Bone Histology of Aquatic Reptiles: What Does It Tell Us About Secondary Adaptation to an Aquatic Life?

Total Page:16

File Type:pdf, Size:1020Kb

Bone Histology of Aquatic Reptiles: What Does It Tell Us About Secondary Adaptation to an Aquatic Life? bs_bs_banner Biological Journal of the Linnean Society, 2013, 108, 3–21. With 4 figures REVIEW ARTICLE Bone histology of aquatic reptiles: what does it tell us about secondary adaptation to an aquatic life? ALEXANDRA HOUSSAYE* Steinmann Institut für Geologie, Paläontologie und Mineralogie, Universität Bonn, Nussallee 8, 53115 Bonn, Germany Received 29 May 2012; revised 5 July 2012; accepted for publication 5 July 2012 Aquatic reptiles are very diversified in the fossil record. The description and pooling of certain bone histological features (collagenous weave and vascular network) of the various groups of aquatic reptiles highlight what this histological information can tell us about the process of secondary adaptation to an aquatic life. Notably, they show the absence of interaction between these histological features on the one hand and body size, mode of swimming, type of microanatomical specialization and phylogeny on the other. These histological features in aquatic reptiles seem to essentially provide information about the growth rate and basal metabolic rate of these taxa. The growth rate seems to have been rather high in most marine reptiles, when compared with terrestrial ectotherms. Moreover, distinct metabolic abilities are suggested. Indeed, various groups probably displayed a peculiarly high body temperature, and some show trends towards endothermy. This study also emphasizes the crucial need for homologous comparisons in histology and shows that much remains to be done to better understand the relationship between histological features, growth rate and metabolism in extant taxa in order to make inferences in the fossil groups. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 108, 3–21. ADDITIONAL KEYWORDS: collagenous weave – growth rate – metabolism – vascular network. INTRODUCTION 2005; Erickson et al., 2009; Sanchez et al., 2010). His- tological features have been analysed in several Extant aquatic reptiles are rather scarce, especially if aquatic reptile taxa (see below). However, these we consider only the essentially (spending much of studies have generally focused on a single group (see their time in water), or even exclusively, aquatic taxa, below). It is of particular interest to review these consisting of the highly aquatic turtles and snakes various data in order to better understand what bone (the marine iguana being essentially terrestrial). histology can tell us about the process of secondary However, they were much more diverse in the fossil adaptation to an aquatic life. This is the object of this record, especially during the Mesozoic. Indeed, study, which focuses on two main histological fea- various groups of reptiles illustrating distinct mor- tures: (1) the organization of the collagenous weave phologies and degrees of adaptation to an aquatic life [to distinguish between lamellar, parallel-fibred and were secondarily adapted to aquatic environments fibrous (woven-fibred) bone]; and (2) the organization (cf. Mazin, 2001; Fig. 1). of the vascular network. The terminology follows Bone histology is one of the major sources of infor- Francillon-Vieillot et al. (1990). The histological fea- mation about life history traits (e.g. Sander & Klein, tures described for the various aquatic reptiles (based on adult specimens, except when precised; cf. Fig. 1) are listed in order to be interpreted, based on phylo- *E-mail: [email protected] genetic, functional and physiological perspectives. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 108, 3–21 3 4 A. HOUSSAYE BONE HISTOLOGY OF AQUATIC REPTILES made up of lamellar bone with lines of arrested MESOSAURIDAE growth (LAGs); it is poorly vascularized with longi- tudinally oriented simple vascular canals and a few Histological data on mesosaurs are rather scarce. primary osteons (Fig. 2A, B), which were described as They are based on the analysis of thin sections and organized in concentric rows by Nopcsa & Heidsieck fragments of a few ribs (Nopcsa & Heidsieck, 1934; (1934). The medullary region is occupied by a spon- Kaiser, 1960; de Ricqlès, 1974), and of one long bone giosa made of rather thick, irregularly oriented (? tibia), carpals and tarsals (de Ricqlès, 1974). In trabeculae of lamellar bone and of intertrabecular both the ribs and the long bone, the cortex is thick (as remains of calcified cartilage (de Ricqlès, 1974; a result of pachyosteosclerosis). Periosteal bone is Fig. 2A). In carpals and tarsals, the microstructure is Figure 1. Consensual phylogeny illustrating the relationships between the various groups of marine reptiles. From Modesto & Anderson (2004), Tsuji & Müller (2009) and Scheyer, Klein & Sander (2010). ᭤ Figure 2. A, Mesosaurus brasiliensis. Rib transverse section (TS) in natural light (NL). From de Ricqlès (1974). B, Mesosaurus rib TS in NL. From Kaiser (1960). In both (A) and (B), the cortex is at the top and the medullary cavity is at the bottom. C, Claudiosaurus germaini. Rib TS in polarized light (PL) (left) and NL (right) (Personal photograph). Note the clear limit between the compact primary cortex and the medullary cavity. D, E, Champsosaurus (Choristodera) adult femur TS (D) and detail of the transition between the cortex (top) and the medullary region (bottom) in NL (E). From de Buffrénil et al. (1990). F, Ichthyosaurus humerus TS in NL. Cortex. From de Buffrénil & Mazin (1990). G, Ichthyosaurus humerus TS in PL. Cortex. (Personal photograph) H, I, Dermochelys coriacea. H, Tibia TS. From Kriloff et al. (2008). I, Femur cortex. From de Ricqlès et al. (2004). Abbreviations: cc, calcified cartilage; ds, dense spongiosa; fb, fibrous bone; lb, lamellar bone; lzb, lamellar-zonal bone; po, primary osteon; sb, secondary bone; svc, simple vascular canal. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 108, 3–21 BONE HISTOLOGY OF AQUATIC REPTILES 5 similar, except that the cortex is thin and avascular. CLAUDIOSAURUS A few secondary osteons occur in the perimedullar region of the long bone as a result of remodelling (de de Buffrénil & Mazin (1989) described the bone his- Ricqlès, 1974). tology of limb bones (humerus, femur and tibia), ribs © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 108, 3–21 6 A. HOUSSAYE and vertebrae of this taxon. Their primary periosteal the ontogenetic stage, as a result of additional sec- bone consists of lamellar bone with LAGs and with a ondary lamellar bone deposits during remodelling, limited vascular supply made up of thin simple vas- which fill the cavities and intertrabecular spaces in cular canals, mainly longitudinally oriented (Fig. 2C). Simoedosaurus (de Buffrénil et al., 1990). These bones are characterized by osteosclerosis caused by excessive deposits of secondary lamellar bone during intense remodelling, which mainly occurs HUPEHSUCHIA in the medullary region of long bones and ribs, and in No data on the histology of Hupehsuchia are the core of the vertebral centrum, as well as in the available. inner cortex (Fig. 2C). Secondary osteons are numer- ous in these regions. ICHTHYOSAURS Histological features of ichthyosaurs are known from YOUNGINIFORMES the study of limb bone, vertebra and rib sections of Within Younginiformes (although the monophyly of five taxa: Omphalosaurus, Stenopterygius, Ichthyo- the group is questioned; Bickelmann et al., 2009), two