Physics 212 Lecture 24

Total Page:16

File Type:pdf, Size:1020Kb

Physics 212 Lecture 24 Physics 212 Lecture 24 Electricity & Magnetism Lecture 24, Slide 1 Your Comments Why do we want to polarize light? What is polarized light used for? I feel like after the polarization lecture the Professor laughs and goes tell his friends, "I ran out of things to teach today so I made some stuff up and the students totally bought it." I really wish you would explain the new right hand rule. I cant make it work in my mind I can't wait to see what demos are going to happen in class!!! This topic looks like so much fun!!!! With E related to B by E=cB where c=(u0e0)^-0.5, does the ratio between E and B change when light passes through some material m for which em =/= e0? I feel like if specific examples of homework were done for us it would help more, instead of vague general explanations, which of course help with understanding the theory behind the material. THIS IS SO COOL! Could you explain what polarization looks like? The lines that are drawn through the polarizers symbolize what? Are they supposed to be slits in which light is let through? Real talk? The Law of Malus is the most metal name for a scientific concept ever devised. Just say it in a deep, commanding voice, "DESPAIR AT THE LAW OF MALUS." Awesome! Electricity & Magnetism Lecture 24, Slide 2 Linearly Polarized Light So far we have considered plane waves that look like this: From now on just draw E and remember that B is still there: Electricity & Magnetism Lecture 24, Slide 3 Linear Polarization “I was a bit confused by the introduction of the "e-hat" vector (as in its purpose/usefulness)” Electricity & Magnetism Lecture 24, Slide 4 Polarizer The molecular structure of a polarizer causes the component of the E field perpendicular to the Transmission Axis to be absorbed. Electricity & Magnetism Lecture 24, Slide 5 Clicker Question The molecular structure of a polarizer causes the component of the E field perpendicular to the Transmission Axis to be absorbed. Eo Suppose we have a beam traveling in the + z - direction. At t = 0 and z = 0, the electric field is aligned along the positive y x - axis and has a magnitude equal to Eo z What is the component of Eo along a direction in the x - y plane that makes an angle of q with respect to the x - axis? Eo q A) Eosinq B) Eocosq C) 0 D) Eo/sinq E) Eo/cosq Electricity & Magnetism Lecture 24, Slide 6 Linear Polarizers “I can't believe your teaching us the law of "Malus"(Malice). I thought malice was to be avoided?” Electricity & Magnetism Lecture 24, Slide 7 CheckPoint 1a An unpolarized EM wave is incident on two orthogonal polarizers. Two Polarizers What percentage of the intensity gets through both polarizers? A. 50% The secondB. 25% polarizer is orthogonalC. 0% to the first No light will come through. cos(90o) = 0 Electricity & Magnetism Lecture 24, Slide 8 CheckPoint 1b An unpolarized EM wave is incident on two orthogonal polarizers. Two Polarizers Is it possible to increase this percentage by inserting another Polarizer between the original two? A. Yes B. No DEMO Electricity & Magnetism Lecture 24, Slide 9 Circularly Polarized Light There is no reason that f has to be the same for Ex and Ey: Making fx different from fy causes circular or elliptical polarization: Example: At t = 0 f -f = 90 = x y 2 q = 45 = / 4 E E = 0 coskz-t x 2 E E=-0 sin kz t RCP y 2 Electricity & Magnetism Lecture 24, Slide 10 Quarter Waveplates Q: How do we change the relative phase between Ex and Ey? A: Birefringence By picking the right thickness we can change the relative phase by exactly 90o. This changes linear to Right circular polarization hand rule and is called a quarter wave plate Electricity & Magnetism Lecture 24, Slide 11 Intensity does not change! “talk something about intensity” NOTE: No Intensity is lost passing through the QWP ! BEFORE QWP: ˆ ˆ i + j I = c E2 = c E2 + E2 E = Eo sin(kz-t) o o x y 2 E2 E2 1 = c o + o sin2 (kz-t) = c E2 o 2 2 o o 2 AFTER QWP: E E = o iˆcos(kz-t) + ˆjsin(kz-t) I = c E2 = c E2 + E2 2 o o x y E2 = c o cos2 (kz-t) + sin2 (kz-t) o 2 E2 E2 = c o 1 = c o THE SAME! o 2 o 2 Electricity & Magnetism Lecture 24, Slide 12 Right or Left Circularly Polarized E Ey Ex Ey Ex A linearly polarized EM wave is incident on a quarter-wave plate as shown above. The resulting wave is A) Right Circularly Polarized Curve fingers from slow to fast, B) Left Circularly Polarized thumb must be direction of C) Linearly Polarized propagation. Electricity & Magnetism Lecture 24, Slide 14 Circular Light on Linear Polarizer Q: What happens when circularly polarized light is put through a polarizer along the y (or x) axis ? A) I = 0 B) I = ½ I0 C) I = I0 2 I = 0c E 2 2 = 0c Ex + EXy 2 1 1 2 E = 0cE0 = c 0 cos2 (kz-t) 2 2 0 2 Half of before 1/2 Electricity & Magnetism Lecture 24, Slide 15 CheckPoint 2a Identical linearly polarized light at 45o from the y-axis and propagating along the z axis is incident on two different objects. In Case A the light intercepts a linear polarizer with polarization alongA the y-axis In Case B, the light Bintercepts a quarter wave plate with vast axis along the y-axis. Case A Case B Compare the intensities of the light waves after transmission. A. IA < IB B. IA = IB C. IA > IB Case A: Case B: Ex is absorbed (Ex ,Ey) phase changed 2 o I A = I0 cos (45 ) 1 I = I I A = 2 I0 B 0 Electricity & Magnetism Lecture 24, Slide 16 Identical linearly polarized light at 45o from the y-axis and propagating along the z axis is incident on two different objects.CheckPoint In Case A the light intercepts2b a linear polarizer with polarization along the y-axis In Case B, the light intercepts a quarter wave plate with vast axis along the y-axis. Case AA Case BB What is the polarization of the light wave in Case B after it passes through the quarter wave plate?. A. linearly polarized B. left circularly polarized C. right circularly polarized D. undefined RCP 1/4 l Z Electricity & Magnetism Lecture 24, Slide 19 CheckPoint 2c Identical linearly polarized light at 45o from the y-axis and propagating along the z axis is incident on two different objects. In Case A the light intercepts a linear polarizer with polarization along the y-axis In Case B, the light intercepts a quarter wave plate with vast axis along the y-axis. Case A Case B If the thickness of the quarter-wave plate in Case B is doubled, what is the polarization of the wave after passing through the wave plate? A. linearly polarized B. circularly polarized C. undefined ½ l Z Z Electricity & Magnetism Lecture 24, Slide 20 Executive Summary: Polarizers & QW Plates: Polarized Light Circularly or Un-polarized Light Birefringence RCP E E= 0 cos( kx ) x 2 E E= 0 sin( kx ) y 2 Electricity & Magnetism Lecture 24, Slide 21 Calculation Light is incident on two linear polarizers and a quarter wave plate (QWP) as shown. What is the intensity I3 in terms of I1? 45o fast y x 60o I1 I2 z I3 Conceptual Analysis Linear Polarizers: absorbs E field component perpendicular to TA Quarter Wave Plates: Shifts phase of E field components in fast-slow directions Strategic Analysis Determine state of polarization and intensity reduction after each object Multiply individual intensity reductions to get final reduction. Electricity & Magnetism Lecture 24, Slide 23 Calculation Light is incident on two linear polarizers and a quarter wave plate (QWP) as shown. fast y 45o E RCP x 1 Ex E y 60o I1 l / 4 I 2 z I3 What is the polarization of the light after the QWP? y y A) LCP B) RCP C) x D) x E) un-polarized Light incident on QWP is linearly Light will be circularly polarized at 45o to fast axis polarized after QWP LCP or RCP? Easiest way: Curl fingers of RH back to front Right Hand Rule: Thumb points in dir of propagation RCP if right hand polarized. Electricity & Magnetism Lecture 24, Slide 24 Calculation Light is incident on two linear polarizers and a quarter wave plate (QWP) as shown. fast y 45o E RCP x 1 Ex E y 60o I1 l / 4 I 2 z I3 What is the intensity I2 of the light after the QWP? A) I2 = I1 B) I2 = ½ I1 C) I2 = ¼ I1 Before: No absorption: Just a phase change! After: E1 E Ex = sinkz-t E = 1 cos kz-t 2 2 2 x I = 0c Ex + Ey 2 E 1 E1 Ey = sinkz-t E = coskz-t 2 Same before & after! y 