Linear to Radial Polarization Conversion in the Thz Domain Using a Passive System
Total Page:16
File Type:pdf, Size:1020Kb
Linear to radial polarization conversion in the THz domain using a passive system T. Grosjean1, F. Baida1, R. Adam2, J-P. Guillet2, L. Billot1, P. Nouvel2, J. Torres2, A. Penarier2, D. Charraut1, L. Chusseau2 1Institut FEMTO-ST, Université de Franche-Comté, UMR 6174 CNRS, Département d’Optique P.M. Duffieux, 16 route de Gray, 25030 Besançon cedex, France. 2Institut d’Électronique du Sud, Université Montpellier 2, UMR 5214 CNRS, Place E. Bataillon, 34095 Montpellier, France. [email protected] Abstract: This paper addresses a passive system capable of converting a linearly polarized THz beam into a radially polarized one. This is obtained by extending to THz frequencies and waveguides an already proven concept based on mode selection in optical fibers. The approach is validated at 0.1 THz owing to the realization of a prototype involving a circular waveguide and two tapers that exhibits a radially polarized beam at its output. By a simple homothetic size reduction, the system can be easily adapted to higher THz frequencies. © 2008 Optical Society of America OCIS codes: (220.4830) Systems design; (230.5440) Polarization-selective devices; (230.7370) Waveguides; (260.5430) Polarization References and links 1. F. C. De Lucia, Sensing with Terahertz radiation, chap. Spectroscopy in the Terahertz spectral region, pp. 39–115 (Springer Series of Optical Science, Springer, Berlin, 2003). 2. A. Markelz, A. Roitberg, and E. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2 THz,” Chem. Phys. Lett. 320, 42–48 (2000). 3. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing Light to a Tighter Spot,” Opt. Commun. 179, 1–7 (2000). 4. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000). 5. L. Helseth, “Roles of Polarization, Phase and Amplitude in Solid Immersion Lens Systems,” Opt. Commun. 191, 161–172 (2001). 6. C. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322– 4327 (2004). 7. T. Grosjean and D. Courjon, “Smallest focal spots,” Opt. Commun. 272, 314–319 (2007). 8. L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251 (2001). 9. A. Bouhelier, J. Renger, M. Beversluis, and L. Novotny, “Plasmon–coupled tip–enhanced near–field optical mi- croscopy,” J. Microsc. 210, 220–224 (2002). 10. E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004). 11. V. Niziev and A. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D: Appl. Phys. 32, 1455–1561 (1999). #97435 - $15.00 USD Received 19 Jun 2008; revised 15 Sep 2008; accepted 25 Sep 2008; published 3 Nov 2008 (C) 2008 OSA 10 November 2008 / Vol. 16, No. 23 / OPTICS EXPRESS 18895 12. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004). 13. J. Fontana and R. Pantell, “A high-energy, laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983). 14. M. Roth, E. Wyss, H. Glur, and H. Weber, “Generation of radially polarized beams in a Nd:YAG laser with self-adaptive overcompensation of the thermal lens,” Opt. Lett. 30, 1665–1667 (2005). 15. I. Moshe, S. Jackel, and A. Meir, “Production of of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28, 807–809 (2003). 16. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233,901 (2003). 17. K. Wang and D. Mittelman, “Metal wires for terahertz waveguiding,” Nature 432, 373–379 (2004). 18. J. Deibel, K. Wang, M. Escarra, and D. Mittelman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14, 279–290 (2006). 19. Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express 13, 511–518 (2005). 20. G. Chang, C. Divin, C.-H. Liu, S. Williamson, A. Galvanauskas, and T. Norris, “Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification,” Opt. Lett. 32, 433–435 (2007). 21. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999). 22. K. Wang, D. Mittleman, N. van der Valk, and P. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85, 2715–2717 (2004). 23. N. van der Valk and P. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near-field of a metal tip,” Appl. Phys. Lett. 81, 1558–1560 (2002). 