Keichousaurus Hui. The

Total Page:16

File Type:pdf, Size:1020Kb

Keichousaurus Hui. The National Library Bibliothèque nationale .+. of Canada du Canada Acquisitions and Direction des acquisitions et Bibliographie Services Branch des services bibliographiques 395 Wellinglon Street 395. rue Wellington Ottawa, Ontario Ottawa (Onlario) K1A ON4 K1A ON4 NOTICE AVIS The quality of this microform is la qualité de cette microforme heavily dependent upon the dépend grandement de la qualité quality of the original thesis Je la thèse soumise au submitted for microfilming. microfilmage. Nous avons tout Every effort has been made to fait pour assurer une qualité ensure the highest quality of supérieure de reproduction. reproduction possible. If pages are missing, contact the S'il manque des pages, veuillez university which granted the communiquer avec l'université degree. qui a conféré le grade. Some pages may have indistinct La qualité d'impression de print especially if the original certaines pages peut laisser à pages were typed with a poor désirer, surtout si les pages typewriter ribbon or if the originales ont été university sent us an inferior dactylographiées à l'aide d'un photocopy. ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure. Reproduction in full or in part of La reproduction, même partielle, this microform is governed by de cette microforme est soumise the Canadian Copyright Act, à la Loi canadienne sur le droit R.S.C. 1970, c. C-30, and d'auteur, SRC 1970, c. C-30, et subsequent amendments. ses amendements subséquents. CaTI, ad···a • Functional Morphology and Phylogeny of Keichousaurus hui (Sauropterygia, Reptilia) Kebang Lin Department of Biology McGill University, Montreal • July, 1994 A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Doctor of Philosophy. <!l Kebang Lin, 1994 • National Ubrary Bibliothèque nationale 1+1 of Canada du Canada Acquisitions and Direction des acquisitions et Bibliographie Services Branch des services bibliographiques 395 Wellingloo Sireet 395, rue Wellingtoo OUawa, Ontario Ottawa (Onlario) K1A ON4 K1A ON4 YOCJ( "'D Votre tél6~ Our hie Noue ffJl6,-,nctt THE AUTHOR RAS GRANTED AN L'AUTEUR A ACCORDE UNE LICENCE IRREVOCABLE NON-EXCLUSIVE IRREVOCABLE ET NON EXCLUSIVE LICENCE ALLOWING THE NATIONAL PERMETTANT A LA BffiLIOTHEQUE LffiRARY OF CANADA 1'0 NATIONALE DU CANADA DE REPRODUCE, LOAN, DISTRmUTE OR REPRODUIRE, PRETER, DISTRIBUER SELL COPIES OF mS/HER THESIS BY OU VENDRE DES COPIES DE SA ANY MEANS AND IN ANY FORM OR THESE DE QUELQUE MANIERE ET FORMAT, MAKING TffiS THESIS SOUS QUELQUE FORME QUE CE SOlT AVAILABLE 1'0 INTERESTED POUR METTRE DES EXEMPLAIRES DE PERSONS. CETTE THESE A LA DISPOSITION DES PERSONNE INTERESSEES. THE AUTHOR RETAlNS OWNERSlllP L'AUTEUR CONSERVE LA PROPRIETE OF THE COPYRIGHT IN mS/HER DU DROIT D'AUTEUR QUI PROTEGE THESIS. NEITHER THE THESIS NOR SA THESE. NI LA THESE NI DES SUBSTANTIAL EXTRACTS FROM 11' EXTRAITS SUBSTANTIELS DE CELLE­ MAY BE PRINTED OR OTHERWISE CI NE DOIVENT ETRE IMPRIMES OU REPRODUCED WITHOUT mS/HER AUTREMENT REPRODUITS SANS SON PERMISSION. AUTORISATION, ISBN 0-612-00110-5 Canadti • PREFACE This thesis is a description of the osteology, ontogeny and functional a.Jatomy of the Middle Triassic Chinese pachypleurosaurid reptile Keichousaurus hui. The preliminary description published soon after its discovery (Young, 1958) was sketchy in nature and based on a small number of incomplete1y prepared specimens. More thorough preparation of sorne of the original specimens, as weil as further discoveries and preparations of new specimens from the same locality, made it possible for me to completely ilIustrate and redescribe the species. An embryo of Keichousaurus hui was described for the tirst time. The ontogenetic changes of Keichousaurus hui from embryo, through juvenile, subadult to adult stages were detailed. A functional analysis • concerning the