2 Electricity & Magnetism Lecture 24, Slide 25 Calculation Light is incident on two linear polarizers and a quarter wave plate (QWP) as shown. fast y 45o E RCP x 1 Ex E y 60o E3 I1 l / 4 I = I 2 1 z I3 What is the polarization of the light after the 60o polarizer? y y 60o 60o A) LCP B) RCP C) x D) x E) un-polarized Absorption: only passes components of E parallel to TA (q = 60o) E y 3 E = E sinq + E cosq E1 E3 3 x y E = sin(kz-t +q) 3 2 60o E E = 1 cos(kz-t)sinq + sin(kz-t)cosq 3 2 Ex Electricity & Magnetism Lecture 24, Slide 26 Calculation Light is incident on two linear polarizers and a quarter wave plate (QWP) as shown.
Recommended publications
  • Polarizer QWP Mirror Index Card
    PH 481 Physical Optics Winter 2014 Laboratory #8 Week of March 3 Read: pp. 336-344, 352-356, and 360-365 of "Optics" by Hecht Do: 1. Experiment VIII.1: Birefringence and Optical Isolation 2. Experiment VIII.2: Birefringent crystals: double refraction 3. Experiment VIII.3: Optical activity: rotary power of sugar Experiment VIII.1: Birefringence and Optical Isolation In this experiment the birefringence of a material will be used to change the polarization of the laser beam. You will use a quarter-wave plate and a polarizer to build an optical isolator. This is a useful device that ensures that light is not reflected back into the laser. This has practical importance since light reflected back into a laser can perturb the laser operation. A quarter-wave plate is a specific example of a retarder, a device that introduces a phase difference between waves with orthogonal polarizations. A birefringent material has two different indices of refraction for orthogonal polarizations and so is well suited for this task. We will refer to these two directions as the fast and slow axes. A wave polarized along the fast axis will move through the material faster than a wave polarized along the slow axis. A wave that is linearly polarized along some arbitrary direction can be decomposed into its components along the slow and fast axes, resulting in part of the wave traveling faster than the other part. The wave that leaves the material will then have a more general elliptical polarization. A quarter-wave plate is designed so that the fast and slow Laser components of a wave will experience a relative phase shift of Index Card π/2 (1/4 of 2π) upon traversing the plate.
    [Show full text]
  • Lab 8: Polarization of Light
    Lab 8: Polarization of Light 1 Introduction Refer to Appendix D for photos of the appara- tus Polarization is a fundamental property of light and a very important concept of physical optics. Not all sources of light are polarized; for instance, light from an ordinary light bulb is not polarized. In addition to unpolarized light, there is partially polarized light and totally polarized light. Light from a rainbow, reflected sunlight, and coherent laser light are examples of po- larized light. There are three di®erent types of po- larization states: linear, circular and elliptical. Each of these commonly encountered states is characterized Figure 1: (a)Oscillation of E vector, (b)An electromagnetic by a di®ering motion of the electric ¯eld vector with ¯eld. respect to the direction of propagation of the light wave. It is useful to be able to di®erentiate between 2 Background the di®erent types of polarization. Some common de- vices for measuring polarization are linear polarizers and retarders. Polaroid sunglasses are examples of po- Light is a transverse electromagnetic wave. Its prop- larizers. They block certain radiations such as glare agation can therefore be explained by recalling the from reflected sunlight. Polarizers are useful in ob- properties of transverse waves. Picture a transverse taining and analyzing linear polarization. Retarders wave as traced by a point that oscillates sinusoidally (also called wave plates) can alter the type of polar- in a plane, such that the direction of oscillation is ization and/or rotate its direction. They are used in perpendicular to the direction of propagation of the controlling and analyzing polarization states.