saurus, Platypterygius and Mixosaurus (Kiprijanoff, taxa are adapted to a marine environment and are 1881–1883; Fraas, 1891; Seitz, 1907; Gross, 1934; de thus taken into consideration here: Tangasaurus and Buffrénil, Mazin & de Ricqlès, 1987; de Buffrénil & Hovasaurus (Carroll, 1988). No histological data are Mazin, 1990; Lopuchowycz & Massare, 2002; Kolb, known for these taxa. Sánchez-Villagra & Scheyer, 2011). Periosteal bone is spongious with a zonal organization of circumferen- tial rows of numerous simple vascular canals and CHORISTODERA primary osteons, with a mainly longitudinal, but also The histology of the vertebrae, femora and ribs of radial and sometimes oblique, orientation, giving Champsosaurus and Simoedosaurus has been studied the bone a plexiform aspect (de Buffrénil & Mazin, (Nopcsa & Heidsieck, 1934; de Ricqlès, 1976a; de 1990; Kolb et al., 2011; Fig. 2F). Periosteal bone cor- Buffrénil et al., 1990; Katsura, 2010). In these bones, responds to fibrous bone at rapid stages of growth the cortex is essentially made up of parallel-fibred (Fig. 2G) and to parallel-fibred bone much later in bone – associated with lamellar bone in the vertebrae ontogeny. In large specimens, the periphery of the – with LAGs and a few simple vascular canals cortex consists of a thin layer of compact bone dis- (Fig. 2D, E). Fibrous bone generally occurs in the core playing a few, longitudinally oriented simple vascular of the bones. Vascular canals are very scarce and canals and primary osteons (de Buffrénil & Mazin, radially oriented in the vertebrae. In femora and ribs, 1990; Kolb et al., 2011). In the cortical region, the vascularization is more extensive and displays a lon- trabeculae consist of a core of fibrous bone covered by gitudinal orientation in the deep cortex; vascular platings of lamellar bone (Fig. 2G). In the medullary density decreases in the periphery, where the canals region, trabeculae are rather thin and mainly formed are rather radially oriented. The medullary region of by secondary lamellar bone deposits, as a result of the ribs and femora, which is much larger in adults intense
Recommended publications
  • Cranial Anatomy, Taxonomic Implications
    [Palaeontology, Vol. 55, Part 4, 2012, pp. 743–773] CRANIAL ANATOMY, TAXONOMIC IMPLICATIONS AND PALAEOPATHOLOGY OF AN UPPER JURASSIC PLIOSAUR (REPTILIA: SAUROPTERYGIA) FROM WESTBURY, WILTSHIRE, UK by JUDYTH SASSOON1, LESLIE F. NOE` 2 and MICHAEL J. BENTON1* 1School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK; e-mails: [email protected], [email protected] 2Geociencias, departamento de Fisica, Universidad de los Andes, Bogota´ DC, Colombia; e-mail: [email protected] *Corresponding author. Typescript received 5 December 2010; accepted in revised form 6 April 2011 Abstract: Complete skulls of giant marine reptiles of the genera. The two Westbury Pliosaurus specimens share many Late Jurassic are rare, and so the discovery of the 1.8-m- features, including the form of the teeth, but marked differ- long skull of a pliosaur from the Kimmeridge Clay Forma- ences in the snout and parietal crest suggest sexual dimor- tion (Kimmeridgian) of Westbury, Wiltshire, UK, is an phism; the present specimen is probably female. The large important find. The specimen shows most of the cranial size of the animal, the extent of sutural fusion and the and mandibular anatomy, as well as a series of pathological pathologies suggest this is an ageing individual. An erosive conditions. It was previously referred to Pliosaurus brachy- arthrotic condition of the articular glenoids led to pro- spondylus, but it can be referred reliably only to the genus longed jaw misalignment, generating a suite of associated Pliosaurus, because species within the genus are currently in bone and dental pathologies.
