Introduction to Fiber Optics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Transverse-Mode Coupling Effects in Scanning Cavity Microscopy
PAPER • OPEN ACCESS Transverse-mode coupling effects in scanning cavity microscopy To cite this article: Julia Benedikter et al 2019 New J. Phys. 21 103029 View the article online for updates and enhancements. This content was downloaded from IP address 130.183.90.175 on 07/01/2020 at 15:23 New J. Phys. 21 (2019) 103029 https://doi.org/10.1088/1367-2630/ab49b4 PAPER Transverse-mode coupling effects in scanning cavity microscopy OPEN ACCESS Julia Benedikter1,2, Thea Moosmayer2, Matthias Mader1,3, Thomas Hümmer1,3 and David Hunger2 RECEIVED 1 Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstraße4, D-80799München, Germany 5 August 2019 2 Karlsruher Institut für Technologie, Physikalisches Institut, Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe, Germany REVISED 3 Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str.1, D-85748Garching, Germany 11 September 2019 ACCEPTED FOR PUBLICATION E-mail: [email protected] 1 October 2019 Keywords: optical microcavities, Fabry–Perot resonators, mode mixing, fiber cavity PUBLISHED 15 October 2019 Supplementary material for this article is available online Original content from this work may be used under Abstract the terms of the Creative Commons Attribution 3.0 Tunable open-access Fabry–Pérot microcavities enable the combination of cavity enhancement with licence. high resolution imaging. To assess the limits of this technique originating from background variations, Any further distribution of this work must maintain we perform high-finesse scanning cavity microscopy of pristine planar mirrors. We observe spatially attribution to the author(s) and the title of localized features of strong cavity transmission reduction for certain cavity mode orders, and periodic the work, journal citation background patterns with high spatial frequency. -
25 Geometric Optics
CHAPTER 25 | GEOMETRIC OPTICS 887 25 GEOMETRIC OPTICS Figure 25.1 Image seen as a result of reflection of light on a plane smooth surface. (credit: NASA Goddard Photo and Video, via Flickr) Learning Objectives 25.1. The Ray Aspect of Light • List the ways by which light travels from a source to another location. 25.2. The Law of Reflection • Explain reflection of light from polished and rough surfaces. 25.3. The Law of Refraction • Determine the index of refraction, given the speed of light in a medium. 25.4. Total Internal Reflection • Explain the phenomenon of total internal reflection. • Describe the workings and uses of fiber optics. • Analyze the reason for the sparkle of diamonds. 25.5. Dispersion: The Rainbow and Prisms • Explain the phenomenon of dispersion and discuss its advantages and disadvantages. 25.6. Image Formation by Lenses • List the rules for ray tracking for thin lenses. • Illustrate the formation of images using the technique of ray tracking. • Determine power of a lens given the focal length. 25.7. Image Formation by Mirrors • Illustrate image formation in a flat mirror. • Explain with ray diagrams the formation of an image using spherical mirrors. • Determine focal length and magnification given radius of curvature, distance of object and image. Introduction to Geometric Optics Geometric Optics Light from this page or screen is formed into an image by the lens of your eye, much as the lens of the camera that made this photograph. Mirrors, like lenses, can also form images that in turn are captured by your eye. 888 CHAPTER 25 | GEOMETRIC OPTICS Our lives are filled with light. -
Polarization (Waves)
Polarization (waves) Polarization (also polarisation) is a property applying to transverse waves that specifies the geometrical orientation of the oscillations.[1][2][3][4][5] In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave.[4] A simple example of a polarized transverse wave is vibrations traveling along a taut string (see image); for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic [6] waves such as light and radio waves, gravitational waves, and transverse Circular polarization on rubber sound waves (shear waves) in solids. thread, converted to linear polarization An electromagnetic wave such as light consists of a coupled oscillating electric field and magnetic field which are always perpendicular; by convention, the "polarization" of electromagnetic waves refers to the direction of the electric field. In linear polarization, the fields oscillate in a single direction. In circular or elliptical polarization, the fields rotate at a constant rate in a plane as the wave travels. The rotation can have two possible directions; if the fields rotate in a right hand sense with respect to the direction of wave travel, it is called right circular polarization, while if the fields rotate in a left hand sense, it is called left circular polarization. -
Chapter 5 Optical Properties of Materials