    [Show full text]
  • (EM) Waves Are Forms of Energy That Have Magnetic and Electric Components
    Physics 202-Section 2G Worksheet 9-Electromagnetic Radiation and Polarizers Formulas and Concepts Electromagnetic (EM) waves are forms of energy that have magnetic and electric components. EM waves carry energy, not matter. EM waves all travel at the speed of light, which is about 3*108 m/s. The speed of light is often represented by the letter c. Only small part of the EM spectrum is visible to us (colors). Waves are defined by their frequency (measured in hertz) and wavelength (measured in meters). These quantities are related to velocity of waves according to the formula: 풗 = 흀풇 and for EM waves: 풄 = 흀풇 Intensity is a property of EM waves. Intensity is defined as power per area. 푷 푺 = , where P is average power 푨 o Intensity is related the magnetic and electric fields associated with an EM wave. It can be calculated using the magnitude of the magnetic field or the electric field. o Additionally, both the average magnetic and average electric fields can be calculated from the intensity. ퟐ ퟐ 푩 푺 = 풄휺ퟎ푬 = 풄 흁ퟎ Polarizability is a property of EM waves. o Unpolarized waves can oscillate in more than one orientation. Polarizing the wave (often light) decreases the intensity of the wave/light. o When unpolarized light goes through a polarizer, the intensity decreases by 50%. ퟏ 푺 = 푺 ퟏ ퟐ ퟎ o When light that is polarized in one direction travels through another polarizer, the intensity decreases again, according to the angle between the orientations of the two polarizers. ퟐ 푺ퟐ = 푺ퟏ풄풐풔 휽 this is called Malus’ Law.
    [Show full text]
  • Finding the Optimal Polarizer
    Finding the Optimal Polarizer William S. Barbarow Meadowlark Optics Inc., 5964 Iris Parkway, Frederick, CO 80530 (Dated: January 12, 2009) ”I have an application requiring polarized light. What type of polarizer should I use?” This is a question that is routinely asked in the field of polarization optics. Many applications today require polarized light, ranging from semiconductor wafer processing to reducing the glare in a periscope. Polarizers are used to obtain polarized light. A polarizer is a polarization selector; generically a tool or material that selects a desired polarization of light from an unpolarized input beam and allows it to transmit through while absorbing, scattering or reflecting the unwanted polarizations. However, with five different varieties of linear polarizers, choosing the correct polarizer for your application is not easy. This paper presents some background on the theory of polarization, the five different polarizer categories and then concludes with a method that will help you determine exactly what polarizer is best suited for your application. I. POLARIZATION THEORY - THE TYPES OF not ideal, they transmit less than 50% of unpolarized POLARIZATION light or less than 100% of optimally polarized light; usu- ally between 40% and 98% of optimally polarized light. Light is a transverse electromagnetic wave. Every light Polarizers also have some leakage of the light that is not wave has a direction of propagation with electric and polarized in the desired direction. The ratio between the magnetic fields that are perpendicular to the direction transmission of the desired polarization direction and the of propagation of the wave. The direction of the electric undesired orthogonal polarization direction is the other 2 field oscillation is defined as the polarization direction.
    [Show full text]
  • Lecture 14: Polarization
    Matthew Schwartz Lecture 14: Polarization 1 Polarization vectors In the last lecture, we showed that Maxwell’s equations admit plane wave solutions ~ · − ~ · − E~ = E~ ei k x~ ωt , B~ = B~ ei k x~ ωt (1) 0 0 ~ ~ Here, E0 and B0 are called the polarization vectors for the electric and magnetic fields. These are complex 3 dimensional vectors. The wavevector ~k and angular frequency ω are real and in the vacuum are related by ω = c ~k . This relation implies that electromagnetic waves are disper- sionless with velocity c: the speed of light. In materials, like a prism, light can have dispersion. We will come to this later. In addition, we found that for plane waves 1 B~ = ~k × E~ (2) 0 ω 0 This equation implies that the magnetic field in a plane wave is completely determined by the electric field. In particular, it implies that their magnitudes are related by ~ ~ E0 = c B0 (3) and that ~ ~ ~ ~ ~ ~ k · E0 =0, k · B0 =0, E0 · B0 =0 (4) In other words, the polarization vector of the electric field, the polarization vector of the mag- netic field, and the direction ~k that the plane wave is propagating are all orthogonal. To see how much freedom there is left in the plane wave, it’s helpful to choose coordinates. We can always define the zˆ direction as where ~k points. When we put a hat on a vector, it means the unit vector pointing in that direction, that is zˆ=(0, 0, 1). Thus the electric field has the form iω z −t E~ E~ e c = 0 (5) ~ ~ which moves in the z direction at the speed of light.
