Quantum Metamaterials in the Microwave and Optical Ranges Alexandre M Zagoskin1,2* , Didier Felbacq3 and Emmanuel Rousseau3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nori, Franco; Et Al. Source: PHYSICAL REVIEW B Volume: 87 Issue: 23 Article Number: 235410 DOI: 10.1103/Physrevb.87.235410 Published: JUN 10 2013
Title: Quantum metamaterial without local control Author(s): Shvetsov, A.; Satanin, A. M.; Nori, Franco; et al. Source: PHYSICAL REVIEW B Volume: 87 Issue: 23 Article Number: 235410 DOI: 10.1103/PhysRevB.87.235410 Published: JUN 10 2013 Title: Full Numerical Simulations of Dynamical Response in Superconducting Single-Photon Detectors Author(s): Ota, Yukihiro; Kobayashi, Keita; Machida, Masahiko; et al. Source: IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY Volume: 23 Issue: 3 Article Number: 2201105 DOI: 10.1109/TASC.2013.2248871 Part: 1 Published: JUN 2013 Title: Quantum anti-Zeno effect without wave function reduction Author(s): Ai, Qing; Xu, Dazhi; Yi, Su; et al. Source: SCIENTIFIC REPORTS Volume: 3 Article Number: 1752 DOI: 10.1038/srep01752 Published: MAY 8 2013 Title: Hybrid quantum circuit consisting of a superconducting flux qubit coupled to a spin ensemble and a transmission-line resonator Author(s): Xiang, Ze-Liang; Lu, Xin-You; Li, Tie-Fu; et al. Source: PHYSICAL REVIEW B Volume: 87 Issue: 14 Article Number: 144516 DOI: 10.1103/PhysRevB.87.144516 Published: APR 29 2013 Title: Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems Author(s): Xiang, Ze-Liang; Ashhab, Sahel; You, J. Q.; et al. Source: REVIEWS OF MODERN PHYSICS Volume: 85 Issue: 2 Pages: 623-653 DOI: 10.1103/RevModPhys.85.623 Published: APR 9 2013 Title: Nonclassical microwave radiation from the dynamical Casimir effect Author(s): Johansson, J. R.; Johansson, G.; Wilson, C. M.; et al. Source: PHYSICAL REVIEW A Volume: 87 Issue: 4 Article Number: 043804 DOI: 10.1103/PhysRevA.87.043804 Published: APR 4 2013 Title: QuTiP 2: A Python framework for the dynamics of open quantum systems Author(s): Johansson, J. -
Chapter 5 Optical Properties of Materials
Chapter 5 Optical Properties of Materials Part I Introduction Classification of Optical Processes refractive index n() = c / v () Snell’s law absorption ~ resonance luminescence Optical medium ~ spontaneous emission a. Specular elastic and • Reflection b. Total internal Inelastic c. Diffused scattering • Propagation nonlinear-optics Optical medium • Transmission Propagation General Optical Process • Incident light is reflected, absorbed, scattered, and/or transmitted Absorbed: IA Reflected: IR Transmitted: IT Incident: I0 Scattered: IS I 0 IT IA IR IS Conservation of energy Optical Classification of Materials Transparent Translucent Opaque Optical Coefficients If neglecting the scattering process, one has I0 IT I A I R Coefficient of reflection (reflectivity) Coefficient of transmission (transmissivity) Coefficient of absorption (absorbance) Absorption – Beer’s Law dx I 0 I(x) Beer’s law x 0 l a is the absorption coefficient (dimensions are m-1). Types of Absorption • Atomic absorption: gas like materials The atoms can be treated as harmonic oscillators, there is a single resonance peak defined by the reduced mass and spring constant. v v0 Types of Absorption Paschen • Electronic absorption Due to excitation or relaxation of the electrons in the atoms Molecular Materials Organic (carbon containing) solids or liquids consist of molecules which are relatively weakly connected to other molecules. Hence, the absorption spectrum is dominated by absorptions due to the molecules themselves. Molecular Materials Absorption Spectrum of Water -
Redefining Metrics in Near-Term Devices for Quantum Information
Mo01 Redefining metrics in near-term devices for quantum information processing Antonio C´orcoles IBM E-mail: [email protected] The outstanding progress in experimental quantum computing over the last couple of decades has pushed multi-qubit gate error rates in some platforms well below 1%. How- ever, as the systems have grown in size and complexity so has the richness of the inter- actions within them, making the meaning of gate fidelity fade when taken isolated from its environment. In this talk I will discuss this topic and offer alternatives to benchmark the performance of small quantum processors for near-term applications. Mo02 Efficient simulation of quantum error correction under coherent error based on non-unitary free-fermionic formalism Yasunari Suzuki1,2, Keisuke Fujii3,4, and Masato Koashi1,2 1Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan 2Photon Science Center, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan 3 Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan 4JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan In order to realize fault-tolerant quantum computation, tight evaluation of error threshold under practical noise models is essential. While non-Clifford noise is ubiquitous in experiments, the error threshold under non-Clifford noise cannot be efficiently treated with known approaches. We construct an efficient scheme for estimating the error threshold of one-dimensional quantum repetition code under non-Clifford noise[1]. -
