </li></ul><p></p><p>Hermitian product is null : J<sub style="top: 0.1364em;">1 </sub>· J<sub style="top: 0.1364em;">2 </sub>= 0 Each vector norm is unity : J<sub style="top: 0.1364em;">1 </sub>· J<sub style="top: 0.1364em;">1 </sub>= J<sub style="top: 0.1364em;">2 </sub>· J<sub style="top: 0.1364em;">2 </sub>= 1 </p><p>Hermitian Norm is Intensity </p><p>Simple calculations show that : <br>If each Jones component is one complex electric field component </p><p>The Hermitian norm is proportional to beam intensity </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 11 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a><a href="#7_0">Jones Calculus </a></p><p><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>The Stokes parameters </p><p>A set of 4 dependent real parameters that can be measured </p><p>P<sub style="top: 0.1364em;">0 </sub>P<sub style="top: 0.1364em;">2 </sub></p><p>Overall Intensity </p><p>P<sub style="top: 0.1364em;">0 </sub>= I </p><p>in a π/4 Tilted Basis </p><p>P<sub style="top: 0.1363em;">2 </sub>= I<sub style="top: 0.185em;">π/4 </sub>− I </p><p>P<sub style="top: 0.1363em;">1 </sub>P<sub style="top: 0.1363em;">3 </sub></p><p>Intensity Diff´erence </p><p>P<sub style="top: 0.1364em;">1 </sub>= I<sub style="top: 0.1364em;">x </sub>− I<sub style="top: 0.1364em;">y </sub></p><p>in a Circular Basis </p><p>P<sub style="top: 0.1364em;">3 </sub>= I<sub style="top: 0.1364em;">L </sub>− I<sub style="top: 0.1364em;">R </sub></p><p>−π/4 </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 12 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a><a href="#7_0">Jones Calculus </a></p><p><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>Relationship between Jones and Stockes </p><p>Sample Jones Vector </p><p>ꢁ</p><p>4 dependent parameters </p><p>P<sub style="top: 0.2513em;">0</sub><sup style="top: -0.3299em;">2 </sup>= P<sub style="top: 0.2513em;">1</sub><sup style="top: -0.3299em;">2 </sup>+ P<sub style="top: 0.2513em;">2</sub><sup style="top: -0.3299em;">2 </sup>+ P<sub style="top: 0.2513em;">3</sub><sup style="top: -0.3299em;">2 </sup></p><p>ꢂ</p><p>A<sub style="top: 0.1363em;">x </sub>exp (+ı˙ϕ/2) A<sub style="top: 0.1364em;">y </sub>exp (−ı˙ϕ/2) </p><p>J = </p><p>P<sub style="top: 0.1363em;">0 </sub>P<sub style="top: 0.1364em;">2 </sub></p><p>Overall Intensity </p><p>P<sub style="top: 0.1364em;">0 </sub>= I = A<sup style="top: -0.3299em;">2</sup><sub style="top: 0.2247em;">x </sub>+ A<sup style="top: -0.3299em;">2</sup><sub style="top: 0.2247em;">y </sub></p><p>P<sub style="top: 0.1364em;">1 </sub></p><p>Intensity Difference </p><p>P<sub style="top: 0.1364em;">1 </sub>= I<sub style="top: 0.1364em;">x </sub>− I<sub style="top: 0.1364em;">y </sub>= A<sup style="top: -0.3299em;">2</sup><sub style="top: 0.2248em;">x </sub>− A<sup style="top: -0.3299em;">2</sup><sub style="top: 0.2248em;">y </sub></p><p>in a π/4 Tilted Basis </p><p>P<sub style="top: 0.1363em;">3 </sub></p><p>in a Circular Basis </p><p>ꢂ</p><p>J<sub style="top: 0.185em;">π/4 </sub></p><p>=</p><p>ꢁ</p><p>A<sub style="top: 0.1363em;">x </sub>e<sup style="top: -0.3299em;">+ı˙ϕ/2 </sup>− ı˙A<sub style="top: 0.1363em;">y </sub>e<sup style="top: -0.3299em;">−ı˙ϕ/2 </sup></p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>A<sub style="top: 0.1364em;">x </sub>e<sup style="top: -0.3299em;">+ı˙ϕ/2 </sup>+ A<sub style="top: 0.1364em;">y </sub>e<sup style="top: -0.3299em;">−ı˙ϕ/2 </sup><br>−A<sub style="top: 0.1364em;">x </sub>e<sup style="top: -0.3299em;">+ı˙ϕ/2 </sup>+ A<sub style="top: 0.1364em;">y </sub>e<sup style="top: -0.3299em;">−ı˙ϕ/2 </sup></p><p>π/4 </p><p>1<br>2</p><p>√</p><p>√</p><p>J<sub style="top: 0.1364em;">Cir </sub></p><p>=</p><p>A<sub style="top: 0.1364em;">x </sub>e<sup style="top: -0.3299em;">+ı˙ϕ/2 </sup>+ ı˙A<sub style="top: 0.1364em;">y </sub>e<sup style="top: -0.3299em;">−ı˙ϕ/2 </sup></p><p>2</p><p>P<sub style="top: 0.1364em;">3 </sub>= J<sup style="top: -0.3131em;">x </sup>· J<sub style="top: 0.2649em;">C</sub><sup style="top: -0.3299em;">x </sup><sub style="top: 0.2649em;">ir </sub>− J<sup style="top: -0.4419em;">y </sup>· J<sub style="top: 0.2817em;">C</sub><sup style="top: -0.4419em;">y </sup><sub style="top: 0.2817em;">ir </sub></p><p>=</p><p>P<sub style="top: 0.1364em;">2 </sub>= J<sup style="top: -0.3131em;">x </sup>· J<sub style="top: 0.3137em;">π</sub><sup style="top: -0.3298em;">x</sup><sub style="top: 0.3137em;">/4 </sub>− J<sub style="top: 0.3305em;">π</sub><sup style="top: -0.4419em;">y</sup><sub style="top: 0.3305em;">/4 </sub>· J<sub style="top: 0.3305em;">π</sub><sup style="top: -0.4419em;">y</sup><sub style="top: 0.3305em;">/4 </sub></p><p>=</p><p></p><ul style="display: flex;"><li style="flex:1">Cir </li><li style="flex:1">Cir </li></ul><p></p><p>2A<sub style="top: 0.1364em;">x </sub>A<sub style="top: 0.1364em;">y </sub>sin (ϕ) <br>2A<sub style="top: 0.1364em;">x </sub>A<sub style="top: 0.1364em;">y </sub>cos (ϕ) </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 13 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a><a href="#7_0">Jones Calculus </a></p><p><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>The Poincare Sphere </p><p>Polarization states can be described geometrically on a sphere </p><p>Normalized Stokes parameters <br>(S<sub style="top: 0.1364em;">1</sub>, S<sub style="top: 0.1364em;">2</sub>, S<sub style="top: 0.1364em;">3</sub>) on a unit radius sphere </p><p>S<sub style="top: 0.1431em;">i </sub>= P<sub style="top: 0.1431em;">i </sub>/P<sub style="top: 0.1364em;">0 </sub></p><p>Unit Radius Sphere </p><p>P</p><p>General Polarisation </p><p>3</p><p><sub style="top: 0.2688em;">i=1 </sub>S<sub style="top: 0.2718em;">i</sub><sup style="top: -0.3299em;">2 </sup>= 1 </p><p>Figures from [<a href="#2_0">Hua94] </a></p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 14 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a></p><p><a href="#22_0">Partially polarized light </a></p><p><a href="#15_0">Jones Matrices Examples </a></p><p><a href="#17_0">Matrix, basis & eigen polarizations </a><a href="#21_0">Jones Matrices Composition </a></p><p>A polarizer lets one component through </p><p>Polarizer aligned with x : its action on two orthogonal polarizations </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ ꢂ </li><li style="flex:1">ꢁ ꢂ </li></ul><p></p><p>10<br>10<br>Lets through the linear polarization along x: </p><p>−→ </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ ꢂ </li><li style="flex:1">ꢁ ꢂ </li></ul><p></p><p>01<br>00<br>Blocks the linear polarization along y : </p><p>−→ </p><p></p><ul style="display: flex;"><li style="flex:1">x polarizer Jones matrix </li><li style="flex:1">in this basis </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>1 0 0 0 </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 15 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a></p><p><a href="#22_0">Partially polarized light </a></p><p><a href="#15_0">Jones Matrices Examples </a></p><p><a href="#17_0">Matrix, basis & eigen polarizations </a><a href="#21_0">Jones Matrices Composition </a></p><p>A quarter wave plate adds a π/2 phase shift </p><p></p><ul style="display: flex;"><li style="flex:1">Birefringent material: n<sub style="top: 0.1364em;">1 </sub>along x and n<sub style="top: 0.1364em;">2 </sub>along y </li><li style="flex:1">thickness e </li></ul><p></p><p>Linear polarization along x: phase shift is ke = k<sub style="top: 0.1364em;">0</sub>n<sub style="top: 0.1364em;">1</sub>e Linear polarization along y: phase shift is ke = k<sub style="top: 0.1364em;">0</sub>n<sub style="top: 0.1364em;">2</sub>e </p><p>Jones matrix </p><p>ꢁ</p><p>in this basis </p><p></p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢂ</li><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li><li style="flex:1">ꢁ</li></ul><p></p><p>e<sup style="top: -0.3299em;">ı˙k n e </sup></p><p>0</p><p>0</p><p>10<br>0ı˙ <br>10<br>0ı˙ </p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">1</li></ul><p></p><p>= e<sup style="top: -0.3299em;">ı˙k n e </sup></p><p>≈</p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">1</li></ul><p></p><p>e<sup style="top: -0.3299em;">ı˙k n e </sup></p><p>2</p><p>0</p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 16 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a></p><p><a href="#22_0">Partially polarized light </a></p><p><a href="#15_0">Jones Matrices Examples </a></p><p><a href="#17_0">Matrix, basis & eigen polarizations </a></p><p><a href="#21_0">Jones Matrices Composition </a></p><p>Eigen Polarizations </p><p>Eigen polarization are polarizations