    [Show full text]
  • Polarization of Light Demonstration This Demonstration Explains Transverse Waves and Some Surprising Properties of Polarizers
    Polarization of Light Demonstration This demonstration explains transverse waves and some surprising properties of polarizers. Number of Participants: Unlimited Audience: Middle (ages 11-13) and up Duration: 5-10 min Microbehunter Difficulty: Level 1 Materials Required: • 3 sheets of polarizing film – at least (20mm)2 • Long spring or Slinky Setup: 1. If necessary, prepare polarizing sheets by cutting a larger sheet into smaller pieces. While larger pieces of polarizing material are preferred, the demonstration works with smaller pieces. Presenter Brief: Light is a transverse wave because its two components, electric and magnetic fields, oscillate perpendicular to the direction of propagation. In general, a beam of light will consist of many photons traveling in the same direction but with arbitrary alignment of their electric and magnetic fields. Specifically, for an unpolarized light beam the electromagnetic components of each photon, while confined to a plane, are not aligned. If light is polarized, photons have aligned electromagnetic components and travel in the same direction. Polarization of Light Vocabulary: • Light – Electromagnetic radiation, which can be in the visible range. • Electromagnetic – A transverse wave consisting of oscillating electric and magnetic components. • Transverse wave – A wave consisting of oscillations perpendicular to the direction of propagation. • Polarized light – A beam of photons propagating with aligned oscillating components.Polarizer – A material which filters homogenous light along a singular axis and thus blocks arbitrary orientations and allows a specific orientation of oscillations. Physics & Explanation: Middle (ages 11-13) and general public: Light, or an electromagnetic wave, is a transverse wave with oscillating electric and magnetic components. Recall that in a transverse wave, the vibrations,” or oscillations, are perpendicular to the direction of propagation.
    [Show full text]
  • Ellipsometry
    AALBORG UNIVERSITY Institute of Physics and Nanotechnology Pontoppidanstræde 103 - 9220 Aalborg Øst - Telephone 96 35 92 15 TITLE: Ellipsometry SYNOPSIS: This project concerns measurement of the re- fractive index of various materials and mea- PROJECT PERIOD: surement of the thickness of thin films on sili- September 1st - December 21st 2004 con substrates by use of ellipsometry. The el- lipsometer used in the experiments is the SE 850 photometric rotating analyzer ellipsome- ter from Sentech. THEME: After an introduction to ellipsometry and a Detection of Nanostructures problem description, the subjects of polar- ization and essential ellipsometry theory are covered. PROJECT GROUP: The index of refraction for silicon, alu- 116 minum, copper and silver are modelled us- ing the Drude-Lorentz harmonic oscillator model and afterwards measured by ellipsom- etry. The results based on the measurements GROUP MEMBERS: show a tendency towards, but are not ade- Jesper Jung quately close to, the table values. The mate- Jakob Bork rials are therefore modelled with a thin layer of oxide, and the refractive indexes are com- Tobias Holmgaard puted. This model yields good results for the Niels Anker Kortbek refractive index of silicon and copper. For aluminum the result is improved whereas the result for silver is not. SUPERVISOR: The thickness of a thin film of SiO2 on a sub- strate of silicon is measured by use of ellip- Kjeld Pedersen sometry. The result is 22.9 nm which deviates from the provided information by 6.5 %. The thickness of two thick (multiple wave- NUMBERS PRINTED: 7 lengths) thin polymer films are measured. The polymer films have been spin coated on REPORT PAGE NUMBER: 70 substrates of silicon and the uniformities of the surfaces are investigated.