    [Show full text]
  • O'keefe, F. R. 2006
    12 Neoteny and the Plesiomorphic Condition of the Plesiosaur Basicranium F. Robin O’Keefe Introduction Historically, the systematics of the Plesiosauria (Reptilia, Sauroptery- gia) were based largely on postcranial characters (Persson, 1963; Brown, 1981). Several factors account for this bias: plesiosaur skulls tend to be del- icate and are often crushed even when preserved, postcranial elements are relatively common and cranial elements are not, lack of knowledge about the relationships of stem-group sauropterygians, and lack of knowledge of plesiosaur cranial anatomy itself. However, recent detailed examinations of plesiosaur cranial anatomy have identified many characters of use in plesiosaur systematics (Brown, 1993; Cruickshank, 1994; Storrs & Taylor, 1996; Storrs, 1997; Carpenter, 1997; Evans, 1999; O’Keefe, 2001, 2004), and the systematics of the group have changed markedly in response (Carpenter, 1997; O’Keefe, 2001, 2004). The work of Rieppel and others has clarified the anatomy and relationships of stem-group sauropterygians (Storrs, 1991; see Rieppel, 2000, for review). This work has laid the anatomic and phylogenetic foundations for a better understanding of ple- siosaur cranial anatomy. The purpose of this paper is to describe the condition of the braincase in stratigraphically early and morphologically primitive plesiosaurs. In- formation on the braincase of plesiomorphic taxa is important because it establishes the polarity of characters occurring in more derived ple- siosaurs. This paper begins with a short review of braincase anatomy in stem-group sauropterygians. Data on braincase morphology of the ple- siomorphic plesiosaur genera Thalassiodracon and Eurycleidus are then presented and interpreted via comparison with other plesiosaurs, stem- group sauropterygians, and stem diapsids (Araeoscelis).
    [Show full text]
  • A New Species of the Sauropsid Reptile Nothosaurus from the Lower Muschelkalk of the Western Germanic Basin, Winterswijk, the Netherlands
    A new species of the sauropsid reptile Nothosaurus from the Lower Muschelkalk of the western Germanic Basin, Winterswijk, The Netherlands NICOLE KLEIN and PAUL C.H. ALBERS Klein, N. and Albers, P.C.H. 2009. A new species of the sauropsid reptile Nothosaurus from the Lower Muschelkalk of the western Germanic Basin, Winterswijk, The Netherlands. Acta Palaeontologica Polonica 54 (4): 589–598. doi:10.4202/ app.2008.0083 A nothosaur skull recently discovered from the Lower Muschelkalk (early Anisian) locality of Winterswijk, The Nether− lands, represents at only 46 mm in length the smallest nothosaur skull known today. It resembles largely the skull mor− phology of Nothosaurus marchicus. Differences concern beside the size, the straight rectangular and relative broad parietals, the short posterior extent of the maxilla, the skull proportions, and the overall low number of maxillary teeth. In spite of its small size, the skull can not unequivocally be interpreted as juvenile. It shows fused premaxillae, nasals, frontals, and parietals, a nearly co−ossified jugal, and fully developed braincase elements, such as a basisphenoid and mas− sive epipterygoids. Adding the specimen to an existing phylogenetic analysis shows that it should be assigned to a new species, Nothosaurus winkelhorsti sp. nov., at least until its juvenile status can be unequivocally verified. Nothosaurus winkelhorsti sp. nov. represents, together with Nothosaurus juvenilis, the most basal nothosaur, so far. Key words: Sauropterygia, Nothosaurus, ontogeny, Anisian, The Netherlands. Nicole Klein [nklein@uni−bonn.de], Steinmann−Institut für Geologie, Mineralogie und Paläontologie, Universtät Bonn, Nußallee 8, 53115 Bonn, Germany; Paul C.H. Albers [[email protected]], Naturalis, Nationaal Natuurhistorisch Museum, Darwinweg 2, 2333 CR Leiden, The Netherlands.
