Download Full Article in PDF Format

Total Page:16

File Type:pdf, Size:1020Kb

Download Full Article in PDF Format geodiversitas 2018 ● 40 ● 17 DIRECTEUR DE LA PUBLICATION : Bruno David, Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Didier Merle ASSISTANTS DE RÉDACTION / ASSISTANT EDITORS : Emmanuel Côtez ([email protected]) ; Anne Mabille MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : Christine Argot (MNHN, Paris) Beatrix Azanza (Museo Nacional de Ciencias Naturales, Madrid) Raymond L. Bernor (Howard University, Washington DC) Alain Blieck (USTL, Villeneuve d’Ascq) Henning Blom (Uppsala University) Jean Broutin (UPMC, Paris) Gaël Clément (MNHN, Paris) Ted Daeschler (Academy of Natural Sciences, Philadelphie) Bruno David (MNHN, Paris) Gregory D. Edgecombe (The Natural History Museum, Londres) Ursula Göhlich (Natural History Museum Vienna) Jin Meng (American Museum of Natural History, New York) Brigitte Meyer-Berthaud (CIRAD, Montpellier) Zhu Min (Chinese Academy of Sciences, Pékin) Isabelle Rouget (UPMC, Paris) Sevket Sen (MNHN, Paris) Stanislav Štamberg (Museum of Eastern Bohemia, Hradec Králové) Paul Taylor (The Natural History Museum, Londres) COUVERTURE / COVER : Réalisée à partir de Figure 1 de l’article/created from Figure 1 of this article. Geodiversitas est indexé dans / Geodiversitas is indexed in: – Science Citation Index Expanded (SciSearch®) – ISI Alerting Services® – Current Contents® / Physical, Chemical, and Earth Sciences® – Scopus® Geodiversitas est distribué en version électronique par / Geodiversitas is distributed electronically by: – BioOne® (http://www.bioone.org) Les articles ainsi que les nouveautés nomenclaturales publiés dans Geodiversitas sont référencés par / Articles and nomenclatural novelties published in Geodiversitas are referenced by: – ZooBank® (http://zoobank.org) Geodiversitas est une revue en flux continu publiée par les Publications scientifiques du Muséum, Paris Geodiversitas is a fast track journal published by the Museum Science Press, Paris Les Publications scientifiques du Muséum publient aussi / The Museum Science Press also publish: Adansonia, Zoosystema, Anthropozoologica, European Journal of Taxonomy, Naturae. Diffusion – Publications scientifiques Muséum national d’Histoire naturelle CP 41 – 57 rue Cuvier F-75231 Paris cedex 05 (France) Tél. : 33 (0)1 40 79 48 05 / Fax : 33 (0)1 40 79 38 40 [email protected] / http://sciencepress.mnhn.fr © Publications scientifiques du Muséum national d’Histoire naturelle, Paris, 2018 ISSN (imprimé / print) : 1280-9659/ ISSN (électronique / electronic) : 1638-9395 Presence of the foraminifer Chapmanina gassinensis Silvestri, 1931, in the Eocene (Lutetian) of the Grignon “falunière” (Yvelines, Paris Basin). The genus Chapmanina, its species and world distribution Armelle POIGNANT 5 rue Léon Bloy, F-92260 Fontenay-aux-Roses (France) [email protected] Submitted on 6 July 2017 | accepted on 3 April 2018 | published on 30 August 2018 urn:lsid:zoobank.org:pub:1336C880-D09D-4C20-8BB1-52B58B378192 Poignant A. 2018. — Presence of the foraminifer Chapmanina gassinensis Silvestri, 1931, in the Eocene (Lutetian) of the Grignon “falunière” (Yvelines, Paris Basin). The genus Chapmanina, its species and world distribution. Geodiversitas 40 (17): 461-470. https://doi.org/10.5252/geodiversitas2018v40a17. http://geodiversitas.com/40/17 ABSTRACT KEY WORDS Foraminifer, Chapmanina gassinensis (foraminifer) has been observed as it seems for the first time in the Lutetian Eocene, of the “falunière” of Grignon (Yvelines, southwestern Paris Basin). It is widespread in the Eocene of Oligocene, western Europe, also present in the Tethysian domain l.s. and even across the Atlantic. In the Oli- Paris Basin, palaeobiogeographical gocene, it becomes very rare and has been only found in some places of Mediterranean Europe and distribution. disappears in the Miocene. The Paris Basin seems