    [Show full text]
  • Essentials of Polarized Light Microscopy
    SELECTED TOPICS FROM ESSENTIALS OF POLARIZED LIGHT MICROSCOPY John Gustav Delly Scientific Advisor 850 Pasquinelli Drive Westmont, Illinois 60559-5539 Essentials of Polarized Light Microscopy, Fifth Edition (January 2008) John Gustav Delly, Scientific Advisor, College of Microscopy College of Microscopy 850 Pasquinelli Drive Westmont, Illinois 60559-5539 World Wide Web at www.collegeofmicroscopy.com Copyright © 2008, College of Microscopy Notice of Rights All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, elec- tronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher. For information on obtaining permission for reprints and excerpts, contact courses@collegeofmicroscopy. com. Cover Photomicrograph: Ammonium nitrate, NaNO3 , recrystallized from the melt; crossed polarizers, 100X Essentials of Polarized Light Microscopy iii TABLE OF CONTENTS Preface v 1. Introduction 7 2. Identifying Characteristics of Particles 9 3. Particle Identification: Observations Made Using Ordinary Light 13 A. Morphology 13 B. Size 13 C. Absorption Color 13 D. Magnetism 14 E. Brittleness/Elastomericity 14 4. Particle Identification: Observations Made Using Plane-Polarized Light 15 A. Pleochroism 15 B. Refractive Index 15 C. Dispersion Staining 17 5. Particle Identification: Observations Made Using Crossed Polarizers 19 A. Birefringence 19 Glossary 23 References 27 © 2008, College of Microscopy iv Essentials of Polarized Light Microscopy © 2008, College of Microscopy
    [Show full text]
  • Chapter 9 Refraction and Polarization of Light
    Chapter 9 Refraction and Polarization of Light Name: Lab Partner: Section: 9.1 Purpose The purpose of this experiment is to demonstrate several consequences of the fact that materials have di↵erent indexes of refraction for light. Refraction, total internal reflection and the polarization of light reflecting from a nonmetallic surface will be investigated 9.2 Introduction Light can travel through many transparent media such as water, glass and air. When this happens the speed of light is no longer c =3 108 m/s (the speed in vacuum), but is less. This reduction in the speed depends on the material.⇥ This change in speed and direction is called refraction and is governed by Snell’s Law of Refraction. n1sin✓1 = n2sin✓2 (9.1) The ratio of the speed of light in vacuum to that in the medium is called the index of refraction (n). The index of refraction is a number greater than or equal to one. The angles (✓1 and ✓2)aremeasuredwithrespecttothenormal(perpendicular)totheinterfacebetween the two media (See Figure 9.1). When light passes from a medium of higher index of refraction to a medium with a lower index of refraction, the light ray can be refracted at 900.Thisphenomenoniscalledtotal internal reflection.Forincidentanglesgreaterthan✓c,thereisnorefractedbeam.The transmission of light by fiber-optic cable uses this e↵ect. The critical angle of incidence where total internal reflection occurs is given by: n2 sin✓c = n1 >n2 (9.2) n1 If this angle and the index of refraction of one of the two media is known, the index of refraction of the other medium can be found.
    [Show full text]
  • Understanding Polarization
    Semrock Technical Note Series: Understanding Polarization The Standard in Optical Filters for Biotech & Analytical Instrumentation Understanding Polarization 1. Introduction Polarization is a fundamental property of light. While many optical applications are based on systems that are “blind” to polarization, a very large number are not. Some applications rely directly on polarization as a key measurement variable, such as those based on how much an object depolarizes or rotates a polarized probe beam. For other applications, variations due to polarization are a source of noise, and thus throughout the system light must maintain a fixed state of polarization – or remain completely depolarized – to eliminate these variations. And for applications based on interference of non-parallel light beams, polarization greatly impacts contrast. As a result, for a large number of applications control of polarization is just as critical as control of ray propagation, diffraction, or the spectrum of the light. Yet despite its importance, polarization is often considered a more esoteric property of light that is not so well understood. In this article our aim is to answer some basic questions about the polarization of light, including: what polarization is and how it is described, how it is controlled by optical components, and when it matters in optical systems. 2. A description of the polarization of light To understand the polarization of light, we must first recognize that light can be described as a classical wave. The most basic parameters that describe any wave are the amplitude and the wavelength. For example, the amplitude of a wave represents the longitudinal displacement of air molecules for a sound wave traveling through the air, or the transverse displacement of a string or water molecules for a wave on a guitar string or on the surface of a pond, respectively.