    [Show full text]
  • 8. Archosaur Phylogeny and the Relationships of the Crocodylia
    8. Archosaur phylogeny and the relationships of the Crocodylia MICHAEL J. BENTON Department of Geology, The Queen's University of Belfast, Belfast, UK JAMES M. CLARK* Department of Anatomy, University of Chicago, Chicago, Illinois, USA Abstract The Archosauria include the living crocodilians and birds, as well as the fossil dinosaurs, pterosaurs, and basal 'thecodontians'. Cladograms of the basal archosaurs and of the crocodylomorphs are given in this paper. There are three primitive archosaur groups, the Proterosuchidae, the Erythrosuchidae, and the Proterochampsidae, which fall outside the crown-group (crocodilian line plus bird line), and these have been defined as plesions to a restricted Archosauria by Gauthier. The Early Triassic Euparkeria may also fall outside this crown-group, or it may lie on the bird line. The crown-group of archosaurs divides into the Ornithosuchia (the 'bird line': Orn- ithosuchidae, Lagosuchidae, Pterosauria, Dinosauria) and the Croco- dylotarsi nov. (the 'crocodilian line': Phytosauridae, Crocodylo- morpha, Stagonolepididae, Rauisuchidae, and Poposauridae). The latter three families may form a clade (Pseudosuchia s.str.), or the Poposauridae may pair off with Crocodylomorpha. The Crocodylomorpha includes all crocodilians, as well as crocodi- lian-like Triassic and Jurassic terrestrial forms. The Crocodyliformes include the traditional 'Protosuchia', 'Mesosuchia', and Eusuchia, and they are defined by a large number of synapomorphies, particularly of the braincase and occipital regions. The 'protosuchians' (mainly Early *Present address: Department of Zoology, Storer Hall, University of California, Davis, Cali- fornia, USA. The Phylogeny and Classification of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds (ed. M.J. Benton), Systematics Association Special Volume 35A . pp. 295-338. Clarendon Press, Oxford, 1988.
    [Show full text]
  • Tetrapod Biostratigraphy and Biochronology of the Triassic–Jurassic Transition on the Southern Colorado Plateau, USA
    Palaeogeography, Palaeoclimatology, Palaeoecology 244 (2007) 242–256 www.elsevier.com/locate/palaeo Tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau, USA Spencer G. Lucas a,⁎, Lawrence H. Tanner b a New Mexico Museum of Natural History, 1801 Mountain Rd. N.W., Albuquerque, NM 87104-1375, USA b Department of Biology, Le Moyne College, 1419 Salt Springs Road, Syracuse, NY 13214, USA Received 15 March 2006; accepted 20 June 2006 Abstract Nonmarine fluvial, eolian and lacustrine strata of the Chinle and Glen Canyon groups on the southern Colorado Plateau preserve tetrapod body fossils and footprints that are one of the world's most extensive tetrapod fossil records across the Triassic– Jurassic boundary. We organize these tetrapod fossils into five, time-successive biostratigraphic assemblages (in ascending order, Owl Rock, Rock Point, Dinosaur Canyon, Whitmore Point and Kayenta) that we assign to the (ascending order) Revueltian, Apachean, Wassonian and Dawan land-vertebrate faunachrons (LVF). In doing so, we redefine the Wassonian and the Dawan LVFs. The Apachean–Wassonian boundary approximates the Triassic–Jurassic boundary. This tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau confirms that crurotarsan extinction closely corresponds to the end of the Triassic, and that a dramatic increase in dinosaur diversity, abundance and body size preceded the end of the Triassic. © 2006 Elsevier B.V. All rights reserved. Keywords: Triassic–Jurassic boundary; Colorado Plateau; Chinle Group; Glen Canyon Group; Tetrapod 1. Introduction 190 Ma. On the southern Colorado Plateau, the Triassic– Jurassic transition was a time of significant changes in the The Four Corners (common boundary of Utah, composition of the terrestrial vertebrate (tetrapod) fauna.