to be its northernmost occurrence. RÉSUMÉ Présence du foraminifère Chapmanina gassinensis Silvestri, 1931, dans l’Éocène (Lutétien) de la falu- nière de Grignon (Yvelines, Bassin Parisien). Le genre Chapmanina, ses espèces et sa répartition mondiale. MOTS CLÉS Foraminifère, Chapmanina gassinensis (foraminifère) a été observée pour la première fois, semble-t-il, dans le Luté- Éocène, tien de la falunière de Grignon (Yvelines, sud-ouest du Bassin de Paris). Elle est largement répandue Oligocène, dans l’Éocène de l’Europe occidentale, présente aussi dans le domaine téthysien l.s. et jusque dans le Bassin de Paris, distribution continent américain. À l’Oligocène, elle ne s’observe que dans quelques points de l’Europe méditer- paléobiogéographique. ranéenne et disparaît ensuite. Le Bassin de Paris apparaît comme sa localisation la plus septentrionale. GEODIVERSITAS • 2018 • 40 (17) © Publications scientifiques du Muséum national d’Histoire naturelle, Paris. www.geodiversitas.com 461 Poignant A. FIG. 1. — Chapmanina gassinensis Silvestri, 1931 (Lutetian, Grignon falunière, Yvelines), in lateral (A) and apical (B) views (MNHN.F.F62410). Scale bars: 200 µm. INTRODUCTION associated can be up to 4 mm in diameter, Chapmanina gas- sinensis can’t exceed 1 mm. According Smout (1954) opin- Several samples of the Lutetian marl-pit of Grignon (western ion: “Chapmanina has a very small test compared to most Paris Basin) have been examined for a research of miliolids. complex species”. In one of these samples (probably from unit 4, see Fig. 2), I found two specimens of Chapmanina gassinensis Silvestri, 1931 (MNHN.F.F62410; Figs 1, 2). This foraminifer is easy THE GENUS CHAPMANINA AND ITS SPECIES to identify and can’t be confused with any other one. It is well known in the Eocene of France (Aquitaine Basin) and also According Loeblich & Tappan systematics (1987), the genus observed in the Eocene of various Tethysian European countries Chapmanina belongs to the family Chapmaninidae Thal- and of the Tethysian domain l.s. It is only pointed out in the mann, 1938, superfamily Rotaliacea Ehrenberg, 1839 and Oligocene in France and a few European countries. Until now, its type species is Chapmanina gassinensis, because pointed Ch. gassinensis had never been mentionned in the Paris Basin. out at Gassino, in Torino area (Silvestri 1905a). The genus Sometimes called Chapmanina sp. or cf. gassinensis, it is very Chapmanina first appears with the nameChapmania described probably Chapmanina gassinensis because of the typical associ- by Silvestri & Prever (in Silvestri 1904). In 1931, Silvestri ated microfauna. A new species of Chapmanina Silvestri, 1931 changed this name in Chapmanina, two species having been has been described in the Paleocene of Australia (Quilty & described with the name Chapmania: Packham 2006), it will be treated further. Chapmania galea Silvestri, 1923, type species of the genus Before studying the genus and its species, it is useful to give Preverina Frizzell, 1949, considered by Loeblich & Tappan some precisions: one of the aims of this work is to show the (1987) as a synonymous of Chapmanina, species of the italian wide Tethyan distribution of Chapmanina gassinensis, but it Tortonian (surroundings of Reggio d’Emilia), represented only is probably not an extensive recense of all the localities where by an axial section, but the holotype in unknown (Cita & this species has been found; in the same way, all the references Scipolo 1961), as well as the topotypes. concerning the localities of its presence in a particular country Chapmania sertata Silvestri, 1929, from the Lutetian of have not been reported, when they are too many, such as is Ancona, Italia, illustrated by a bad section (Frizzell [1949] the case of the Aquitaine in France or of Turkey. did not think it is a Chapmanina). Moreover, it is important to remark that Chapmanina gas- Quilty & Packham (2006) described Chapmanina conjuncta, sinensis has not always been considered as larger foraminifera, in the Australian Paleocene (see further). and so, it has probably been omitted several times in the In 1918, Halkyard described Patellina conica which is in literature dealing with large benthic assemblages containing fact Chapmanina gassinensis. for example: Nummulites, Alveolina, Discocyclina, Pellatispira, Loeblich & Tappan (1987: pl. 775, figs 1-9), reported Fabiania cassis (Oppenheim, 1896) with which it is frequently the genus Chapmanina from the Lutetian until the mid- 462 GEODIVERSITAS • 2018 • 40 (17) The foraminifer Chapmanina gassinensis in the Grignon “falunière” (Yvelines, Paris Basin). The species of the genus Chapmanina Units Sub-units Sequential units a Batillaria and milliolids limestone (0.1 m) 1 A10 b Lucinids and miliolids limestone, erosive base (0.2 m) a Seraphs limestone (0.5 m) 2 b Coral and mollusc fine limestone (0.1 m) c Seraphs limestone (0.5 m) A9 ont n fr Laminated and partialy lithified limestone a with Orbitolites, differential compaction (0.6 m) 3 wester Laminated and partialy lithified limestone with rare b glauconite grains, differential compaction (0.6 m) Milliolids and Orbitolites calcareous sand with a rare glauconite grains (1 m) Milliolids and molluscs (Chama) calcareous sand with b 4 A8 rare glauconite grains (0.3 m) ont n fr Milliolids and Orbitolites calcareous sand with c rare glauconite grains. Highly bioclastic, easter channeling filling at the base (1 to 1.5 m) Glauconitic calcareous sand, a highly bioturbated (0.6 to 0.9 m) 5 A7 Glauconitic with bioclasts and grains of quartz MIDDLE LUTETIAN b filling micro-channels, Campanile giganteum, lithified agregates (0.8 m) a Glauconitic calcareous sand, large quartz grains, oblique
Recommended publications
  • Late Cretaceous–Eocene Geological Evolution of the Pontides Based on New Stratigraphic and Palaeontologic Data Between the Black Sea Coast and Bursa (NW Turkey)
    Turkish Journal of Earth Sciences (Turkish J. Earth Sci.), Vol.Z. ÖZCAN 21, 2012, ET pp. AL. 933–960. Copyright ©TÜBİTAK doi:10.3906/yer-1102-8 First published online 25 April 2011 Late Cretaceous–Eocene Geological Evolution of the Pontides Based on New Stratigraphic and Palaeontologic Data Between the Black Sea Coast and Bursa (NW Turkey) ZAHİDE ÖZCAN1, ARAL I. OKAY1,2, ERCAN ÖZCAN2, AYNUR HAKYEMEZ3 & SEVİNÇ ÖZKAN-ALTINER4 1 İstanbul Technical University (İTÜ), Eurasia Institute of Earth Sciences, Maslak, TR−34469 İstanbul, Turkey (E-mail: [email protected]) 2 İstanbul Technical University (İTÜ), Faculty of Mines, Department of Geology, Maslak, TR−34469 İstanbul, Turkey 3 General Directorate of Mineral Research and Exploration (MTA Genel Müdürlüğü), Geological Research Department, TR−06520 Ankara, Turkey 4 Middle East Technical University (METU), Department of Geological Engineering, Ünversiteler Mahallesi, Dumlupınar Bulvarı No. 1, TR−06800 Ankara, Turkey Received 17 February 2011; revised typescript receipt 04 April 2011; accepted 25 April 2011 Abstract: Th e Late Cretaceous–Eocene geological evolution of northwest Turkey between the Black Sea and Bursa was studied through detailed biostratigraphic characterization of eleven stratigraphic sections. Th e Upper Cretaceous sequence in the region starts with a major marine transgression and lies unconformably on a basement of Palaeozoic and Triassic rocks in the north (İstanbul-type basement) and on metamorphic rocks and Jurassic sedimentary rocks in the south (Sakarya-type basement). Four megasequences have been diff erentiated in the Late Cretaceous–Eocene interval. Th e fi rst one, of Turonian to Late Campanian age, is represented by volcanic and volcanoclastic rocks in the north along the Black Sea coast, and by siliciclastic turbidites and intercalated calcarenites in the south, corresponding to magmatic arc basin and fore-arc basin, respectively.