    [Show full text]
  • Optical Rotation and Linear and Circular Depolarization Rates in Diffusively Scattered Light from Chiral, Racemic, and Achiral Turbid Media
    Journal of Biomedical Optics 7(3), 291–299 (July 2002) Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media Kevin C. Hadley Abstract. The polarization properties of light scattered in a lateral University of Waterloo direction from turbid media were studied. Polarization modulation Department of Chemistry and synchronous detection were used to measure, and Mueller calcu- Waterloo, Ontario N2L 3G1, Canada lus to model and derive, the degrees of surviving linear and circular I. Alex Vitkin polarization and the optical rotation induced by turbid samples. Poly- Ontario Cancer Institute/University of Toronto styrene microspheres were used as scatterers in water solutions con- Departments of Medical Biophysics and taining dissolved chiral, racemic, and achiral molecules. The preser- Radiation Oncology vation of circular polarization was found to exceed the linear Toronto, Ontario M5G 2M9, Canada polarization preservation for all samples examined. The optical rota- tion induced increased with the chiral molecule concentration only, whereas both linear and circular polarizations increased with an in- crease in the concentrations of chiral, racemic, and achiral molecules. This latter effect was shown to stem solely from the refractive index matching mechanism induced by the solute molecules, independent of their chiral nature. © 2002 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1483880] Keywords: polarization; multiple scattering; chirality; polarization modulation. Paper JBO TP-14 received Mar. 8, 2002; revised manuscript received Mar. 14, 2002; accepted for publication Mar. 31, 2002. 1 Introduction Optical investigations of turbid media that contain chiral 23–31 Many natural and synthetic systems have disordered proper- components have also been reported.
    [Show full text]
  • Circular Polarization of Fluorescence of Probes Bound to Chymotrypsin
    Proc. Nat. ASad. Sci. USA Vol. 69, No. 3, pp. 769-772, March 1972 Circular Polarization of Fluorescence of Probes Bound to Chymotrypsin. Change in Asymmetric Environment upon Electronic Excitation* (circularly polarized luminescence/proteins/fluoresent probes) JOSEPH SCHLESSINGERt AND IZCHAK Z. STEINBERG Chemical Physics Department, Weizmann Institute of Science, Rehovot, Israel Communicated by Harold A. Scheraga, January 13, 197S ABSTRACT The circular polarization of fluorescence excited. The site, strength, rigidity, and geometry of binding is related to the conformational asymmetry of the emitting of a fluorescent probe to a protein molecule may thus molecule in the first singlet excited state in the same way differ that circular dichroism is related to the conformational in the ground and excited states. The use of fluorescence asymmetry of the absorbing molecule in the electronic for the study of the binding and the environment of the ground state. By measurement of these optical pheno- chromophore in the ground state, therefore, involves the mena, the induced asymmetry of two chromophores bound basic assumption that in the case under investigation no to chymotrypsin (EC 3.4.4.5) when in the ground state Was compared with the induced asymmetry of the ligands major changes have occurred in the bound chromophore when in the excited state. The two chromophores studied upon electronic excitation. Detection and examination of such were 2-p-toluidinylnaphthalene-6.sulfonate (TNS), bound changes is therefore of much interest and importance. at a specific site which is not the active site of the protein, In this study, the changes in the interaction of a protein and an anthraniloyl group, bound at the active site of the molecule and an attached extrinsic chromophore caused by enzyme.
    [Show full text]