Integral Optics Lecture Notes
Total Page:16
File Type:pdf, Size:1020Kb
MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE NATIONAL TECHNICAL UNIVERSITY OF UKRAINE "IGOR SIKORSKY KYIV POLYTECHNIC INSTITUTE" INTEGRAL OPTICS LECTURE NOTES Recommended by the Methodical Council of Igor Sikorsky Kyiv Polytechnic Instutute as a tutorial for master's degree students studying for specialty 153 "Micro- and nanosystem technique" educational program “Micro and nanoelectronics” Kyiv Igor Sikorsky Kyiv Polytechnic Instutute 2020 Integral Optics: Lecture Notes [Electronic resource] : tutorial for students studying for specialty 153 "Micro- and nanosystem technique" educational program “Micro and nanoelectronics” / Igor Sikorsky Kyiv Polytechnic Instutute ; compilers: G. S. Svechnikov, Yu. V. Didenko. – Electronic text data (1 file: , Mbyte). – Kyiv : Igor Sikorsky Kyiv Polytechnic Instutute, 2020. – 261 p. 13 2 Stamp assigned Methodical Council of Igor Sikorsky Kyiv Polytechnic Instutute (Protocol № 10 of June 18, 2020) at the request of the Academic Council of the Faculty of Electronics (Protocol № 05/2020 of May 25, 2020) Electronic online educational publication INTEGRAL OPTICS LECTURE NOTES Compilers: Svechnikov Georgii Serhiiovych, Doctor of Philosophy, Associate Professor Didenko Yurii Viktorovych, Doctor of Philosophy, Associate Professor Responsible Editor Tatarchuk, D. D., Doctor of Philosophy, Associate Professor Reviewer: Oleksenko, P. F., Doctor of Technical Sciences, Professor An introduction is given to the principles of integrated optics and optical guided-wave devices. The characteristics of dielectric waveguides are summarized and methods for their fabrication are described. An illustration is given of recent work on devices including directional couplers, filters, modulators, light deflectors, and lasers. The textbook reflects the latest achievements in the field of integrated optics, which have had a significant impact on the development of communication technology and methods for transmitting and processing information. Igor Sikorsky Kyiv Polytechnic Instutute, 2020 Contents Introduction ........................................................................................................... 6 1. Radiation in matter .......................................................................................... 10 1.1. Maxwell’s equations and the wave equation ......................................................... 10 1.2. Light propagation (reflection, refraction and transmission) through homogeneous media .............................................................................................. 13 1.3. Radiation in anisotropic media .............................................................................. 15 2. Dielectric microwaveguides ............................................................................ 18 2.1. Dielectric waveguide modes .................................................................................. 20 2.2. Planar optical waveguide ....................................................................................... 23 2.3. Three-dimensional waveguides ............................................................................. 27 2.4. Photonic crystal waveguide ................................................................................... 29 2.5. Waveguides on glass substrates ............................................................................. 31 2.6. Waveguides on the active dielectrics substrate..................................................... 38 2.7. Semiconductor-based waveguides ......................................................................... 42 2.8. SOI waveguides ..................................................................................................... 47 2.8.1. Large-core SOI waveguides......................................................................... 49 2.8.2. Silicon photonic wires ................................................................................. 49 2.8.3. Fabrication of silicon waveguides ............................................................... 53 3. Coupling elements ........................................................................................... 57 3.1. Fundamentals of optical coupling .......................................................................... 57 3.2. Transverse couplers ............................................................................................... 58 3.3. Direct focusing ....................................................................................................... 59 3.4. End-butt coupling .................................................................................................. 60 3.5. Prism couplers ....................................................................................................... 66 3.6. Grating couplers ..................................................................................................... 71 3.7. Fiber to waveguide couplers .................................................................................. 74 3.8. Coupling between waveguides .............................................................................. 76 3.8.1. Multilayer planar waveguide couplers ......................................................... 76 3.8.2. Dual-channel directional couplers ............................................................... 77 3.9. Tapered waveguides .............................................................................................. 82 3.10. Enhanced optical coupling with intermediate waveguide regions ...................... 84 3.11. Vertically curved and suspended waveguide structures ...................................... 88 4. Waveguide lenses ............................................................................................ 91 4.1. Luneberg lenses ..................................................................................................... 93 4.2. Focusing elements based on geodesic lenses ....................................................... 103 4.3. Diffractive lenses ................................................................................................. 108 4.3.1. Fresnel lenses ............................................................................................. 109 4.3.2. Bragg chirp-grating lenses ......................................................................... 114 3 5. Waveguide modulators .................................................................................. 117 5.1. General principles of a waveguide light modulators ........................................... 118 5.2. The electro-optic effect ........................................................................................ 122 5.3. Directional-coupler modulator ............................................................................. 125 5.4. Mach-Zehnder interferometric modulator ........................................................... 130 6. Integrated optical detectors ........................................................................... 135 6.1. Waveguide photodiodes ....................................................................................... 135 6.2. Specialized photodiode structures ....................................................................... 137 6.2.1. Avalanche photodiodes .............................................................................. 137 6.2.2. P-i-n photodiodes ....................................................................................... 140 6.3. Hybrid structures ................................................................................................. 141 6.4. Factors limiting performance of integrated detectors .......................................... 145 6.4.1. High frequency cutoff ................................................................................ 145 6.4.2. Linearity ..................................................................................................... 147 6.4.3. Noise .......................................................................................................... 147 7. Semiconductor lasers..................................................................................... 150 7.1. Peculiarity of integrated-optical lasers ................................................................ 153 7.2. Distributed-feedback lasers ................................................................................. 157 7.2.1. Quantum dot DFB lasers ........................................................................... 164 7.3. Vertical cavity lasers ............................................................................................ 165 8. Applications of integrated optics and current trends .................................... 168 8.1. RF spectrum analyzer .......................................................................................... 168 8.2. Analog-to-digital converter (ADC) ..................................................................... 171 8.3. An IO optical disk readhead ................................................................................ 172 8.4. Integrated optical processors ............................................................................... 174 8.5. Heterodyne interferometer ................................................................................... 176 8.6. Monolithic wavelength-multiplexed optical source ............................................ 178 8.7. Integrated-optic Doppler velocimeter .................................................................