24. H.-T. Chen, R. Kersting, and G. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003). 25. H.-T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, “Identification of a resonant imaging process in apertureless near-field microscopy,” Phys. Rev. Lett. 93, 267,401 (2004). 26. R. Kersting, H.-T. Chen, N. Karpowicz, and G. C. Cho, “Terahertz microscopy with submicrometre resolution,” J. Opt. A: Pure and Applied Optics 7, S184–S189 (2005). 27. R. Lecaque, S. Grésillon, N. Barbey, R. Perreti, J.-C. Rivoal, and A.-C. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262, 125–128 (2006). 28. Y. Mushiake, K. Matsumura, and N. Nakajima, “Generation of radially polarized optical beam mode by laser oscillation,” Proc. IEEE 60, 1107–1109 (1972). 29. J.-L. Li, K.-I. Ueda, M. Musha, A. Shirakawa, and L.-X. Zhong, “Generation of radially polarized mode in Yb fiber laser by using dual conical prism,” Opt. Lett. 31, 2969–2971 (2006). 30. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005). 31. R. Oron, S. Blit, N. Davidson, A. Friesem, Z. Bomzon, and E. Hasman, “The Formation of Laser Beams with Pure Azimuthal or Radial Polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000). 32. D. Pohl, “Operation of a Ruby Laser in the Purely Transverse Electric Mode TE01,” Appl. Phys. Lett. 20, 266– 267 (1972). 33. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31, 2151–2153 (2006). 34. A. Nesterov, V. Niziev, and V. Yakunin, “Generation of High-Power Radially Polarized Beam,” J. Phys. D: Appl. Phys. 32, 2871–2875 (1999). 35. T. Moser, H. Glur, V. Romano, M. Ahmed, F. Pigeon, O. Parriaux, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005). 36. S. Tidwell, D. Ford, and W. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990). 37. S. Tidwell, G. Kim, and W. Kimura, “Efficient radially polarized laser beam generation with a double interfer- ometer,” Appl. Opt. 32, 5222–5229 (1993). 38. N. Passilly, D. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A 22, 984–991 (2005). 39. E. Churin, J. Hosfeld, and T. Tschudi, “Polarization Configurations with Singular Point Formed by Computer Generated Holograms,” Opt. Commun. 99, 13–17 (1993). 40. M. Stalder and M. Schadt, “Linearly Polarized Light with Axial Symmetry Generated by Liquid-Crystal Polar- ization Converters,” Opt. Lett. 21, 1948–1950 (1996). 41. M. Neil, F. Massoumian, R. Juskaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wave front,” Opt. Lett. 27, 1929–1931 (2002). 42. R. Hongwen, L. Yi-Hsin, and W. Shin-Tson, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89, 051,114 (2006). 43. K. Moh, X.-C. Yuan, D. Tang, W. Cheong, and L. Zhang, “Generation of femtosecond optical vortices using a single refractive optical element,” Appl. Phys. Lett. 88, 091,103 (2006). #97435 - $15.00 USD Received 19 Jun 2008; revised 15 Sep 2008; accepted 25 Sep 2008; published 3 Nov 2008 (C) 2008 OSA 10 November 2008 / Vol. 16, No. 23 / OPTICS EXPRESS 18896 44. T. Grosjean, D. Courjon, and M. Spajer, “An All–Fiber Device for Generating Radially and Other Polarized Light Beams,” Opt. Commun. 203, 1–5 (2002). 45. G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers by Laguerre-Gaussian beams,” Opt. Commun. 237, 89–95 (2004). 46. T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252, 12–21 (2005). 47. M. Ordal, R. Bell, R. Alexander, L. Newquist, and M. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27, 1203–1209 (1988). 48. M. Ordal, R. J. Bell, R. Alexander, L. Long, and M. R. Querry, “Optical properties of Au, Ni, and Pb at submil- limeter wavelengths,” Appl. Opt. 26, 744–752 (1987). 49. A. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission through subwavelength hole arrays,” Opt. Lett. 31, 2637–2639 (2006). 50. D. Marcuse, Light Transmission Optics, chap. 8, pp. 293–294 (New York: Van Nostrand Reinhold, 1972). 51. B. Davidson and R. Ziolkowski, “Body–of–revolution finite–difference time–domain Modeling of space–time Focusing by a three–dimensional Lens,” J. Opt. Soc. Am.