Chapter 5 Optical Properties of Materials Part I Introduction Classification of Optical Processes refractive index n() = c / v () Snell’s law absorption ~ resonance luminescence Optical medium ~ spontaneous emission a. Specular elastic and • Reflection b. Total internal Inelastic c. Diffused scattering • Propagation nonlinear-optics Optical medium • Transmission Propagation General Optical Process • Incident light is reflected, absorbed, scattered, and/or transmitted Absorbed: IA Reflected: IR Transmitted: IT Incident: I0 Scattered: IS I 0 IT IA IR IS Conservation of energy Optical Classification of Materials Transparent Translucent Opaque Optical Coefficients If neglecting the scattering process, one has I0 IT I A I R Coefficient of reflection (reflectivity) Coefficient of transmission (transmissivity) Coefficient of absorption (absorbance) Absorption – Beer’s Law dx I 0 I(x) Beer’s law x 0 l a is the absorption coefficient (dimensions are m-1). Types of Absorption • Atomic absorption: gas like materials The atoms can be treated as harmonic oscillators, there is a single resonance peak defined by the reduced mass and spring constant. v v0 Types of Absorption Paschen • Electronic absorption Due to excitation or relaxation of the electrons in the atoms Molecular Materials Organic (carbon containing) solids or liquids consist of molecules which are relatively weakly connected to other molecules. Hence, the absorption spectrum is dominated by absorptions due to the molecules themselves. Molecular Materials Absorption Spectrum of Water -
Quantum Metamaterials in the Microwave and Optical Ranges Alexandre M Zagoskin1,2* , Didier Felbacq3 and Emmanuel Rousseau3
Zagoskin et al. EPJ Quantum Technology (2016)3:2 DOI 10.1140/epjqt/s40507-016-0040-x R E V I E W Open Access Quantum metamaterials in the microwave and optical ranges Alexandre M Zagoskin1,2* , Didier Felbacq3 and Emmanuel Rousseau3 *Correspondence: [email protected] Abstract 1Department of Physics, Loughborough University, Quantum metamaterials generalize the concept of metamaterials (artificial optical Loughborough, LE11 3TU, United media) to the case when their optical properties are determined by the interplay of Kingdom quantum effects in the constituent ‘artificial atoms’ with the electromagnetic field 2Theoretical Physics and Quantum Technologies Department, Moscow modes in the system. The theoretical investigation of these structures demonstrated Institute for Steel and Alloys, that a number of new effects (such as quantum birefringence, strongly nonclassical Moscow, 119049, Russia states of light, etc.) are to be expected, prompting the efforts on their fabrication and Full list of author information is available at the end of the article experimental investigation. Here we provide a summary of the principal features of quantum metamaterials and review the current state of research in this quickly developing field, which bridges quantum optics, quantum condensed matter theory and quantum information processing. 1 Introduction The turn of the century saw two remarkable developments in physics. First, several types of scalable solid state quantum bits were developed, which demonstrated controlled quan- tum coherence in artificial mesoscopic structures [–] and eventually led to the devel- opment of structures, which contain hundreds of qubits and show signatures of global quantum coherence (see [, ] and references therein). In parallel, it was realized that the interaction of superconducting qubits with quantized electromagnetic field modes re- produces, in the microwave range, a plethora of effects known from quantum optics (in particular, cavity QED) with qubits playing the role of atoms (‘circuit QED’, [–]). -
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions. -
9.2 Refraction and Total Internal Reflection
9.2 refraction and total internal reflection When a light wave strikes a transparent material such as glass or water, some of the light is reflected from the surface (as described in Section 9.1). The rest of the light passes through (transmits) the material. Figure 1 shows a ray that has entered a glass block that has two parallel sides. The part of the original ray that travels into the glass is called the refracted ray, and the part of the original ray that is reflected is called the reflected ray. normal incident ray reflected ray i r r ϭ i air glass 2 refracted ray Figure 1 A light ray that strikes a glass surface is both reflected and refracted. Refracted and reflected rays of light account for many things that we encounter in our everyday lives. For example, the water in a pool can look shallower than it really is. A stick can look as if it bends at the point where it enters the water. On a hot day, the road ahead can appear to have a puddle of water, which turns out to be a mirage. These effects are all caused by the refraction and reflection of light. refraction The direction of the refracted ray is different from the direction of the incident refraction the bending of light as it ray, an effect called refraction. As with reflection, you can measure the direction of travels at an angle from one medium the refracted ray using the angle that it makes with the normal. In Figure 1, this to another angle is labelled θ2. -
Negative Refractive Index in Artificial Metamaterials
1 Negative Refractive Index in Artificial Metamaterials A. N. Grigorenko Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK We discuss optical constants in artificial metamaterials showing negative magnetic permeability and electric permittivity and suggest a simple formula for the refractive index of a general optical medium. Using effective field theory, we calculate effective permeability and the refractive index of nanofabricated media composed of pairs of identical gold nano-pillars with magnetic response in the visible spectrum. PACS: 73.20.Mf, 41.20.Jb, 42.70.Qs 2 The refractive index of an optical medium, n, can be found from the relation n2 = εμ , where ε is medium’s electric permittivity and μ is magnetic permeability.1 There are two branches of the square root producing n of different signs, but only one of these branches is actually permitted by causality.2 It was conventionally assumed that this branch coincides with the principal square root n = εμ .1,3 However, in 1968 Veselago4 suggested that there are materials in which the causal refractive index may be given by another branch of the root n =− εμ . These materials, referred to as left- handed (LHM) or negative index materials, possess unique electromagnetic properties and promise novel optical devices, including a perfect lens.4-6 The interest in LHM moved from theory to practice and attracted a great deal of attention after the first experimental realization of LHM by Smith et al.7, which was based on artificial metallic structures -