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • Pickford 2018 Namahyrax Corvus from Black Crow, Sperrgebiet
    Additional material of Namahyrax corvus from the Ypresian/Lutetian of Black Crow, Namibia Martin PICKFORD Sorbonne Universités (CR2P, MNHN, CNRS, UPMC - Paris VI) 8, rue Buffon, 75005, Paris, France ([email protected]) Abstract : Three teeth of a small hyracoid were found during the 2017 campaign of acid digestion of blocks of limestone from Black Crow, Namibia. The specimens, a left D1/, half an upper premolar and a right p/1 can be attributed with confidence to Namahyrax corvus , up to now the only hyracoid known from the site. The D1/ is more complete than the broken P1/ in the holotype and yields additional information about the crown morphology of the anterior cheek teeth. The p/1 was not previously known for the species. The three teeth underscore the primitive brachyodont morphology of the teeth. The teeth are somewhat more primitive than the corresponding teeth in Dimaitherium patnaiki from the Fayum, Egypt. Direct comparisons cannot be made with Seggeurius amourensis and Bunohyrax matsumotoi because these tooth positions are unknown in these species, but the shape of the p/1 of Namahyrax corresponds with what would be expected from the p/2 morphology in them. Comparisons with Microhyrax lavocati are difficult to make because not even the p/2 is known in that species, but the simplicity of its p/3 (lack of crescentic cusps) suggests a ground plan for the p/1 that could correspond to that observed in the Black Crow specimen. The new specimens of Namahyrax resolve the uncertainty concerning its familial status, indicating that it belongs to the family Geniohyidae.
    [Show full text]
  • Paleogeographic Maps Earth History
    History of the Earth Age AGE Eon Era Period Period Epoch Stage Paleogeographic Maps Earth History (Ma) Era (Ma) Holocene Neogene Quaternary* Pleistocene Calabrian/Gelasian Piacenzian 2.6 Cenozoic Pliocene Zanclean Paleogene Messinian 5.3 L Tortonian 100 Cretaceous Serravallian Miocene M Langhian E Burdigalian Jurassic Neogene Aquitanian 200 23 L Chattian Triassic Oligocene E Rupelian Permian 34 Early Neogene 300 L Priabonian Bartonian Carboniferous Cenozoic M Eocene Lutetian 400 Phanerozoic Devonian E Ypresian Silurian Paleogene L Thanetian 56 PaleozoicOrdovician Mesozoic Paleocene M Selandian 500 E Danian Cambrian 66 Maastrichtian Ediacaran 600 Campanian Late Santonian 700 Coniacian Turonian Cenomanian Late Cretaceous 100 800 Cryogenian Albian 900 Neoproterozoic Tonian Cretaceous Aptian Early 1000 Barremian Hauterivian Valanginian 1100 Stenian Berriasian 146 Tithonian Early Cretaceous 1200 Late Kimmeridgian Oxfordian 161 Callovian Mesozoic 1300 Ectasian Bathonian Middle Bajocian Aalenian 176 1400 Toarcian Jurassic Mesoproterozoic Early Pliensbachian 1500 Sinemurian Hettangian Calymmian 200 Rhaetian 1600 Proterozoic Norian Late 1700 Statherian Carnian 228 1800 Ladinian Late Triassic Triassic Middle Anisian 1900 245 Olenekian Orosirian Early Induan Changhsingian 251 2000 Lopingian Wuchiapingian 260 Capitanian Guadalupian Wordian/Roadian 2100 271 Kungurian Paleoproterozoic Rhyacian Artinskian 2200 Permian Cisuralian Sakmarian Middle Permian 2300 Asselian 299 Late Gzhelian Kasimovian 2400 Siderian Middle Moscovian Penn- sylvanian Early Bashkirian
    [Show full text]
