Polarization Optics Polarized Light Propagation Partially Polarized Light

Polarization Optics Polarized Light Propagation Partially Polarized Light

<p><a href="#4_0">The physics of polarization optics </a><br><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p>Polarization Optics </p><p>N. Fressengeas </p><p>Laboratoire Mat´eriaux Optiques, Photonique et Syst`emes <br>Unit´e de Recherche commune `a l’Universit´e de Lorraine et `a Sup´elec </p><p>Download this document from </p><p><a href="/goto?url=http://arche.univ-lorraine.fr/" target="_blank">http://arche.univ-lorraine.fr/ </a></p><p>N. Fressengeas </p><p><a href="#0_0">Polarization Optics, version 2.0, frame 1 </a></p><p><a href="#4_0">The physics of polarization optics </a><br><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p>Further reading </p><p>[<a href="#2_0">Hua94</a>, <a href="#2_1">GB94] </a></p><p>A. Gerrard and J.M. Burch. </p><p>Introduction to matrix methods in optics. </p><p>Dover, 1994. </p><p>S. Huard. </p><p>Polarisation de la lumi`ere. </p><p>Masson, 1994. </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 2 </a></p><p><a href="#4_0">The physics of polarization optics </a><br><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p>Course Outline </p><p>123</p><p><a href="#4_0">The physics of polarization optics </a><br><a href="#4_0">Polarization states </a><a href="#7_0">Jones Calculus </a><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#15_0">Jones Matrices Examples </a><a href="#17_0">Matrix, basis &amp; eigen polarizations </a><a href="#21_0">Jones Matrices Composition </a></p><p><a href="#22_0">Partially polarized light </a><br><a href="#22_0">Formalisms used </a><a href="#26_0">Propagation through optical devices </a></p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 3 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a></p><p><a href="#7_0">Jones Calculus </a><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>The vector nature of light </p><p>Optical wave can be polarized, sound waves cannot </p><p>The scalar monochromatic plane wave </p><p>The electric field reads: </p><p>A cos (ωt − kz − ϕ) </p><p>A vector monochromatic plane wave </p><p>Electric field is orthogonal to wave and Poynting vectors Lies in the wave vector normal plane </p><p>Needs 2 components </p><p>E<sub style="top: 0.1245em;">x </sub>= A<sub style="top: 0.1245em;">x </sub>cos (ωt − kz − ϕ<sub style="top: 0.1245em;">x </sub>) E<sub style="top: 0.1245em;">y </sub>= A<sub style="top: 0.1245em;">y </sub>cos (ωt − kz − ϕ<sub style="top: 0.1245em;">y </sub>) </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 4 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a></p><p><a href="#7_0">Jones Calculus </a><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>Linear and circular polarization states </p><p>In phase components </p><p>ϕ<sub style="top: 0.1363em;">y </sub>= ϕ<sub style="top: 0.1363em;">x </sub></p><p>π/2 shift </p><p>ϕ<sub style="top: 0.1363em;">y </sub>= ϕ<sub style="top: 0.1363em;">x </sub>π/2 </p><p>π shift </p><p>ϕ<sub style="top: 0.1363em;">y </sub>= ϕ<sub style="top: 0.1363em;">x </sub>+ π </p><p>Left or Right </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 5 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a></p><p><a href="#7_0">Jones Calculus </a><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>The elliptic polarization state </p><p>The polarization state of ANY monochromatic wave </p><p>ϕ<sub style="top: 0.1363em;">y </sub>− ϕ<sub style="top: 0.1363em;">x </sub>= π/4 </p><p>Electric field </p><p>E<sub style="top: 0.1364em;">x </sub>= A<sub style="top: 0.1364em;">x </sub>cos (ωt − kz − ϕ<sub style="top: 0.1364em;">x </sub>) E<sub style="top: 0.1364em;">y </sub>= A<sub style="top: 0.1364em;">y </sub>cos (ωt − kz − ϕ<sub style="top: 0.1364em;">y </sub>) </p><p>4 real numbers </p><p>A<sub style="top: 0.1364em;">x </sub>,ϕ<sub style="top: 0.1364em;">x </sub>A<sub style="top: 0.1364em;">y </sub>,ϕ<sub style="top: 0.1364em;">y </sub></p><p>2 complex numbers </p><p>A<sub style="top: 0.1363em;">x </sub>exp (ı˙ϕ<sub style="top: 0.1363em;">x </sub>) A<sub style="top: 0.1363em;">y </sub>exp (ı˙ϕ<sub