Course Description Learning Objectives/Outcomes Optical Theory
11/4/2019 Optical Theory Light Invisible Light Visible Light By Diane F. Drake, LDO, ABOM, NCLEM, FNAO 1 4 Course Description Understanding Light This course will introduce the basics of light. Included Clinically in discuss will be two light theories, the principles of How we see refraction (the bending of light) and the principles of Transports visual impressions reflection. Technically Form of radiant energy Essential for life on earth 2 5 Learning objectives/outcomes Understanding Light At the completion of this course, the participant Two theories of light should be able to: Corpuscular theory Electromagnetic wave theory Discuss the differences of the Corpuscular Theory and the Electromagnetic Wave Theory The Quantum Theory of Light Have a better understanding of wavelengths Explain refraction of light Explain reflection of light 3 6 1 11/4/2019 Corpuscular Theory of Light Put forth by Pythagoras and followed by Sir Isaac Newton Light consists of tiny particles of corpuscles, which are emitted by the light source and absorbed by the eye. Time for a Question Explains how light can be used to create electrical energy This theory is used to describe reflection Can explain primary and secondary rainbows 7 10 This illustration is explained by Understanding Light Corpuscular Theory which light theory? Explains shadows Light Object Shadow Light Object Shadow a) Quantum theory b) Particle theory c) Corpuscular theory d) Electromagnetic wave theory 8 11 This illustration is explained by Indistinct Shadow If light -
Single Transverse Mode Optical Resonators
Single transverse mode optical resonators Mark Kuznetsov, Margaret Stern, and Jonathan Coppeta Axsun Technologies, 1 Fortune Drive, Billerica, MA 01821, USA [email protected] Abstract: We use quantum mechanical analogy to introduce a new class of optical resonators with finite deflection profile mirrors that support a finite number of discrete confined transverse modes and a continuum of unconfined transverse modes. We develop theory of such resonators, experimentally demonstrate micro-optical resonators intrinsically confining only a single transverse mode, and demonstrate high finesse step-mirror- profile resonators. Such resonators have profound implications for optical resonator devices, such as lasers and interferometers. ©2005 Optical Society of America OCIS codes: (140.4780) Optical resonators; (140.3410) Laser resonators; (050.2230) Fabry- Perot; (120.2230) Fabry-Perot; (230.5750) Resonators; (250.7260) Vertical cavity surface emitting lasers; (350.3950) Micro-optics; (120.6200) Spectrometers and spectroscopic instrumentation; (220.1250) Aspherics References and links 1. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991). 2. A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986). 3. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high power (>0.5 W cw) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561-573 (1999). 4. A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453-458 (1961). 5. G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Syst. Technol. -
Light Bending and X-Ray Echoes from Behind a Supermassive Black Hole D.R
Light bending and X-ray echoes from behind a supermassive black hole D.R. Wilkins1*, L.C. Gallo2, E. Costantini3,4, W.N. Brandt5,6,7 and R.D. Blandford1 1Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305, USA 2Department of Astronomy & Physics, Saint Mary’s University, Halifax, NS. B3H 3C3, Canada 3SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands 4Anton Pannekoeck Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands 5Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802, USA 6Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA 7Department of Physics, 104 Davey Lab, The Pennsylvania State University, University Park, PA 16802, USA *Corresponding author. E-mail: [email protected] Preprint version. Submitted to Nature 14 August 2020, accepted 24 May 2021 The innermost regions of accretion disks around black holes are strongly irradiated by X-rays that are emitted from a highly variable, compact corona, in the immediate vicinity of the black hole [1, 2, 3]. The X-rays that are seen reflected from the disk [4] and the time delays, as variations in the X-ray emission echo or ‘reverberate’ off the disk [5, 6] provide a view of the environment just outside the event horizon. I Zwicky 1 (I Zw 1), is a nearby narrow line Seyfert 1 galaxy [7, 8]. Previous studies of the reverberation of X-rays from its accretion disk revealed that the corona is composed of two components; an extended, slowly varying component over the surface of the inner accretion disk, and a collimated core, with luminosity fluctuations propagating upwards from its base, which dominates the more rapid variability [9, 10].