  • 2009 Geologic Time Scale Cenozoic Mesozoic Paleozoic Precambrian Magnetic Magnetic Bdy
    2009 GEOLOGIC TIME SCALE CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST. HIST. ANOM. ANOM. (Ma) CHRON. CHRO HOLOCENE 65.5 1 C1 QUATER- 0.01 30 C30 542 CALABRIAN MAASTRICHTIAN NARY PLEISTOCENE 1.8 31 C31 251 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 70.6 254 2A PIACENZIAN 32 C32 L 630 C2A 3.6 WUCHIAPINGIAN PLIOCENE 260 260 3 ZANCLEAN 33 CAMPANIAN CAPITANIAN 5 C3 5.3 266 750 NEOPRO- CRYOGENIAN 80 C33 M WORDIAN MESSINIAN LATE 268 TEROZOIC 3A C3A 83.5 ROADIAN 7.2 SANTONIAN 271 85.8 KUNGURIAN 850 4 276 C4 CONIACIAN 280 4A 89.3 ARTINSKIAN TONIAN C4A L TORTONIAN 90 284 TURONIAN PERMIAN 10 5 93.5 E 1000 1000 C5 SAKMARIAN 11.6 CENOMANIAN 297 99.6 ASSELIAN STENIAN SERRAVALLIAN 34 C34 299.0 5A 100 300 GZELIAN C5A 13.8 M KASIMOVIAN 304 1200 PENNSYL- 306 1250 15 5B LANGHIAN ALBIAN MOSCOVIAN MESOPRO- C5B VANIAN 312 ECTASIAN 5C 16.0 110 BASHKIRIAN TEROZOIC C5C 112 5D C5D MIOCENE 320 318 1400 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 326 6 C6 APTIAN 20 120 1500 CALYMMIAN E 20.4 6A C6A EARLY MISSIS- M0r 125 VISEAN 1600 6B C6B AQUITANIAN M1 340 SIPPIAN M3 BARREMIAN C6C 23.0 345 6C CRETACEOUS 130 M5 130 STATHERIAN CARBONIFEROUS TOURNAISIAN 7 C7 HAUTERIVIAN 1750 25 7A M10 C7A 136 359 8 C8 L CHATTIAN M12 VALANGINIAN 360 L 1800 140 M14 140 9 C9 M16 FAMENNIAN BERRIASIAN M18 PROTEROZOIC OROSIRIAN 10 C10 28.4 145.5 M20 2000 30 11 C11 TITHONIAN 374 PALEOPRO- 150 M22 2050 12 E RUPELIAN
    [Show full text]
  • Alphabetical List
    LIST E - GEOLOGIC AGE (STRATIGRAPHIC) TERMS - ALPHABETICAL LIST Age Unit Broader Term Age Unit Broader Term Aalenian Middle Jurassic Brunhes Chron upper Quaternary Acadian Cambrian Bull Lake Glaciation upper Quaternary Acheulian Paleolithic Bunter Lower Triassic Adelaidean Proterozoic Burdigalian lower Miocene Aeronian Llandovery Calabrian lower Pleistocene Aftonian lower Pleistocene Callovian Middle Jurassic Akchagylian upper Pliocene Calymmian Mesoproterozoic Albian Lower Cretaceous Cambrian Paleozoic Aldanian Lower Cambrian Campanian Upper Cretaceous Alexandrian Lower Silurian Capitanian Guadalupian Algonkian Proterozoic Caradocian Upper Ordovician Allerod upper Weichselian Carboniferous Paleozoic Altonian lower Miocene Carixian Lower Jurassic Ancylus Lake lower Holocene Carnian Upper Triassic Anglian Quaternary Carpentarian Paleoproterozoic Anisian Middle Triassic Castlecliffian Pleistocene Aphebian Paleoproterozoic Cayugan Upper Silurian Aptian Lower Cretaceous Cenomanian Upper Cretaceous Aquitanian lower Miocene *Cenozoic Aragonian Miocene Central Polish Glaciation Pleistocene Archean Precambrian Chadronian upper Eocene Arenigian Lower Ordovician Chalcolithic Cenozoic Argovian Upper Jurassic Champlainian Middle Ordovician Arikareean Tertiary Changhsingian Lopingian Ariyalur Stage Upper Cretaceous Chattian upper Oligocene Artinskian Cisuralian Chazyan Middle Ordovician Asbian Lower Carboniferous Chesterian Upper Mississippian Ashgillian Upper Ordovician Cimmerian Pliocene Asselian Cisuralian Cincinnatian Upper Ordovician Astian upper
    [Show full text]
  • Thresholds of Temperature Change for Mass Extinctions ✉ Haijun Song 1 , David B