Negative Refractive Index in Artificial Metamaterials
1 Negative Refractive Index in Artificial Metamaterials A. N. Grigorenko Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK We discuss optical constants in artificial metamaterials showing negative magnetic permeability and electric permittivity and suggest a simple formula for the refractive index of a general optical medium. Using effective field theory, we calculate effective permeability and the refractive index of nanofabricated media composed of pairs of identical gold nano-pillars with magnetic response in the visible spectrum. PACS: 73.20.Mf, 41.20.Jb, 42.70.Qs 2 The refractive index of an optical medium, n, can be found from the relation n2 = εμ , where ε is medium’s electric permittivity and μ is magnetic permeability.1 There are two branches of the square root producing n of different signs, but only one of these branches is actually permitted by causality.2 It was conventionally assumed that this branch coincides with the principal square root n = εμ .1,3 However, in 1968 Veselago4 suggested that there are materials in which the causal refractive index may be given by another branch of the root n =− εμ . These materials, referred to as left- handed (LHM) or negative index materials, possess unique electromagnetic properties and promise novel optical devices, including a perfect lens.4-6 The interest in LHM moved from theory to practice and attracted a great deal of attention after the first experimental realization of LHM by Smith et al.7, which was based on artificial metallic structures -
Electromagnetic Waves in Josephson Qubit Lines
Phys. Status Solidi B 246, No. 5, 955–960 (2009) / DOI 10.1002/pssb.200881568 p s sb solidi status www.pss-b.com physica Quantum metamaterials: basic solid state physics Electromagnetic waves in Josephson qubit lines A. M. Zagoskin1,2,3*, A. L. Rakhmanov1,4, Sergey Savel’ev1,2, and Franco Nori1,5 1 Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-0198, Japan 2 Department of Physics, Loughborough University, Loughborough LE11 3TU, United Kingdom 3 Physics and Astronomy Department, The University of British Columbia, Vancouver, B.C., V6T 1Z1, Canada 4 Institute for Theoretical and Applied Electrodynamics RAS, 125412 Moscow, Russia 5 Department of Physics, Center for Theoretical Physics, Applied Physics Program, Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109-1040, USA Received 15 October 2008, revised 4 February 2009, accepted 4 February 2009 Published online 3 April 2009 PACS 03.67.–a, 41.20.Jb, 82.25.Cp ∗ Corresponding author: e-mail [email protected] We consider the propagation of a classical electromagnetic oscillating bandgap. Similar behaviour is expected from a wave through a transmission line, formed by identical super- transmission line formed by flux qubits. The key ingredient conducting charge qubits inside a superconducting resonator. of these effects is that the optical properties of the Josephson Since the qubits can be in a coherent superposition of quan- transmission line are controlled by the quantum coherent state tum states, we show that such a system demonstrates interest- of the qubits. ing new effects, such as a “breathing” photonic crystal with an © 2009 WILEY-VCH Verlag GmbH & Co. -
Magnetically Induced Transparency of a Quantum Metamaterial Composed of Twin flux Qubits
ARTICLE DOI: 10.1038/s41467-017-02608-8 OPEN Magnetically induced transparency of a quantum metamaterial composed of twin flux qubits K.V. Shulga 1,2,3,E.Il’ichev4, M.V. Fistul 2,5, I.S. Besedin2, S. Butz1, O.V. Astafiev2,3,6, U. Hübner 4 & A.V. Ustinov1,2 Quantum theory is expected to govern the electromagnetic properties of a quantum metamaterial, an artificially fabricated medium composed of many quantum objects acting as 1234567890():,; artificial atoms. Propagation of electromagnetic waves through such a medium is accompanied by excitations of intrinsic quantum transitions within individual meta-atoms and modes corresponding to the interactions between them. Here we demonstrate an experiment in which an array of double-loop type superconducting flux qubits is embedded into a microwave transmission line. We observe that in a broad frequency range the transmission coefficient through the metamaterial periodically depends on externally applied magnetic field. Field-controlled switching of the ground state of the meta-atoms induces a large suppression of the transmission. Moreover, the excitation of meta-atoms in the array leads to a large resonant enhancement of the transmission. We anticipate possible applications of the observed frequency-tunable transparency in superconducting quantum networks. 1 Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany. 2 Russian Quantum Center, National University of Science and Technology MISIS, Moscow, 119049, Russia. 3 Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Moscow region, Russia. 4 Leibniz Institute of Photonic Technology, PO Box 100239, D-07702 Jena, Germany. 5 Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon, 34051, Republic of Korea. -