that do not change upon propagation </p><p>Polarization unchanged <br>Eigen Vectors </p><p>λ ∈ C </p><p>v is an eigen vector </p><p>J and λJ describe the same polarization </p><p>M · v = λv ⇔ </p><p>λ is its eigen value </p><p>Intensity changes </p><p>Handy basis </p><p>A matrix is diagonal in its eigen basis <br>Polarizer eigen basis is along its axes Bi-refringent plate eigen basis is along its axes <br>Homework Find the eigen polarizations for an optically active material that rotates any linear polarisation by an angle φ </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 17 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a></p><p><a href="#22_0">Partially polarized light </a></p><p><a href="#15_0">Jones Matrices Examples </a></p><p><a href="#17_0">Matrix, basis & eigen polarizations </a></p><p><a href="#21_0">Jones Matrices Composition </a></p><p>A polarizer in a rotated basis </p><p>In its eigen basis </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>1 0 0 0 <br>Eigen basis Jones matrix : P<sub style="top: 0.1364em;">x </sub>= </p><p>When transmitted polarization is θ tilted </p><p>Change base through −θ rotation Transformation Matrix </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>cos (θ) − sin (θ) <br>R (θ) = sin (θ) cos (θ) </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>1 0 0 0 cos<sup style="top: -0.3299em;">2 </sup>(θ) sin (θ) cos (θ) sin (θ) cos (θ) sin<sup style="top: -0.3598em;">2 </sup>(θ) </p><ul style="display: flex;"><li style="flex:1">P (θ) = R (θ) </li><li style="flex:1">R (−θ) = </li></ul><p></p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 18 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a></p><p><a href="#22_0">Partially polarized light </a></p><p><a href="#15_0">Jones Matrices Examples </a></p><p><a href="#17_0">Matrix, basis & eigen polarizations </a></p><p><a href="#21_0">Jones Matrices Composition </a></p><p>Changing basis in the general case </p><p>Using the Transformation Matrix </p><p>If basis B<sub style="top: 0.1363em;">1 </sub>is deduded from basis B<sub style="top: 0.1363em;">0 </sub>by transformation P : </p><p>B<sub style="top: 0.1363em;">1 </sub>= P B<sub style="top: 0.1363em;">0 </sub></p><p>Jones Matrix is transformed using J<sub style="top: 0.1364em;">1 </sub>= P<sup style="top: -0.3299em;">−1 </sup>J<sub style="top: 0.1364em;">0 </sub>P </p><p></p><ul style="display: flex;"><li style="flex:1">From linear to circular </li><li style="flex:1">example </li></ul><p></p><p>Optically Active media in a linear basis : cos (φ) sin (φ) </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>J = </p><p>− sin (φ) cos (φ) </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>1</p><p>I</p><p>1<br>−ı˙ <br>Transformation Matrix to a circular basis P = </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>e<sup style="top: -0.3299em;">ı˙φ </sup></p><p>0</p><p>e<sup style="top: -0.3299em;">−ı˙φ </sup></p><p>P<br><sup style="top: -0.3299em;">−1</sup>MP = </p><p>0</p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 19 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a></p><p><a href="#22_0">Partially polarized light </a></p><p><a href="#15_0">Jones Matrices Examples </a></p><p><a href="#17_0">Matrix, basis & eigen polarizations </a></p><p><a href="#21_0">Jones Matrices Composition </a></p><p>Anisotropy can be linear and circular </p><p>Linear Anisotropy </p><p>Orthogonal eigen linear polarizations </p><p>Circular Anisotropy </p><p>Orthogonal eigen Circular polarizations </p><p></p><ul style="display: flex;"><li style="flex:1">Different index n<sub style="top: 0.1364em;">1 </sub>& n<sub style="top: 0.1364em;">2 </sub></li><li style="flex:1">Different index n<sub style="top: 0.1364em;">1 </sub>& n<sub style="top: 0.1364em;">2 </sub></li></ul><p></p><p>Eigen Jones Matrix </p><p>ꢁ</p><p>Eigen Jones Matrix </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li><li style="flex:1">ꢂ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">0</li><li style="flex:1">1</li><li style="flex:1">0</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">0 e<sup style="top: -0.3299em;">ı˙θ </sup></li><li style="flex:1">0 e<sup style="top: -0.3299em;">ı˙θ </sup></li></ul><p></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages34 Page
-
File Size-