    ARTICLE https://doi.org/10.1038/s41467-021-25019-2 OPEN Thresholds of temperature change for mass extinctions ✉ Haijun Song 1 , David B. Kemp1, Li Tian 1, Daoliang Chu 1, Huyue Song1 & Xu Dai1 Climate change is a critical factor affecting biodiversity. However, the quantitative relation- ship between temperature change and extinction is unclear. Here, we analyze magnitudes and rates of temperature change and extinction rates of marine fossils through the past 450 1234567890():,; million years (Myr). The results show that both the rate and magnitude of temperature change are significantly positively correlated with the extinction rate of marine animals. Major mass extinctions in the Phanerozoic can be linked to thresholds in climate change (warming or cooling) that equate to magnitudes >5.2 °C and rates >10 °C/Myr. The sig- nificant relationship between temperature change and extinction still exists when we exclude the five largest mass extinctions of the Phanerozoic. Our findings predict that a temperature increase of 5.2 °C above the pre-industrial level at present rates of increase would likely result in mass extinction comparable to that of the major Phanerozoic events, even without other, non-climatic anthropogenic impacts. 1 State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan, China. ✉ email: [email protected] NATURE COMMUNICATIONS | (2021) 12:4694 | https://doi.org/10.1038/s41467-021-25019-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25019-2 ive large-magnitude mass extinctions (the “Big Five”) have rate (n = 45, ρ = 0.59, P < 0.001 for ΔT, n = 45, ρ = 0.54, P < Foccurred during the past 450 million years (Myr)1, where 0.001 for R) (Supplementary Table 1), thus providing parallel the estimated extinction of marine animals for each event supporting evidence that the magnitude and rate of climate was over 75% at the species level2.
    [Show full text]
  • International Chronostratigraphic Chart
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2018/07 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age GSSP GSSP GSSP GSSP EonothemErathem / Eon System / Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) / Eon Erathem / Era System / Period GSSA age (Ma) present ~ 145.0 358.9 ± 0.4 541.0 ±1.0 U/L Meghalayan 0.0042 Holocene M Northgrippian 0.0082 Tithonian Ediacaran L/E Greenlandian 152.1 ±0.9 ~ 635 Upper 0.0117 Famennian Neo- 0.126 Upper Kimmeridgian Cryogenian Middle 157.3 ±1.0 Upper proterozoic ~ 720 Pleistocene 0.781 372.2 ±1.6 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian Callovian 1000 Quaternary Gelasian 166.1 ±1.2 2.58 Bathonian 382.7 ±1.6 Stenian Middle 168.3 ±1.3 Piacenzian Bajocian 170.3 ±1.4 Givetian 1200 Pliocene 3.600 Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Devonian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.63 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Proterozoic Neogene Sinemurian Langhian 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- 2050 Burdigalian Hettangian 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Mesozoic Rhaetian Pridoli Rhyacian Aquitanian 423.0 ±2.3 23.03 ~ 208.5 Ludfordian 2300 Cenozoic Chattian Ludlow 425.6 ±0.9 Siderian 27.82 Gorstian
    [Show full text]
  • 1999 Geologic Time Scale Cenozoic Mesozoic Paleozoic Precambrian Magnetic Magnetic Polarity Polarity Age Bdy