Dispersive Response of a Disordered Superconducting Quantum Metamaterial
Photonics 2015, 2, 449-458; doi:10.3390/photonics2020449 OPEN ACCESS photonics ISSN 2304-6732 www.mdpi.com/journal/photonics Article Dispersive Response of a Disordered Superconducting Quantum Metamaterial Dmitriy S. Shapiro 1;2;3;*, Pascal Macha 4;5, Alexey N. Rubtsov 1;3 and Alexey V. Ustinov 1;4;6 1 Russian Quantum Center, Novaya St. 100, Skolkovo, Moscow region 143025, Russia; E-Mail: [email protected] (A.N.R.); [email protected] (A.V.U.) 2 Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academie of Sciences, Mokhovaya 11/7, Moscow 125009, Russia 3 Center of Fundamental and Applied Research, N.L. Dukhov All-Russia Institute of Science and Research, Sushchevskaya 22, Moscow 123055, Russia 4 Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe D-76128, Germany; E-Mail: [email protected] 5 ARC Centre for Engineered Quantum Systems, University of Queensland, Brisbane, Queensland 4072, Australia 6 National University of Science and Technology MISIS, Leninsky prosp. 4, Moscow 119049, Russia * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +7-495-629-34-59 Received: 8 April 2015 / Accepted: 23 April 2015 / Published: 27 April 2015 Abstract: We consider a disordered quantum metamaterial formed by an array of superconducting flux qubits coupled to microwave photons in a cavity. We map the system on the Tavis-Cummings model accounting for the disorder in frequencies of the qubits. The complex transmittance is calculated with the parameters taken from state-of-the-art experiments. We demonstrate that photon phase shift measurements allow to distinguish individual resonances in the metamaterial with up to 100 qubits, in spite of the decoherence spectral width being remarkably larger than the effective coupling constant. -
Quantum Engineering
QUANTUM ENGINEERING Quantum engineering – the design and fabrication of quantum coherent structures – has emerged as a field in physics with important potential applications. This book provides a self-contained presentation of the theoretical methods and experimental results in quantum engineering. The book covers such topics as the quantum theory of electric circuits; theoretical methods of quantum optics in application to solid-state circuits; the quantum theory of noise, decoherence and measurements; Landauer formalism for quantum trans- port; the physics of weak superconductivity; and the physics of a 2-dimensional electron gas in semiconductor heterostructures. The theory is complemented by up-to-date experimental data to help put it into context. Aimed at graduate students in physics, the book will enable readers to start their own research and apply the theoretical methods and results to their current experimental situation. a. m. zagoskin is a Lecturer in Physics at Loughborough University, UK. His research interests include the theory of quantum information processing in solid-state devices, mesoscopic superconductivity, mesoscopic transport, quantum statistical physics and thermodynamics. QUANTUM ENGINEERING Theory and Design of Quantum Coherent Structures A. M. ZAGOSKIN Loughborough University cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Informationonthistitle:www.cambridge.org/9780521113694 © A. M. Zagoskin 2011 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. -
Course Description Learning Objectives/Outcomes Optical Theory
11/4/2019 Optical Theory Light Invisible Light Visible Light By Diane F. Drake, LDO, ABOM, NCLEM, FNAO 1 4 Course Description Understanding Light This course will introduce the basics of light. Included Clinically in discuss will be two light theories, the principles of How we see refraction (the bending of light) and the principles of Transports visual impressions reflection. Technically Form of radiant energy Essential for life on earth 2 5 Learning objectives/outcomes Understanding Light At the completion of this course, the participant Two theories of light should be able to: Corpuscular theory Electromagnetic wave theory Discuss the differences of the Corpuscular Theory and the Electromagnetic Wave Theory The Quantum Theory of Light Have a better understanding of wavelengths Explain refraction of light Explain reflection of light 3 6 1 11/4/2019 Corpuscular Theory of Light Put forth by Pythagoras and followed by Sir Isaac Newton Light consists of tiny particles of corpuscles, which are emitted by the light source and absorbed by the eye. Time for a Question Explains how light can be used to create electrical energy This theory is used to describe reflection Can explain primary and secondary rainbows 7 10 This illustration is explained by Understanding Light Corpuscular Theory which light theory? Explains shadows Light Object Shadow Light Object Shadow a) Quantum theory b) Particle theory c) Corpuscular theory d) Electromagnetic wave theory 8 11 This illustration is explained by Indistinct Shadow If light -