locomotion pattern of Keichousaurus hui was carried out, and although literature is used to obtain background data, the conclusions drawn were original unless explicitly stated otherwise. The musculature reconstructions of the locomotive apparatus of Keichousaurus hui were presented, also for the tirst time. After a review of the literature, original conclusions are given. It is hcped that this study will provide a more complete picture of morphology, life history and phylogeny of Keichousaurus hui. The text of this thesis was prepared for submission to the Philosophical Transactions ofthe Royal Society ofLondon B., which has published several papers on nothosaurs, and follows the format of that journal. • j • UNIQUE CONTRIBUTIONS This study is the tirst detailed description of skeletal morphology of Keichousaurus hui Young, 1958, the Chinese member of the Family Pachypleurosauridae of diapsid reptiles. Sexual dimorphism of KeichousGurus hui was described. The growth pattern of Keichousaurus hui was studied by comparing the specimens of different developmental stages. Both morphologica! changes and the proportional changes were described. Statistical procedures were used in the study of the proportional changes. • Functional analysis was carried Oùt to detelmine the functions of limbs, the neck and the tail in the aquatic locomotion of Keichousaurus hui. 1t was shown that, unlike the European pachypleurosaurs, Keichousaurlls hui was an underwater rowing swimmer, using the foreJimbs for propulsion. Musculature reconstruction of the limbs was attempted, based on the marks on the bones and the proposed swimming pattern of the animal. A phylogenetic analysis was also carried out. This study documents the diversity both in the morphology and in the locomotion pattern among pachypleurosaw·ids. • ii • TABLE OF CONTENTS Preface . Umque·Contn'b'utlOns Il.. Table of Contents iii • LIst· 0 fF'Igures.............................................. Vil.. Listing of Tables ix Abstract x Résumé xi Acknowledgements xiii .) iii • Introduction . Systematic Paleontology ...................................... .. 6 Description . II Axial skeleton . II Skull . II Lower Jaw . 23 Tooth Implantation ................................ 24 Vertebrae and Ribs ................................ 25 Gastralia . 36 Appendicular Skeleton 37 • Pectoral Girdle 37 Humerus . 41 Dina and radius . 41 Carpus and Manus . 42 Pelvic Girdle . 46 Femur . 49 Tibia and fibula ................................. 51 Tarsus and Pes . 51 Measurements and Proportions 53 • iv • Sexual Dimorphism o......................................... 57 Ontogenj o................................................ 61 Description of GXD835û02 o.............................. 61 The developmental stage of GXD835002 o..................... 64 The ontogenetic stage of V7917 o........................... 67 Subadult specimens o.................................... 69 The adults .........................................." 69 Allometric growth of Keichousaurus hui 71 Locomotion . 76 Function of the forelimbs of Keichousaurus hui o •••••••••••••••• 78 • Reconstruction of the muscular system of the shoulder girdle 84 Hindlimb and the pelvic girdle o •••••••••••••••••••••••••••• 89 Muscle reconstruction of pelvic girdle and hindlimbs . 91 The tail . 93 The neck o ••••••••••••••••••••••••••••••••••••••••••• 95 The swinuning pattern of Keichousaurus o ••••••••••••••••••••• 96 Phylogenetic Analysis o....................................... 98 Conclusions o............................................. 112 • v • References 114 Abbreviations 122 • • VI • LIST OF FIGURES Figure 1 Location of Keichousaurus hui. 8 Figure 2 Reconstruction of Keichousaurus hui. 12 Figure 3 Reconstruction of the skull of Keichousaurus hui. 13 Figure 4 The skull of Keichousaurus hui. 14 Figure 5 Palatal view of Keichousaurus hui skull, GXD838028. 