    1999 GEOLOGIC TIME SCALE CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC POLARITY POLARITY AGE BDY. AGE . PICKS AGE . PICKS UNCERT. AGE PICKS . N N PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA . PERIOD EPOCH AGE . AGES M M T T O O (m.y.) O (Ma) O (Ma) (Ma) S S R R (Ma) I (Ma) I (Ma) (Ma) N N H H H H (Ma) A A C C HOLOCENE 65 .2 1 C1 QUATER- 0.01 C30 NARY PLEISTOCENE CALABRIAN 30 248 543 1.8 31 MAASTRICHTIAN TATARIAN 2 C2 70 C31 L 252 L 71.3 1 N UFIMIAN-KAZANIAN 2A PIACENZIAN 256 C2A PLIOCENE 32 C32 KUNGURIAN 3.6 A 260 260 I 3 E ZANCLEAN 33 CAMPANIAN LATE 5 C3 5.3 ARTINSKIAN 750 C33 M 3A MESSINIAN 80 LATE C3A 269 7.1 83.5 1 R E S SANTONIAN SAKMARIAN 4 85.8 1 E C4 900 CONIACIAN 280 282 4A 89.0 P L TORTONIAN U 1 C4A 90 ASSELIAN 10 5 TURONIAN 1000 C5 E 93.5 4 290 E 11.2 N O . A N S GZELIAN CENOMANIAN I N S 296 C N U E 99.0 5A 1 I SERRAVALLIAN 34 C34 A KASIMOVIAN E 300 MIDDLE C5A 100 E V 303 L O C G M Y L 14.8 MOSCOVIAN . O 5B S 1250 W 15 C R O 311 C5B ALBIAN N O I LANGHIAN N 5C Z E C5C 16.4 E BASHKIRIAN 110 A E M P . 5D EARLY 112 2 320 F I C5D N 323 O T 5E N C5E BURDIGALIAN N SERPUKHOVIAN N A 327 APTIAN I 6 1500 R P 20 C6 E E O 20.5 120 M0 P 6A 121 3 I VISEAN S B M1 E E N 1600 C6A S 340 I AQUITANIAN M3 R BARREMIAN 342 R A 6B S T C6B M5 I 127 3 S I 6C C6C 23.8 A TOURNAISIAN M M 130 C HAUTERIVIAN M10 1750 O C 7 E 132 4 25 C7 O 7A M12 354 C7A N C Y 8 CHATTIAN M14 VALANGINIAN R C8 L 360 L FAMENNIAN E M16 O 137 4 9 C9 R 364 P 140 E C FRASNIAN EARLY 10 BERRIASIAN A C10 28.5 N 370 M18 N I O 144 5 2000 30 11 C11 M20 A GIVETIAN I T 12 G I TITHONIAN
    [Show full text]
  • The Upper Bartonian to Chattian Inntal Group (Nov.Nom.) in the Northern Calcareous Alps (Austria, Germany)
    Geophysical Research Abstracts Vol. 17, EGU2015-4972, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License. The upper Bartonian to Chattian Inntal Group (nov.nom.) in the Northern Calcareous Alps (Austria, Germany) Hans Egger (1), Antonino Briguglio (), and Fred Rögl () (1) Austrian Geological Survey, Paleontology, Vienna, Austria ([email protected]), (2) Universiti Brunei Darussalam Jalan Tungku Link, Brunei Darussalam, (3) Naturhistorisches Museum Wien, Burgring 7, 1010 Vienna Fugger (1907) was the first to describe Eocene limestone containing corals and oysters at the abandoned Kirchholz quarry near Bad Reichenhall (SE Germany). With a transgressional conglomerate the limestone succession rests on Upper Cretaceous Nierental Formation. Utilizing planktonic foraminifera from a single marlstone layer, Hillebrandt (1962) assigned the base of the transgressional sequence to the lower to middle Lutetian. For our study, we processed one sample of the marlstone for planktonic foraminifera and calcareous nannoplankton. Both assem- blages consist essentially of reworked Cretaceous and Paleogene specimens. Acarinina cuneicamerata and Igorina wartsteinensis indicate the upper Ypresian planktonic foraminifera Zone E7a in the classification scheme of Wade et al. (2010). Beside substantial admixtures of Ypresian material (e.g. common Discoaster lodoensis), calcareous nannoplankton assemblages contain species (e.g. Discoaster saipanensis, D. tanii, Nannotetrina cristata), which have their first occurrences in the Lutetian Zone NP15 in the zonation of Martini (1971). However, thin sections of the limestone display larger benthic foraminifera species not only from the Ypresian and Lutetian but also from the upper Bartonian to lower Priabonian Shallow Benthic Zones SBZ18 to SBZ 19 (e.g. Discocyclina pratti pratti, Asterocyclina stellata stellata, Orbitoclypeus varians varians).