    [Show full text]
  • State Museum of Natural History Stuttgart
    PRESS RELEASE State Museum of Natural History Stuttgart, Germany Did life in the ancient seas become increasingly dangerous? Scientists have addressed this question by measuring the frequency of disease and injury in the skeletons of ichthyosaur s from the Triassic and Jurassic period s . Stuttgart, March 27 , 2020. Did life in the ancient seas become increasingly dangerous over millions of years? Scientists from the Natural History Museum in Stuttgart and the University of Uppsala in Sweden have investigated this question by examin ing hundreds of ichthyosaur fossils from the Triassic perio d , 240 million years ago , and the Jurassic period , around 180 million years ago. The researchers noticed that in museum collections , the injuries - pathologies - visible on the skeletons of the fossils w ere largely similar. They wanted to see if they could find out more about the biology of marine reptiles from the Mesozoic through detailed analy s es of the bones. In a research project funded by the DFG, they investigated which factors had the greatest impact on injuries to marine reptiles. The results of th e investigation have been published in the journal S cientific R eport s . Hu ndreds of ichthyosaur skeletons were examined The Stuttgart Natural History Museum has a globally significant collection of ichthyosaur skeletons , with many specimens of Jurassic age from southwestern Germany. This is where the ichthyosaur specialists Dr. Erin Maxwell and Dr. Judith Pardo - Pérez (Stuttgart) and Dr. Ben Kear from Uppsala began their research work. Due to the excellent conservation conditions in the Posidonia Shale , the fossils reveal a lot about the appearance of the se extinct marine reptiles .
    [Show full text]
  • HOVASAURUS BOULEI, an AQUATIC EOSUCHIAN from the UPPER PERMIAN of MADAGASCAR by P.J
    99 Palaeont. afr., 24 (1981) HOVASAURUS BOULEI, AN AQUATIC EOSUCHIAN FROM THE UPPER PERMIAN OF MADAGASCAR by P.J. Currie Provincial Museum ofAlberta, Edmonton, Alberta, T5N OM6, Canada ABSTRACT HovasauTUs is the most specialized of four known genera of tangasaurid eosuchians, and is the most common vertebrate recovered from the Lower Sakamena Formation (Upper Per­ mian, Dzulfia n Standard Stage) of Madagascar. The tail is more than double the snout-vent length, and would have been used as a powerful swimming appendage. Ribs are pachyostotic in large animals. The pectoral girdle is low, but massively developed ventrally. The front limb would have been used for swimming and for direction control when swimming. Copious amounts of pebbles were swallowed for ballast. The hind limbs would have been efficient for terrestrial locomotion at maturity. The presence of long growth series for Ho vasaurus and the more terrestrial tan~saurid ThadeosauTUs presents a unique opportunity to study differences in growth strategies in two closely related Permian genera. At birth, the limbs were relatively much shorter in Ho vasaurus, but because of differences in growth rates, the limbs of Thadeosau­ rus are relatively shorter at maturity. It is suggested that immature specimens of Ho vasauTUs spent most of their time in the water, whereas adults spent more time on land for mating, lay­ ing eggs and/or range dispersal. Specilizations in the vertebrae and carpus indicate close re­ lationship between Youngina and the tangasaurids, but eliminate tangasaurids from consider­ ation as ancestors of other aquatic eosuchians, archosaurs or sauropterygians. CONTENTS Page ABREVIATIONS . ..... ... ......... .......... ... ......... ..... ... ..... .. .... 101 INTRODUCTION .
    [Show full text]
  • The First Possible Choristoderan Trackway from the Lower
    www.nature.com/scientificreports OPEN The frst possible choristoderan trackway from the Lower Cretaceous Daegu Formation of South Korea and its implications on choristoderan locomotion Yuong‑Nam Lee1*, Dal‑Yong Kong2 & Seung‑Ho Jung2 Here we report a new quadrupedal trackway found in the Lower Cretaceous Daegu Formation (Albian) in the vicinity of Ulsan Metropolitan City, South Korea, in 2018. A total of nine manus‑pes imprints show a strong heteropodous quadrupedal trackway (length ratio is 1:3.36). Both manus and pes tracks are pentadactyl with claw marks. The manus prints rotate distinctly outward while the pes prints are nearly parallel to the direction of travel. The functional axis in manus and pes imprints suggests that the trackmaker moved along the medial side during the stroke progressions (entaxonic), indicating weight support on the inner side of the limbs. There is an indication of webbing between the pedal digits. These new tracks are assigned to Novapes ulsanensis, n. ichnogen., n. ichnosp., which are well‑matched not only with foot skeletons and body size of Monjurosuchus but also the fossil record of choristoderes in East Asia, thereby N. ulsanensis could be made by a monjurosuchid‑like choristoderan and represent the frst possible choristoderan trackway from Asia. N. ulsanensis also suggests that semi‑aquatic choristoderans were capable of walking semi‑erect when moving on the ground with a similar locomotion pattern to that of crocodilians on land. South Korea has become globally famous for various tetrapod footprints from Cretaceous strata1, among which some clades such as frogs2, birds3 and mammals4 have been proved for their existences only with ichnological evidence.