22 Figure 6 Dorsal aspect of Keichousaurus hui, GXD7613. 26 Figure 7 Ventral aspect of Keichousaurus hui, GXD838028. 27 Figure 8 The atlas-axis complex of Keichousaurus hui. 30 • Figure 9 The accessory articulation complex of Keichousaurus hui. 34 Figure 10 Pectoral girdle of Keichousaurus hui. 38 Figure II Humerus of Keichousaurus hui. 43 Figure 12 Lower arm of Keichousaurus hui. 44 Figure 13 Pelvic girdle of Keichousaurus 47 Figure 14 Hindlimb of Keichousaurus hui. 50 Figure 15 An embryo of Keichousaurlls hui, GXD835002. 62 Figure 16 A juvenile specimen of Keichousaurus hui, V7917. 68 Figure 17 Swimming speeds of modern aquatic vertebrates. 81 Figure 18 Cladogram of sauropterygians. 110 • vii • LISTING OF TABLES Table 1 Measurements of Keichousaurus hui 54 Table Il Proportions of measurements of Keichousaurus hui 56 Table III AHometric coefficients 74 Table IV Character states of sauropterygians 109 • • viii • ABSTRACT Keichousaurus hui Young, 1958, from the Middle Triassic of Guizhou, China is a small sauropterygian reptile. It has short snout and elongated temporal openings resembling the European pachypleurosaurid Dactylosaurus. Unlike ail the other sauropterygians, the parietal opening is anteriorly positioned. The neck is long and flexible. The body is rigid and the bones are pachyostotic. It has two or threc sacral vertebrae. The most striking feature of Keichousaurus is its broad ulna. The entire forelimb has the outline of a paddle or an oar, and may have been functioned like one. There is noticeable sexual dimorphism, as is the case for Alpine pachypleurosaurids. • The growth of the humerus is highly positive allometric, indicating an important role of the forelimb in locomotion. The horizontal orientation ofthe pectoral girdle indicate that Keichousaurus,
Recommended publications
  • Description of an Unusual Cervical Vertebral Column of a Plesiosaur from the Kiowa Shale Ian N
    Fort Hays State University FHSU Scholars Repository Master's Theses Graduate School Spring 2014 Description of an Unusual Cervical Vertebral Column of a Plesiosaur from the Kiowa Shale Ian N. Cost Fort Hays State University Follow this and additional works at: https://scholars.fhsu.edu/theses Part of the Biology Commons Recommended Citation Cost, Ian N., "Description of an Unusual Cervical Vertebral Column of a Plesiosaur from the Kiowa Shale" (2014). Master's Theses. 57. https://scholars.fhsu.edu/theses/57 This Thesis is brought to you for free and open access by the Graduate School at FHSU Scholars Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of FHSU Scholars Repository. DESCRIPTION OF AN UNUSUAL CERVICAL VERTEBRAL COLUMN OF A PLESIOSAUR FROM THE KIOWA SHALE being A Thesis Presented to the Graduate Faculty of the Fort Hays State University in Partial Fulfillment of the Requirements for the Degree of Master of Science by Ian Cost B.A., Bridgewater State University M.Ed., Lesley University Date_____________________ Approved________________________________ Major Professor Approved________________________________ Chair, Graduate Council This Thesis for The Master of Science Degree By Ian Cost Has Been Approved __________________________________ Chair, Supervisory Committee __________________________________ Supervisory Committee __________________________________ Supervisory Committee __________________________________ Supervisory Committee __________________________________ Supervisory Committee __________________________________ Chair, Department of Biological Science i PREFACE This manuscript has been formatted in the style of the Journal of Vertebrate Paleontology. Keywords: plesiosaur, polycotylid, cervical vertebrae, Dolichorhynchops, Trinacromerum ii ABSTRACT The Early Cretaceous (Albian) Kiowa Shale of Clark County, Kansas consists mainly of dark gray shale with occasional limestone deposits that represent a near shore environment.