style="top: 0.1363em;">y </sub>) </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 6 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a></p><p><a href="#7_0">Jones Calculus </a></p><p><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>Polarization states are vectors </p><p>Monochromatic polarizations belong to a 2D vector space based on the Complex Ring </p><p>ANY elliptic polarization state </p><p>⇐⇒ </p><p>Two complex numbers </p><p>A set of two ordered complex numbers is one 2D complex vector </p><p>Canonical Basis </p><p>ꢀꢁ ꢂ ꢁ ꢂꢃ </p><p>Polarization Basis </p><p>Two independent polarizations : <br>Crossed Linear <br>10<br>01</p><p>,</p><p>Reversed circular . . . </p><p>Link with optics ? </p><p>These two vectors represent two polarization states <br>YOUR choice </p><p>We must decide which ones ! </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 7 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a></p><p><a href="#7_0">Jones Calculus </a></p><p><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>Examples : Linear Polarizations </p><p>Canonical Basis Choice </p><p>ꢁ ꢂ </p><p>10<br>: horizontal linear polarization </p><p>ꢁ ꢂ </p><p>0<br>: vertical linear polarization <br>1</p><p>Tilt </p><p>θ</p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>cos (θ) sin (θ) </p><p></p><ul style="display: flex;"><li style="flex:1">Linear polarization Jones vector </li><li style="flex:1">in a linear polarization basis </li></ul><p></p><p>Linear Polarization : two in phase components </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 8 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a></p><p><a href="#7_0">Jones Calculus </a></p><p><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>Examples : Circular Polarizations </p><p>In the same canonical basis choice : linear polarizations </p><p>ϕ<sub style="top: 0.1363em;">y </sub>− ϕ<sub style="top: 0.1363em;">x </sub>= π/2 </p><p>Electric field </p><p>E<sub style="top: 0.1364em;">x </sub>= A<sub style="top: 0.1364em;">x </sub>cos (ωt − kz − ϕ<sub style="top: 0.1364em;">x </sub>) E<sub style="top: 0.1364em;">y </sub>= A<sub style="top: 0.1364em;">y </sub>cos (ωt − kz − ϕ<sub style="top: 0.1364em;">y </sub>) </p><p>Jones vector </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>1ı˙ </p><p>1<br>2</p><p>√</p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 9 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a></p><p><a href="#7_0">Jones Calculus </a></p><p><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>About changing basis </p><p>A polarization state Jones vector is basis dependent </p><p>Some elementary algebra </p><p>The polarization vector space dimension is 2 Therefore : two non colinear vectors form a basis Any polarization state can be expressed as the sum of two non colinear other states </p><p>Remark : two colinear polarization states are identical <br>Homework Find the transformation matrix between between the two following bases : </p><p>Horizontal and Vertical Linear Polarizations Right and Left Circular Polarizations </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 10 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a></p><p><a href="#7_0">Jones Calculus </a></p><p><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>Relationship between Jones and Poynting vectors </p><p>Jones vectors also provide information about intensity </p><p></p><ul style="display: flex;"><li style="flex:1">Choose an orthonormal basis </li><li style="flex:1">(J<sub style="top: 0.1363em;">1</sub>, J<sub style="top: 0.1363em;">2</sub>) </li></ul><p></p><p>Hermitian product is null : J<sub style="top: 0.1364em;">1 </sub>· J<sub style="top: 0.1364em;">2 </sub>= 0 Each vector norm is unity : J<sub style="top: 0.1364em;">1 </sub>· J<sub style="top: 0.1364em;">1 </sub>= J<sub style="top: 0.1364em;">2 </sub>· J<sub style="top: 0.1364em;">2 </sub>= 1 </p><p>Hermitian Norm is Intensity </p><p>Simple calculations show that : <br>If each Jones component is one complex electric field component </p><p>The Hermitian norm is proportional to beam intensity </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 11 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a><a