Perfect Quantum Metamaterial
Perfect Quantum Metamaterial Scientists have devised a way to build a "quantum metamaterial"—an engineered material with exotic properties not found in nature—using ultracold atoms trapped in an artificial crystal composed of light. The theoretical work represents a step toward manipulating atoms to transmit information, perform complex simulations or function as powerful sensors. [11] An optical chip developed at INRS by Prof. Roberto Morandotti's team overcomes a number of obstacles in the development of quantum computers, which are expected to revolutionize information processing. An international research team has demonstrated that on-chip quantum frequency combs can be used to simultaneously generate multiphoton entangled quantum bit (qubit) states. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. -
Frontiers of Quantum and Mesoscopic Thermodynamics 14 - 20 July 2019, Prague, Czech Republic
Frontiers of Quantum and Mesoscopic Thermodynamics 14 - 20 July 2019, Prague, Czech Republic Under the auspicies of Ing. Miloš Zeman President of the Czech Republic Jaroslav Kubera President of the Senate of the Parliament of the Czech Republic Milan Štˇech Vice-President of the Senate of the Parliament of the Czech Republic Prof. RNDr. Eva Zažímalová, CSc. President of the Czech Academy of Sciences Dominik Cardinal Duka OP Archbishop of Prague Supported by • Committee on Education, Science, Culture, Human Rights and Petitions of the Senate of the Parliament of the Czech Republic • Institute of Physics, the Czech Academy of Sciences • Department of Physics, Texas A&M University, USA • Institute for Theoretical Physics, University of Amsterdam, The Netherlands • College of Engineering and Science, University of Detroit Mercy, USA • Quantum Optics Lab at the BRIC, Baylor University, USA • Institut de Physique Théorique, CEA/CNRS Saclay, France Topics • Non-equilibrium quantum phenomena • Foundations of quantum physics • Quantum measurement, entanglement and coherence • Dissipation, dephasing, noise and decoherence • Many body physics, quantum field theory • Quantum statistical physics and thermodynamics • Quantum optics • Quantum simulations • Physics of quantum information and computing • Topological states of quantum matter, quantum phase transitions • Macroscopic quantum behavior • Cold atoms and molecules, Bose-Einstein condensates • Mesoscopic, nano-electromechanical and nano-optical systems • Biological systems, molecular motors and -
Renninger's Gedankenexperiment, the Collapse of the Wave Function in a Rigid Quantum Metamaterial and the Reality of the Quant
View metadata, citation and similar papers at core.ac.uk brought to you by CORE www.nature.com/scientificreportsprovided by Loughborough University Institutional Repository OPEN Renninger’s Gedankenexperiment, the collapse of the wave function in a rigid quantum metamaterial and Received: 14 August 2015 Accepted: 6 June 2018 the reality of the quantum state Published: xx xx xxxx vector Sergey E. Savel’ev 1 & Alexandre M. Zagoskin1,2 A popular interpretation of the “collapse” of the wave function is as being the result of a local interaction (“measurement”) of the quantum system with a macroscopic system (“detector”), with the ensuing loss of phase coherence between macroscopically distinct components of its quantum state vector. Nevetheless as early as in 1953 Renninger suggested a Gedankenexperiment, in which the collapse is triggered by non-observation of one of two mutually exclusive outcomes of the measurement, i.e., in the absence of interaction of the quantum system with the detector. This provided a powerful argument in favour of “physical reality” of (nonlocal) quantum state vector. In this paper we consider a possible version of Renninger’s experiment using the light propagation through a birefringent quantum metamaterial. Its realization would provide a clear visualization of a wave function collapse produced by a “non-measurement”, and make the concept of a physically real quantum state vector more acceptable. Te central element of the transition from quantum to classical behaviour (e.g., during the measurement) is the loss of phase coherence between the components of the wave function corresponding to macroscopically dis- tinguishable states of the system1.