    [Show full text]
  • Reptile Family Tree
    Reptile Family Tree - Peters 2015 Distribution of Scales, Scutes, Hair and Feathers Fish scales 100 Ichthyostega Eldeceeon 1990.7.1 Pederpes 91 Eldeceeon holotype Gephyrostegus watsoni Eryops 67 Solenodonsaurus 87 Proterogyrinus 85 100 Chroniosaurus Eoherpeton 94 72 Chroniosaurus PIN3585/124 98 Seymouria Chroniosuchus Kotlassia 58 94 Westlothiana Casineria Utegenia 84 Brouffia 95 78 Amphibamus 71 93 77 Coelostegus Cacops Paleothyris Adelospondylus 91 78 82 99 Hylonomus 100 Brachydectes Protorothyris MCZ1532 Eocaecilia 95 91 Protorothyris CM 8617 77 95 Doleserpeton 98 Gerobatrachus Protorothyris MCZ 2149 Rana 86 52 Microbrachis 92 Elliotsmithia Pantylus 93 Apsisaurus 83 92 Anthracodromeus 84 85 Aerosaurus 95 85 Utaherpeton 82 Varanodon 95 Tuditanus 91 98 61 90 Eoserpeton Varanops Diplocaulus Varanosaurus FMNH PR 1760 88 100 Sauropleura Varanosaurus BSPHM 1901 XV20 78 Ptyonius 98 89 Archaeothyris Scincosaurus 77 84 Ophiacodon 95 Micraroter 79 98 Batropetes Rhynchonkos Cutleria 59 Nikkasaurus 95 54 Biarmosuchus Silvanerpeton 72 Titanophoneus Gephyrostegeus bohemicus 96 Procynosuchus 68 100 Megazostrodon Mammal 88 Homo sapiens 100 66 Stenocybus hair 91 94 IVPP V18117 69 Galechirus 69 97 62 Suminia Niaftasuchus 65 Microurania 98 Urumqia 91 Bruktererpeton 65 IVPP V 18120 85 Venjukovia 98 100 Thuringothyris MNG 7729 Thuringothyris MNG 10183 100 Eodicynodon Dicynodon 91 Cephalerpeton 54 Reiszorhinus Haptodus 62 Concordia KUVP 8702a 95 59 Ianthasaurus 87 87 Concordia KUVP 96/95 85 Edaphosaurus Romeria primus 87 Glaucosaurus Romeria texana Secodontosaurus
    [Show full text]
  • (Diapsida: Saurosphargidae), with Implications for the Morphological Diversity and Phylogeny of the Group
    Geol. Mag.: page 1 of 21. c Cambridge University Press 2013 1 doi:10.1017/S001675681300023X A new species of Largocephalosaurus (Diapsida: Saurosphargidae), with implications for the morphological diversity and phylogeny of the group ∗ CHUN LI †, DA-YONG JIANG‡, LONG CHENG§, XIAO-CHUN WU†¶ & OLIVIER RIEPPEL ∗ Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, PO Box 643, Beijing 100044, China ‡Department of Geology and Geological Museum, Peking University, Beijing 100871, PR China §Wuhan Institute of Geology and Mineral Resources, Wuhan, 430223, PR China ¶Canadian Museum of Nature, PO Box 3443, STN ‘D’, Ottawa, ON K1P 6P4, Canada Department of Geology, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605-2496, USA (Received 31 July 2012; accepted 25 February 2013) Abstract – Largocephalosaurus polycarpon Cheng et al. 2012a was erected after the study of the skull and some parts of a skeleton and considered to be an eosauropterygian. Here we describe a new species of the genus, Largocephalosaurus qianensis, based on three specimens. The new species provides many anatomical details which were described only briefly or not at all in the type species, and clearly indicates that Largocephalosaurus is a saurosphargid. It differs from the type species mainly in having three premaxillary teeth, a very short retroarticular process, a large pineal foramen, two sacral vertebrae, and elongated small granular osteoderms mixed with some large ones along the lateral most side of the body. With additional information from the new species, we revise the diagnosis and the phylogenetic relationships of Largocephalosaurus and clarify a set of diagnostic features for the Saurosphargidae Li et al.