    [Show full text]
  • (Diapsida: Saurosphargidae), with Implications for the Morphological Diversity and Phylogeny of the Group
    Geol. Mag.: page 1 of 21. c Cambridge University Press 2013 1 doi:10.1017/S001675681300023X A new species of Largocephalosaurus (Diapsida: Saurosphargidae), with implications for the morphological diversity and phylogeny of the group ∗ CHUN LI †, DA-YONG JIANG‡, LONG CHENG§, XIAO-CHUN WU†¶ & OLIVIER RIEPPEL ∗ Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, PO Box 643, Beijing 100044, China ‡Department of Geology and Geological Museum, Peking University, Beijing 100871, PR China §Wuhan Institute of Geology and Mineral Resources, Wuhan, 430223, PR China ¶Canadian Museum of Nature, PO Box 3443, STN ‘D’, Ottawa, ON K1P 6P4, Canada Department of Geology, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605-2496, USA (Received 31 July 2012; accepted 25 February 2013) Abstract – Largocephalosaurus polycarpon Cheng et al. 2012a was erected after the study of the skull and some parts of a skeleton and considered to be an eosauropterygian. Here we describe a new species of the genus, Largocephalosaurus qianensis, based on three specimens. The new species provides many anatomical details which were described only briefly or not at all in the type species, and clearly indicates that Largocephalosaurus is a saurosphargid. It differs from the type species mainly in having three premaxillary teeth, a very short retroarticular process, a large pineal foramen, two sacral vertebrae, and elongated small granular osteoderms mixed with some large ones along the lateral most side of the body. With additional information from the new species, we revise the diagnosis and the phylogenetic relationships of Largocephalosaurus and clarify a set of diagnostic features for the Saurosphargidae Li et al.
    [Show full text]
  • Mesozoic Marine Reptile Palaeobiogeography in Response to Drifting Plates
    ÔØ ÅÒÙ×Ö ÔØ Mesozoic marine reptile palaeobiogeography in response to drifting plates N. Bardet, J. Falconnet, V. Fischer, A. Houssaye, S. Jouve, X. Pereda Suberbiola, A. P´erez-Garc´ıa, J.-C. Rage, P. Vincent PII: S1342-937X(14)00183-X DOI: doi: 10.1016/j.gr.2014.05.005 Reference: GR 1267 To appear in: Gondwana Research Received date: 19 November 2013 Revised date: 6 May 2014 Accepted date: 14 May 2014 Please cite this article as: Bardet, N., Falconnet, J., Fischer, V., Houssaye, A., Jouve, S., Pereda Suberbiola, X., P´erez-Garc´ıa, A., Rage, J.-C., Vincent, P., Mesozoic marine reptile palaeobiogeography in response to drifting plates, Gondwana Research (2014), doi: 10.1016/j.gr.2014.05.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Mesozoic marine reptile palaeobiogeography in response to drifting plates To Alfred Wegener (1880-1930) Bardet N.a*, Falconnet J. a, Fischer V.b, Houssaye A.c, Jouve S.d, Pereda Suberbiola X.e, Pérez-García A.f, Rage J.-C.a and Vincent P.a,g a Sorbonne Universités CR2P, CNRS-MNHN-UPMC, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, CP 38, 57 rue Cuvier,
    [Show full text]
  • Ichthyosaur Species Valid Taxa Acamptonectes Fischer Et Al., 2012: Acamptonectes Densus Fischer Et Al., 2012, Lower Cretaceous, Eng- Land, Germany
