Ann. Geophys., 36, 1285–1302, 2018 https://doi.org/10.5194/angeo-36-1285-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Beam tracking strategies for fast acquisition of solar wind velocity distribution functions with high energy and angular resolutions Johan De Keyser1, Benoit Lavraud2, Lubomir Prechˇ 3, Eddy Neefs1, Sophie Berkenbosch1, Bram Beeckman1, Andrei Fedorov2, Maria Federica Marcucci4, Rossana De Marco4, and Daniele Brienza4 1Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Brussels, Belgium 2Institut de Recherche en Astrophysique et Planétologie (IRAP), Univ. Toulouse, CNRS, UPS, CNES, Toulouse, France 3Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic 4Istituto di Astrofisica e Planetologia Spaziali (INAF/IAPS), Rome, Italy Correspondence: Johan De Keyser (
[email protected]) Received: 6 June 2018 – Discussion started: 20 June 2018 Revised: 9 August 2018 – Accepted: 17 September 2018 – Published: 2 October 2018 Abstract. Space plasma spectrometers have often relied on 1 Introduction spacecraft spin to collect three-dimensional particle velocity distributions, which simplifies the instrument design and re- The plasma in the outer layers of the solar atmosphere is so duces its resource budgets but limits the velocity distribution hot that even the Sun’s gravity cannot restrain it. The Sun acquisition rate. This limitation can in part be overcome by therefore produces a persistent stream of plasma that flows the use