    [Show full text]
  • Mesozoic Marine Reptile Palaeobiogeography in Response to Drifting Plates
    ÔØ ÅÒÙ×Ö ÔØ Mesozoic marine reptile palaeobiogeography in response to drifting plates N. Bardet, J. Falconnet, V. Fischer, A. Houssaye, S. Jouve, X. Pereda Suberbiola, A. P´erez-Garc´ıa, J.-C. Rage, P. Vincent PII: S1342-937X(14)00183-X DOI: doi: 10.1016/j.gr.2014.05.005 Reference: GR 1267 To appear in: Gondwana Research Received date: 19 November 2013 Revised date: 6 May 2014 Accepted date: 14 May 2014 Please cite this article as: Bardet, N., Falconnet, J., Fischer, V., Houssaye, A., Jouve, S., Pereda Suberbiola, X., P´erez-Garc´ıa, A., Rage, J.-C., Vincent, P., Mesozoic marine reptile palaeobiogeography in response to drifting plates, Gondwana Research (2014), doi: 10.1016/j.gr.2014.05.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Mesozoic marine reptile palaeobiogeography in response to drifting plates To Alfred Wegener (1880-1930) Bardet N.a*, Falconnet J. a, Fischer V.b, Houssaye A.c, Jouve S.d, Pereda Suberbiola X.e, Pérez-García A.f, Rage J.-C.a and Vincent P.a,g a Sorbonne Universités CR2P, CNRS-MNHN-UPMC, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, CP 38, 57 rue Cuvier,
    [Show full text]
  • Sauropterygia I Placodontia, Pachypleurosauria, Nothosauroidea, Pistosauroidea
    Teil 12A / Part 12A Sauropterygia I Placodontia, Pachypleurosauria, Nothosauroidea, Pistosauroidea by O. RlEPPEL With 80 Figures Verlag Dr. Friedrich Pfeil • Munchen 2000 ISBN 3-931516-78-4 Contents Foreword (P. WELLNHOFER) V Acknowledgements VI Institutional Acronyms VII Figure Abbreviations VIII Introduction: History of the Concept of Sauropterygia 1 Phylogenetic Relationships of Stem-Group Sauropterygia 4 Stratigraphic and Geographic Distribution of Stem-Group Sauropterygia 6 General Skeletal Anatomy of Stem-Group Sauropterygia 10 Systematic Review 16 Superorder Sauropterygia OWEN, 1860 16 Order Placodontia COPE, 1871 16 Suborder Placodontoidea COPE, 1871 16 Family Paraplacodontidae PEYER & KUHN-SCHNYDER, 1955 17 Anatomy of Paraplacodontidae 17 Genus Paraplacodus PEYER, 1931 18 Family Placodontidae COPE, 1871 19 Anatomy of Placodontidae 19 Genus Placodus AGASSIZ, 1933 21 Suborder Cyamodontoidea NOPCSA, 1923 23 Anatomy of Cyamodontoidea 23 Interrelationships of Cyamodontoidea 25 Superfamily Cyamodontida NOPCSA, 1923 25 Family Henodontidae F. v. HUENE, 1948 26 Genus Henodus F. v. HUENE, 1936 26 Family Cyamodontidae NOPCSA, 1923 27 Genus Cyamodus MEYER, 1863 27 Superfamily Placochelyida ROMER, 1956 32 Family Macroplacidae nov. fam 32 Genus Macroplacus SCHUBERT-KLEMPNAUER, 1975 32 Family Protenodontosauridae nov. fam 33 Genus Protenodontosaurus PINNA, 1990 33 Family Placochelyidae ROMER, 1956 34 Genus Placochelys JAEKEL, 1902 34 Genus Psephoderma MEYER, 1858 36 Genus Psephosaurus E. FRAAS, 1896 38 Cyamodontoidea indet 39 IX Order Eosauropterygia
    [Show full text]
  • Exceptional Vertebrate Biotas from the Triassic of China, and the Expansion of Marine Ecosystems After the Permo-Triassic Mass Extinction
    Earth-Science Reviews 125 (2013) 199–243 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction Michael J. Benton a,⁎, Qiyue Zhang b, Shixue Hu b, Zhong-Qiang Chen c, Wen Wen b, Jun Liu b, Jinyuan Huang b, Changyong Zhou b, Tao Xie b, Jinnan Tong c, Brian Choo d a School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK b Chengdu Center of China Geological Survey, Chengdu 610081, China c State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China d Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China article info abstract Article history: The Triassic was a time of turmoil, as life recovered from the most devastating of all mass extinctions, the Received 11 February 