    [Show full text]
  • Biostratigraphic Analysis of Paleogene Lowstand Wedge Conglomerates of a Tectonically Active Platform Margin (Zakynthos Island, Greece)
    Di Carlo:ARGENTI 21/01/2011 11:21 Pagina 31 Journal of Mediterranean Earth Sciences 2 (2010), 31-92 doi:10.3304/JMES.2010.004 Journal of Mediterranean Earth Sciences JME S Biostratigraphic analysis of Paleogene lowstand wedge conglomerates of a tectonically active platform margin (Zakynthos Island, Greece) Massimo di Carlo1*, Giovanni Accordi2, Federico Carbone2, Johannes Pignatti1 1Dipartimento di Scienze della Terra, SAPIENZA Università di Roma, P.le A. Moro, 5 - 00185 Roma, Italy 2Istituto di Geologia Ambientale e Geoingegneria - CNR, Dipartimento di Scienze della Terra, SAPIENZA Università di Roma, P.le A. Moro, 5 - 00185 Roma, Italy ABSTRACT - Paleogene heterometric and polymictic conglomerate deposits were investigated in Zakynthos Island (Ionian Islands, Greece) from different outcrops, along the eastern flank of the anticline crossing the island in a NNW-SSE direction. This structure is formed by the Meso-Cenozoic sedimentary succession of the Pre-Apulian zone. The Paleogene facies sequence of Zakynthos consists of toe of slope accumulations of mainly resedimented material produced by gravity flows during repeated falls of relative sea-level below the shelf edge, with subsequent erosion of the exposed Cretaceous- Paleogene sequences. The lithoclasts are scattered within different sedimentary wedges of coarse detrital material; their study provided information on the stratigraphy and depositional environments of the eroded Cretaceous-Paleogene succession. The fossil assemblage content of the conglomerate clasts is interpreted in the frame of a carbonate ramp model. The lack, elsewhere in the island, of in situ sequences corresponding in age and facies to the sampled lithoclasts and the occurrence of different sedimentary facies sequences suggest a differential tectono-sedimentary evolution of the depositional substratum during the Late Cretaceous and the Paleogene.
    [Show full text]
  • Paleocene-Eocene Volcanic Segmentation of the Norwegian-Greenland Seaway Reorganized High-Latitude Ocean Circulation ✉ Jussi Hovikoski 1 , Michael B
    ARTICLE https://doi.org/10.1038/s43247-021-00249-w OPEN Paleocene-Eocene volcanic segmentation of the Norwegian-Greenland seaway reorganized high-latitude ocean circulation ✉ Jussi Hovikoski 1 , Michael B. W. Fyhn1, Henrik Nøhr-Hansen1, John R. Hopper1, Steven Andrews 2, Milo Barham 3, Lars H. Nielsen1, Morten Bjerager1, Jørgen Bojesen-Koefoed 1, Stefanie Lode1, Emma Sheldon1, Alfred Uchman 4, Pia R. Skorstengaard5 & Peter Alsen 1 The paleoenvironmental and paleogeographic development of the Norwegian–Greenland seaway remains poorly understood, despite its importance for the oceanographic and climatic 1234567890():,; conditions of the Paleocene–Eocene greenhouse world. Here we present analyses of the sedimentological and paleontological characteristics of Paleocene–Eocene deposits (between 63 and 47 million years old) in northeast Greenland, and investigate key unconformities and volcanic facies observed through seismic reflection imaging in offshore basins. We identify Paleocene–Eocene uplift that culminated in widespread regression, volcanism, and subaerial exposure during the Ypresian. We reconstruct the paleogeography of the northeast Atlantic–Arctic region and propose that this uplift led to fragmentation of the Norwegian–Greenland seaway during this period. We suggest that the seaway became severely restricted between about 56 and 53 million years ago, effectively isolating the Arctic from the Atlantic ocean during the Paleocene–Eocene thermal maximum and the early Eocene. 1 Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark. 2 University of the Highlands and Islands, Inverness, UK. 3 Timescales of Mineral Systems Group, School of Earth and Planetary Sciences, Curtin University, Perth, WA 6845, Australia. 4 Faculty of Geography and Geology, Institute of Geological Sciences, Jagiellonian University, Krakow 3a 30-387, Poland.
    [Show full text]