href="#7_0">Jones Calculus </a></p><p><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>The Stokes parameters </p><p>A set of 4 dependent real parameters that can be measured </p><p>P<sub style="top: 0.1364em;">0 </sub>P<sub style="top: 0.1364em;">2 </sub></p><p>Overall Intensity </p><p>P<sub style="top: 0.1364em;">0 </sub>= I </p><p>in a π/4 Tilted Basis </p><p>P<sub style="top: 0.1363em;">2 </sub>= I<sub style="top: 0.185em;">π/4 </sub>− I </p><p>P<sub style="top: 0.1363em;">1 </sub>P<sub style="top: 0.1363em;">3 </sub></p><p>Intensity Diff´erence </p><p>P<sub style="top: 0.1364em;">1 </sub>= I<sub style="top: 0.1364em;">x </sub>− I<sub style="top: 0.1364em;">y </sub></p><p>in a Circular Basis </p><p>P<sub style="top: 0.1364em;">3 </sub>= I<sub style="top: 0.1364em;">L </sub>− I<sub style="top: 0.1364em;">R </sub></p><p>−π/4 </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 12 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a><a href="#7_0">Jones Calculus </a></p><p><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>Relationship between Jones and Stockes </p><p>Sample Jones Vector </p><p>ꢁ</p><p>4 dependent parameters </p><p>P<sub style="top: 0.2513em;">0</sub><sup style="top: -0.3299em;">2 </sup>= P<sub style="top: 0.2513em;">1</sub><sup style="top: -0.3299em;">2 </sup>+ P<sub style="top: 0.2513em;">2</sub><sup style="top: -0.3299em;">2 </sup>+ P<sub style="top: 0.2513em;">3</sub><sup style="top: -0.3299em;">2 </sup></p><p>ꢂ</p><p>A<sub style="top: 0.1363em;">x </sub>exp (+ı˙ϕ/2) A<sub style="top: 0.1364em;">y </sub>exp (−ı˙ϕ/2) </p><p>J = </p><p>P<sub style="top: 0.1363em;">0 </sub>P<sub style="top: 0.1364em;">2 </sub></p><p>Overall Intensity </p><p>P<sub style="top: 0.1364em;">0 </sub>= I = A<sup style="top: -0.3299em;">2</sup><sub style="top: 0.2247em;">x </sub>+ A<sup style="top: -0.3299em;">2</sup><sub style="top: 0.2247em;">y </sub></p><p>P<sub style="top: 0.1364em;">1 </sub></p><p>Intensity Difference </p><p>P<sub style="top: 0.1364em;">1 </sub>= I<sub style="top: 0.1364em;">x </sub>− I<sub style="top: 0.1364em;">y </sub>= A<sup style="top: -0.3299em;">2</sup><sub style="top: 0.2248em;">x </sub>− A<sup style="top: -0.3299em;">2</sup><sub style="top: 0.2248em;">y </sub></p><p>in a π/4 Tilted Basis </p><p>P<sub style="top: 0.1363em;">3 </sub></p><p>in a Circular Basis </p><p>ꢂ</p><p>J<sub style="top: 0.185em;">π/4 </sub></p><p>=</p><p>ꢁ</p><p>A<sub style="top: 0.1363em;">x </sub>e<sup style="top: -0.3299em;">+ı˙ϕ/2 </sup>− ı˙A<sub style="top: 0.1363em;">y </sub>e<sup style="top: -0.3299em;">−ı˙ϕ/2 </sup></p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>A<sub style="top: 0.1364em;">x </sub>e<sup style="top: -0.3299em;">+ı˙ϕ/2 </sup>+ A<sub style="top: 0.1364em;">y </sub>e<sup style="top: -0.3299em;">−ı˙ϕ/2 </sup><br>−A<sub style="top: 0.1364em;">x </sub>e<sup style="top: -0.3299em;">+ı˙ϕ/2 </sup>+ A<sub style="top: 0.1364em;">y </sub>e<sup style="top: -0.3299em;">−ı˙ϕ/2 </sup></p><p>π/4 </p><p>1<br>2</p><p>√</p><p>√</p><p>J<sub style="top: 0.1364em;">Cir </sub></p><p>=</p><p>A<sub style="top: 0.1364em;">x </sub>e<sup style="top: -0.3299em;">+ı˙ϕ/2 </sup>+ ı˙A<sub style="top: 0.1364em;">y </sub>e<sup style="top: -0.3299em;">−ı˙ϕ/2 </sup></p><p>2</p><p>P<sub style="top: 0.1364em;">3 </sub>= J<sup style="top: -0.3131em;">x </sup>· J<sub style="top: 0.2649em;">C</sub><sup style="top: -0.3299em;">x </sup><sub style="top: 0.2649em;">ir </sub>− J<sup style="top: -0.4419em;">y </sup>· J<sub style="top: 0.2817em;">C</sub><sup style="top: -0.4419em;">y </sup><sub style="top: 0.2817em;">ir </sub></p><p>=</p><p>P<sub style="top: 0.1364em;">2 </sub>= J<sup style="top: -0.3131em;">x </sup>· J<sub style="top: 0.3137em;">π</sub><sup style="top: -0.3298em;">x</sup><sub style="top: 0.3137em;">/4 </sub>− J<sub style="top: 0.3305em;">π</sub><sup style="top: -0.4419em;">y</sup><sub style="top: 0.3305em;">/4 </sub>· J<sub style="top: 0.3305em;">π</sub><sup style="top: -0.4419em;">y</sup><sub style="top: 0.3305em;">/4 </sub></p><p>=</p><p></p><ul style="display: flex;"><li style="flex:1">Cir </li><li style="flex:1">Cir </li></ul><p></p><p>2A<sub style="top: 0.1364em;">x </sub>A<sub style="top: 0.1364em;">y </sub>sin (ϕ) <br>2A<sub style="top: 0.1364em;">x </sub>A<sub style="top: 0.1364em;">y </sub>cos (ϕ) </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 13 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a><br><a href="#22_0">Partially polarized light </a></p><p><a href="#4_0">Polarization states </a><a href="#7_0">Jones Calculus </a></p><p><a href="#12_0">Stokes parameters and the Poincare Sphere </a></p><p>The Poincare Sphere </p><p>Polarization states can be described geometrically on a sphere </p><p>Normalized Stokes parameters <br>(S<sub style="top: 0.1364em;">1</sub>, S<sub style="top: 0.1364em;">2</sub>, S<sub style="top: 0.1364em;">3</sub>) on a unit radius sphere </p><p>S<sub style="top: 0.1431em;">i </sub>= P<sub style="top: 0.1431em;">i </sub>/P<sub style="top: 0.1364em;">0 </sub></p><p>Unit Radius Sphere </p><p>P</p><p>General Polarisation </p><p>3</p><p><sub style="top: 0.2688em;">i=1 </sub>S<sub style="top: 0.2718em;">i</sub><sup style="top: -0.3299em;">2 </sup>= 1 </p><p>Figures from [<a href="#2_0">Hua94] </a></p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 14 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a></p><p><a href="#22_0">Partially polarized light </a></p><p><a href="#15_0">Jones Matrices Examples </a></p><p><a href="#17_0">Matrix, basis &amp; eigen polarizations </a><a href="#21_0">Jones Matrices Composition </a></p><p>A polarizer lets one component through </p><p>Polarizer aligned with x : its action on two orthogonal polarizations </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ ꢂ </li><li style="flex:1">ꢁ ꢂ </li></ul><p></p><p>10<br>10<br>Lets through the linear polarization along x: </p><p>−→ </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ ꢂ </li><li style="flex:1">ꢁ ꢂ </li></ul><p></p><p>01<br>00<br>Blocks the linear polarization along y : </p><p>−→ </p><p></p><ul style="display: flex;"><li style="flex:1">x polarizer Jones matrix </li><li style="flex:1">in this basis </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>1 0 0 0 </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 15 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a></p><p><a href="#22_0">Partially polarized light </a></p><p><a href="#15_0">Jones Matrices Examples </a></p><p><a href="#17_0">Matrix, basis &amp; eigen polarizations </a><a href="#21_0">Jones Matrices Composition </a></p><p>A quarter wave plate adds a π/2 phase shift </p><p></p><ul style="display: flex;"><li style="flex:1">Birefringent material: n<sub style="top: 0.1364em;">1 </sub>along x and n<sub style="top: 0.1364em;">2 </sub>along y </li><li style="flex:1">thickness e </li></ul><p></p><p>Linear polarization along x: phase shift is ke = k<sub style="top: 0.1364em;">0</sub>n<sub style="top: 0.1364em;">1</sub>e Linear polarization along y: phase shift is ke = k<sub style="top: 0.1364em;">0</sub>n<sub style="top: 0.1364em;">2</sub>e </p><p>Jones matrix </p><p>ꢁ</p><p>in this basis </p><p></p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢂ</li><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li><li style="flex:1">ꢁ</li></ul><p></p><p>e<sup style="top: -0.3299em;">ı˙k n e </sup></p><p>0</p><p>0</p><p>10<br>0ı˙ <br>10<br>0ı˙ </p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">1</li></ul><p></p><p>= e<sup style="top: -0.3299em;">ı˙k n e </sup></p><p>≈</p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">1</li></ul><p></p><p>e<sup style="top: -0.3299em;">ı˙k n e </sup></p><p>2</p><p>0</p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 16 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a></p><p><a href="#22_0">Partially polarized light </a></p><p><a href="#15_0">Jones Matrices Examples </a></p><p><a href="#17_0">Matrix, basis &amp; eigen polarizations </a></p><p><a href="#21_0">Jones Matrices Composition </a></p><p>Eigen Polarizations </p><p>Eigen polarization are polarizations that do not change upon propagation </p><p>Polarization unchanged <br>Eigen Vectors </p><p>λ ∈ C </p><p>v is an eigen vector </p><p>J and λJ describe the same polarization </p><p>M · v = λv ⇔ </p><p>λ is its eigen value </p><p>Intensity changes </p><p>Handy basis </p><p>A