2013 Permo-Triassic event 252 million years ago. The Triassic marine rock succession of southwest China provides Accepted 31 May 2013 unique documentation of the recovery of marine life through a series of well dated, exceptionally preserved Available online 20 June 2013 fossil assemblages in the Daye, Guanling, Zhuganpo, and Xiaowa formations. New work shows the richness of the faunas of fishes and reptiles, and that recovery of vertebrate faunas was delayed by harsh environmental Keywords: conditions and then occurred rapidly in the Anisian. The key faunas of fishes and reptiles come from a limited Triassic Recovery area in eastern Yunnan and western Guizhou provinces, and these may be dated relative to shared strati- Reptile graphic units, and their palaeoenvironments reconstructed.
    [Show full text]
  • Microstructure of Vertebrae, Ribs, and Gastralia of Triassic
    Microstructure of Vertebrae, Ribs, and Gastralia of Triassic Sauropterygians-New Insights into the Microanatomical Processes Involved in Aquatic Adaptations of Marine Reptiles Nicole Klein, Aurore Canoville, Alexandra Houssaye To cite this version: Nicole Klein, Aurore Canoville, Alexandra Houssaye. Microstructure of Vertebrae, Ribs, and Gas- tralia of Triassic Sauropterygians-New Insights into the Microanatomical Processes Involved in Aquatic Adaptations of Marine Reptiles. Anatomical Record: Advances in Integrative Anatomy and Evolu- tionary Biology, Wiley-Blackwell, 2019, 302 (10), pp.1770-1791. 10.1002/ar.24140. hal-02351319 HAL Id: hal-02351319 https://hal.archives-ouvertes.fr/hal-02351319 Submitted on 7 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Microstructure of vertebrae, ribs, and gastralia of Triassic sauropterygians – New insights into the microanatomical processes involved in aquatic adaptations of marine reptiles Nicole Klein1*, Aurore Canoville2, and Alexandra Houssaye3 1Steinmann Institute, Paleontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany. 2 Department of Biological Sciences, North Carolina State University & Paleontology, North Carolina Museum of Natural Sciences, 11 W. Jones St, Raleigh, NC 27601, USA. 3UMR 7179 CNRS/Muséum National d’Histoire Naturelle, Département Adaptations du Vivant, 57 rue Cuvier CP-55, 75005 Paris, France.
    [Show full text]
  • Evolution Et Extinction Des Reptiles Marins Au Cours Du Mesozoique
    EVOLUTION ET EXTINCTION DES REPTILES MARINS AU COURS DU MESOZOIQUE par Nathalie BARDET * SOMMAIRE Page Résumé, Abstract . 178 Introduction ..................................................................... 179 Matériel et méthode . 181 La notion de reptile marin . 181 Etude systématique . 182 Etude stratigraphique. 183 Méthodes d'analyse. 183 Systématique et phylogénie. 184 Le registre fossile des reptiles marins . 184 Affinités et phylogénie des reptiles marins. 186 Analyses taxinomique et stratigraphique. 187 Testudines (Chelonia) . 187 Squamata, Lacertilia . 191 Squamata, Serpentes. 193 Crocodylia ............................................................... 194 Thalattosauria . 195 Hupehsuchia . 196 Helveticosauroidea . 197 Pachypleurosauroidea . 197 Sauropterygia .... 198 Placodontia. 198 * Laboratoire de Paléontologie des Vertébrés, URA 1761 du CNRS, Université Pierre et Marie Curie, Case 106,4 Place Jussieu, 75252 Paris cédex 05, France. Mots-clés: Reptiles marins, Tortues, Lézards, Serpents, Crocodiles, Thalattosaures, Hupehsuchiens, Helveticosaures, Pachypleurosaures, Nothosaures, Placodontes, Plésiosaures, Ichthyosaures, Mésozoïque, Evolution, Extinction, Assemblages et Renouvellements fauniques. Key-words: Marine Reptiles, Turtles, Lizards, Snakes, Crocodiles, Thalattosaurs, Hupehsuchians, Helveticosaurs, Pachypleurosaurs, Nothosaurs, Placodonts, Plesiosaurs, Ichthyosaurs, Mesozoic, Evolution, Extinction, Faunal Assemblages and Turnovers. Palaeovertebrata. Montpellier. 24 (3-4): 177-283, 13 fig. (Reçu le 4 Juillet 1994,