    Ichthyosaur species Valid taxa Acamptonectes Fischer et al., 2012: Acamptonectes densus Fischer et al., 2012, Lower Cretaceous, Eng- land, Germany. Aegirosaurus Bardet and Fernández, 2000: Aegirosaurus leptospondylus (Wagner 1853), Upper Juras- sic–Lower Cretaceous?, Germany, Austria. Arthropterygius Maxwell, 2010: Arthropterygius chrisorum (Russell, 1993), Upper Jurassic, Canada, Ar- gentina?. Athabascasaurus Druckenmiller and Maxwell, 2010: Athabascasaurus bitumineus Druckenmiller and Maxwell, 2010, Lower Cretaceous, Canada. Barracudasauroides Maisch, 2010: Barracudasauroides panxianensis (Jiang et al., 2006), Middle Triassic, China. Besanosaurus Dal Sasso and Pinna, 1996: Besanosaurus leptorhynchus Dal Sasso and Pinna, 1996, Middle Triassic, Italy, Switzerland. Brachypterygius Huene, 1922: Brachypterygius extremus (Boulenger, 1904), Upper Jurassic, Engand; Brachypterygius mordax (McGowan, 1976), Upper Jurassic, England; Brachypterygius pseudoscythius (Efimov, 1998), Upper Jurassic, Russia; Brachypterygius alekseevi (Arkhangelsky, 2001), Upper Jurassic, Russia; Brachypterygius cantabridgiensis (Lydekker, 1888a), Lower Cretaceous, England. Californosaurus Kuhn, 1934: Californosaurus perrini (Merriam, 1902), Upper Triassic USA. Callawayia Maisch and Matzke, 2000: Callawayia neoscapularis (McGowan, 1994), Upper Triassic, Can- ada. Caypullisaurus Fernández, 1997: Caypullisaurus bonapartei Fernández, 1997, Upper Jurassic, Argentina. Chaohusaurus Young and Dong, 1972: Chaohusaurus geishanensis Young and Dong, 1972, Lower Trias- sic, China.
    [Show full text]
  • Macropredatory Ichthyosaur from the Middle Triassic and the Origin of Modern Trophic Networks
    Macropredatory ichthyosaur from the Middle Triassic and the origin of modern trophic networks Nadia B. Fröbischa,1, Jörg Fröbischa,1, P. Martin Sanderb,1,2, Lars Schmitzc,1,2,3, and Olivier Rieppeld aMuseum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, 10115 Berlin, Germany; bSteinmann Institute of Geology, Mineralogy, and Paleontology, Division of Paleontology, University of Bonn, 53115 Bonn, Germany; cDepartment of Evolution and Ecology, University of California, Davis, CA 95616; and dDepartment of Geology, The Field Museum of Natural History, Chicago, IL 60605 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved December 5, 2012 (received for review October 8, 2012) The biotic recovery from Earth’s most severe extinction event at the Holotype and Only Specimen. The Field Museum of Natural His- Permian-Triassic boundary largely reestablished the preextinction tory (FMNH) contains specimen PR 3032, a partial skeleton structure of marine trophic networks, with marine reptiles assuming including most of the skull (Fig. 1) and axial skeleton, parts of the predator roles. However, the highest trophic level of today’s the pelvic girdle, and parts of the hind fins. marine ecosystems, i.e., macropredatory tetrapods that forage on prey of similar size to their own, was thus far lacking in the Paleozoic Horizon and Locality. FMNH PR 3032 was collected in 2008 from the and early Mesozoic. Here we report a top-tier tetrapod predator, middle Anisian Taylori Zone of the Fossil Hill Member of the Favret a very large (>8.6 m) ichthyosaur from the early Middle Triassic Formation at Favret Canyon, Augusta Mountains, Pershing County, (244 Ma), of Nevada.
    [Show full text]