matrix is diagonal in its eigen basis <br>Polarizer eigen basis is along its axes Bi-refringent plate eigen basis is along its axes <br>Homework Find the eigen polarizations for an optically active material that rotates any linear polarisation by an angle φ </p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 17 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a></p><p><a href="#22_0">Partially polarized light </a></p><p><a href="#15_0">Jones Matrices Examples </a></p><p><a href="#17_0">Matrix, basis &amp; eigen polarizations </a></p><p><a href="#21_0">Jones Matrices Composition </a></p><p>A polarizer in a rotated basis </p><p>In its eigen basis </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>1 0 0 0 <br>Eigen basis Jones matrix : P<sub style="top: 0.1364em;">x </sub>= </p><p>When transmitted polarization is θ tilted </p><p>Change base through −θ rotation Transformation Matrix </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>cos (θ) − sin (θ) <br>R (θ) = sin (θ) cos&nbsp;(θ) </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>1 0 0 0 cos<sup style="top: -0.3299em;">2 </sup>(θ) sin (θ) cos (θ) sin (θ) cos (θ) sin<sup style="top: -0.3598em;">2 </sup>(θ) </p><ul style="display: flex;"><li style="flex:1">P (θ) = R (θ) </li><li style="flex:1">R (−θ) = </li></ul><p></p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 18 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a></p><p><a href="#22_0">Partially polarized light </a></p><p><a href="#15_0">Jones Matrices Examples </a></p><p><a href="#17_0">Matrix, basis &amp; eigen polarizations </a></p><p><a href="#21_0">Jones Matrices Composition </a></p><p>Changing basis in the general case </p><p>Using the Transformation Matrix </p><p>If basis B<sub style="top: 0.1363em;">1 </sub>is deduded from basis B<sub style="top: 0.1363em;">0 </sub>by transformation P : </p><p>B<sub style="top: 0.1363em;">1 </sub>= P B<sub style="top: 0.1363em;">0 </sub></p><p>Jones Matrix is transformed using J<sub style="top: 0.1364em;">1 </sub>= P<sup style="top: -0.3299em;">−1 </sup>J<sub style="top: 0.1364em;">0 </sub>P </p><p></p><ul style="display: flex;"><li style="flex:1">From linear to circular </li><li style="flex:1">example </li></ul><p></p><p>Optically Active media in a linear basis : cos (φ) sin&nbsp;(φ) </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>J = </p><p>− sin (φ) cos&nbsp;(φ) </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>1</p><p>I</p><p>1<br>−ı˙ <br>Transformation Matrix to a circular basis P = </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>e<sup style="top: -0.3299em;">ı˙φ </sup></p><p>0</p><p>e<sup style="top: -0.3299em;">−ı˙φ </sup></p><p>P<br><sup style="top: -0.3299em;">−1</sup>MP = </p><p>0</p><p>N. Fressengeas </p><p><a href="#1_0">Polarization Optics, version 2.0, frame 19 </a></p><p><a href="#4_0">The physics of polarization optics </a></p><p><a href="#15_0">Polarized light propagation </a></p><p><a href="#22_0">Partially polarized light </a></p><p><a href="#15_0">Jones Matrices Examples </a></p><p><a href="#17_0">Matrix, basis &amp; eigen polarizations </a></p><p><a href="#21_0">Jones Matrices Composition </a></p><p>Anisotropy can be linear and circular </p><p>Linear Anisotropy </p><p>Orthogonal eigen linear polarizations </p><p>Circular Anisotropy </p><p>Orthogonal eigen Circular polarizations </p><p></p><ul style="display: flex;"><li style="flex:1">Different index n<sub style="top: 0.1364em;">1 </sub>&amp; n<sub style="top: 0.1364em;">2 </sub></li><li style="flex:1">Different index n<sub style="top: 0.1364em;">1 </sub>&amp; n<sub style="top: 0.1364em;">2 </sub></li></ul><p></p><p>Eigen Jones Matrix </p><p>ꢁ</p><p>Eigen Jones Matrix </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li><li style="flex:1">ꢂ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">0</li><li style="flex:1">1</li><li style="flex:1">0</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">0 e<sup style="top: -0.3299em;">ı˙θ </sup></li><li style="flex:1">0 e<sup style="top: -0.3299em;">ı˙θ </sup></li></ul><p></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    34 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us