    [Show full text]
  • Co-Occurrence of Neusticosaurus Edwardsii and N. Peyeri (Reptilia) in the Lower Meride Limestone (Middle Triassic, Monte San Giorgio)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Swiss J Geosci (2011) 104 (Suppl 1):S167–S178 DOI 10.1007/s00015-011-0077-x Co-occurrence of Neusticosaurus edwardsii and N. peyeri (Reptilia) in the Lower Meride Limestone (Middle Triassic, Monte San Giorgio) Rudolf Stockar • Silvio Renesto Received: 4 March 2010 / Accepted: 7 February 2011 / Published online: 12 November 2011 Ó Swiss Geological Society 2011 Abstract A newly opened excavation in the Cassina beds PIMUZ Pala¨ontologisches Institut und Museum der of the Lower Meride Limestone (Monte San Giorgio UNE- Universita¨tZu¨rich, Switzerland SCO World Heritage List, Canton Ticino, Switzerland), has MUMSG Museo del Monte San Giorgio, Meride, yielded a pachypleurosaurid (Reptilia: Sauropterygia) Switzerland specimen which is identified as Neusticosaurus peyeri. The resulting co-occurrence of N. peyeri and N. edwardsii, the latter so far regarded as the sole species of the genus present Introduction in this horizon, challenges the hypothesis of a single ana- genetic lineage in Neusticosaurus species from Monte San The Cassina (also known as ‘‘alla Cascina’’) beds belong to Giorgio. In addition, it leads to a reconsideration of the the world-renowned fossiliferous levels of the Middle phylogenetic inferences about Neusticosaurus evolution in Triassic Monte San Giorgio Lagersta¨tte (UNESCO World the Monte San Giorgio area. The stratigraphic distribution of Heritage List, Canton Ticino, Southern Alps; Fig. 1), par- the Neusticosaurus species in the Monte San Giorgio basin is ticularly famous for its rich and diverse fauna of Middle updated on the basis of recent finds.
    [Show full text]
  • Sauropterygia Lepidosauromorpha
    Sauropterygia Lepidosauromorpha • ***cladogram of lepids*** Pachypleurosauridae Nothosauria Pliosauroidea Plesiosauroidea Pistosauridae Mosasauridae Placodontia Thalattosauriformes? Plesiosauria Sauropterygia Lepidosauromorpha Placodonts • Triassic Sauropterygians that browsed for mollusks and brachiopods in shallow marine environments (like walruses) • Had dermal armor and dense bone, with large, flat palatte teeth used to crush shells Placodonts • Some, like Henodus and Placochelys, had a collection of bony plates covering their backs, a convergent feature with turtles Limb Morphology • As in ichthyosaurs, hyperphalangy indicates more derived condition (up to ten) • NO polydactyly • Oar-like paddles Pachypleurosaurs • Primitive Triassic Sauropterygians with completely aquatic life • Peg-like teeth indicate fish diet • Keichousaurus Hui is one of the most common Sauropterygian fossils, popular for collectors Nothosaurs • Evolved from early pachypleurosaurs, replaced by plesiosaurs at the end of the Triassic • Likely led an amphibious lifestyle, as they retained webbed feet • Diet probably consisted of fish, occasionally larger prey Nothosaurs • Many different varieties, some more aquatic than others • Many similarities to proto-whales, as we’ll see Ceresiosaurus • A type of nothosaur that may be the most direct relative of plesiosaurs • Had no discernable toes (pure flippers), and was likely one of the first marine reptiles to propel itself paraxially Pistosaurs • Most primitive plesiosaur (mid-Triassic) • Only Triassic plesiosaur • Shows
    [Show full text]
  • Vertebrate'' Elasmosaurus Platyurus Cope 1868
    Revised Vertebral Count in the ‘‘Longest-Necked Vertebrate’’ Elasmosaurus platyurus Cope 1868, and Clarification of the Cervical-Dorsal Transition in Plesiosauria Sven Sachs1*, Benjamin P. Kear2, Michael J. Everhart3 1 Engelskirchen, Germany, 2 Department of Earth Sciences, Uppsala University, Uppsala, Sweden, 3 Sternberg Museum of Natural History, Fort Hays State University, Hays, Kansas, United States of America Abstract Elasmosaurid plesiosaurians are renowned for their immensely long necks, and indeed, possessed the highest number of cervical vertebrae for any known vertebrate. Historically, the largest count has been attributed to the iconic Elasmosaurus platyurus from the Late Cretaceous of Kansas, but estimates for the total neck series in this taxon have varied between published reports. Accurately determining the number of vertebral centra vis-a`-vis the maximum length of the neck in plesiosaurians has significant implications for phylogenetic character designations, as well as the inconsistent terminology applied to some osteological structures. With these issues in mind, we reassessed the holotype of E. platyurus as a model for standardizing the debated cervical-dorsal transition in plesiosaurians, and during this procedure, documented a ‘‘lost’’ cervical centrum. Our revision also advocates retention of the term ‘‘pectorals’’ to describe the usually three or more distinctive vertebrae close to the cranial margin of the forelimb girdle that bear a functional rib facet transected by the neurocentral suture, and thus conjointly formed by both the parapophysis on the centrum body and diapophysis from the neural arch (irrespective of rib length). This morphology is unambiguously distinguishable from standard cervicals, in which the functional rib facet is borne exclusively on the centrum, and dorsals in which the rib articulation is situated above the neurocentral suture and functionally borne only by the transverse process of the neural arch.
    [Show full text]
  • Geology NEW SERIES, NO
    550. 5 bEQLQ6Y L/BftAfly A)*- 27 FIELDIANA Geology NEW SERIES, NO. 39 Functional Morphology and Ontogeny of Keichousaurus hui (Reptilia, Sauropterygia) Kebang Lin Olivier Rieppel to CM March 31, 1998 Publication 1491 PUBLISHED BY FIELD MUSEUM OF NATURAL HISTORY Information for Contributors to Fieldiana General: Fieldiana is primarily a journal for Field Museum staff members and research associates, although manuscripts from nonaffiliated authors may be considered as space permits. The Journal carries a page charge of $65.00 per printed page or fraction thereof. Payment of at least 50% of page charges qualifies a paper for expedited processing, which reduces the publication time. Contributions from staff, research associates, and invited authors will be considered for publication regardless of ability to pay page charges, however, the full charge is mandatory for nonaffiliated authors of unsolicited manuscripts. Three complete copies of the text (including title page and abstract) and of the illustrations should be submitted (one original copy plus two review copies which may be machine copies). No manuscripts will be considered for publication or submitted to reviewers before all materials are complete and in the hands of the Scientific Editor. Manuscripts should be submitted to Scientific Editor, Fieldiana, Field Museum of Natural History, Chicago, Illinois 60605-2496, U.S.A. Text: Manuscripts must be typewritten double-spaced on standard-weight, 8Vi- by 1 1 -inch paper with wide margins on all four sides. If typed on an IBM-compatible computer using MS-DOS, also submit text on 5V4-inch diskette (WordPerfect 4.1, 4.2, or 5.0, MultiMate, Displaywrite 2, 3 & 4, Wang PC, Samna, Microsoft Word, Volks- writer, or WordStar programs or ASCII).
    [Show full text]