Reptile Family Tree

Total Page:16

File Type:pdf, Size:1020Kb

Reptile Family Tree Thelodus 78 Rhincodon Manta 99 Squatina 70 Aetobatus 79 Cladoselache 59 Chlamydoselachus 92 Isurus 88 Sphyrna 95 Rhinobatos 70 Heterodontus 90 Belantsea Chimaera 73 97 Iniopteryx Falcatus 85 99 Chondrosteus Pseudoscaphirhynchus 82 Amia Hybodus 60 52 Gregorius 99 90 Entelognathus 84 Hoplosternum 95 Clarias 74 Ictalurus 98 Coccosteus 100 96 Mcnamaraspis Dunkleosteus 73 100 100 Romundina Dapedium 92 Bothriolepis 81 Cheirodus 83 Dicksonosteus <50 Lepidotes 100 Qilinyu 100 Robustichthys Menaspis 88 Lepisosteus Semionotus Reptile Family Tree - Peters 2019 1594+ taxa, 235 characters 58 Perleidus 98 Brachyacanthus <50 Notopterus Ischnacanthus 54 Osteoglossum 85 100 Mimipiscis Pholidophorus * red taxa have too few traits to include on this list, but were tested with small subsets Moythomasia 100 Pteronisculus 69 Coccocephalichthys 95 Cheirolepis <50 Saurichthys 68 74 100 Malacosteus 69 Thoracopterus Chauliodus 58 Engraulis 80 100 Lepidogalaxias 99 Trachinocephalus Megalops Chiasmodon <58 95 Thunnus 77 Strunius Polydactylus Onychodus 79 Heteronectes 67 95 51 80 Barameda 79 Psettodes 100 Gymnothorax Hippoglossus Eurypharynx 74 <50 Anarhichas 94 Allenypterus Xiphactinus 88 92 Quebecius 54 Coryphaena 88 Holoptychius Remora 98 Miguashia 98 Latimeria 59 Sphyraena Esox 94 84 Stensioella 81 Kenichthys 81 Serrasalmus 84 Youngolepis 94 Perca 98 Cyprinus 79 Guiyu 76 Psarolepis <50 <50 Prionotus 90 Powichthys <50 Dactylopterus 83 Polypterus 94 100 Erpetoichthys Aphanopus 68 85 Uranolophus 99 Exocoetus Dipnorhynchus Archosauromorpha 89 68 Tylosurus Howidipterus <50 Xiphias 100 Eldeceeon 1990.7.1 99 Diplovertebron Gogonasus 98 Gasterosteus Eldeceeon holotype 99 92 Romeriscus 97 Cabonnichthys <50 Regalecus 91 61 100 Plectocretacicus 62 100 Bystrowiella 99 Osteolepis Solenodonsaurus Eusthenopteron 70 Gnathonemus 95 85 88 Hippocampus 94 Westlothiana Tinirau Chroniosaurus PIN3585/124 Seriola rivoliana Casineria 100 100 Koilops <50 84 100 Chroniosaurus 98 52 Lampris Brouffia 100 Tiktaalik Chroniosuchus 99 Spathicephalus 78 Mola 93 77 Coelostegus <50 Balistes Paleothyris Panderichthys 91 Hylonomus 99 <50 Anableps 78 Dvinosaurus 66 Diodon Anthracodromeus 100 Trypanognathus Periophthalmus Protorothyris MCZ1532 99 Laidleria 95 <50 79 85 Protorothyris CM 8617 86 Isodectes 94 Seriola zonata 87 98 94 Acroplous 96 Dicrolene Protorothyris MCZ 2149 99 Batrachosuchus 74 Anguilla Vaughnictis Siderops 80 94 62 Antennarius 100 Gerrothorax Lophius 82 Plagiosuchus Electrophorus 85 62 92 Deltaherpeton 100 Gymnotus 66 Elliotsmithia Antarctanax Pholidogaster <50 Apsisaurus Cabarzia 100 88 91 Colosteus Aerosaurus Milosaurus Aytonerpeton 86 67 90 Varanops Greererpeton Varanodon 57 Ossinodus 85 Varanosaurus FMNH PR 1760 Megazostrodon Tinodon 83 91 Parmastega 84 Varanosaurus BSPHM 1901 XV20 100 MGUH-VP-8160 93 Sinodelphys Acanthostega Archaeothyris 100 89 99 Juramaia Shuotherium Ichthyostega Ophiacodon 75 82 70 Chaoyangodens Ausktribosphenos Proterogyrinus 82 Pantelosaurus 68 100 Eoherpeton Brasilitherium Amphitherium 91 97 Haptodus 97 95 Kuehneotherium 100 Neopteroplax Docodon 63 80 82 Secodontosaurus Lactodens Anthracosaurus 76 71 100 Dimetrodon 79 93 Cifelliodon Dryolestes 92 Baphetes 97 Sphenacodon 95 Tachyglossus Megalocephalus Ianthodon 88 Akidolestes 80 85 96 100 Pederpes Edaphosaurus Ornithorhynchus 99 95 Whatcheeria 82 Ianthasaurus 99 Ventastega Glaucosaurus Ukhaatherium 93 Patagosmilus Crassigyrinus Cutleria 94 Hadrocodium 87 88 Morganucodon 87 Sclerothorax NMK-S 118A Hipposaurus 72 Stenocybus Eomaia Volaticotherium Iberospondylus 80 85 62 <50 Agilodocodon 88 Peltobatrachus 97 IVPP V18117 77 Acristatherium 71 Kenyasaurus 59 Cronopio 65 Sclerocephalus smns90055 62 100 Laosuchus 82 Galechirus 96 Didelphis Nigerpeton Ambolestes 51 99 100 52 Suminia Saharastega 89 85 Glironia Venjukovia 55 95 Cochleosaurus 83 Marmosops 80 Eodicynodon Marmosa 78 Chenoprosopus 94 83 Asioryctes 100 79 Zatrachys Dicynodon 100 Asioryctes long rostrum 65 Eryops Biarmosuchus 78 <50 Perameles 98 87 Edops Titanophoneus Macrotis Archegosaurus 100 Procynosuchus 59 Dasycercus 65 Rhineceps 77 Myrmecobius 78 100 Thrinaxodon 84 74 Parotosuchus 75 Anebodon Prozostrodon Docofossor 72 Mastodonsaurus Sclerothorax HLD-V608 100 Dromiciops 97 69 83 Probainognathus Notoryctes Wantzosaurus 85 <50 84 Potorous 54 <50 Trematosaurus long rostrum 99 86 Chiniquodon Pseudocheirus 82 Neldasaurus Castorocauda Dasyuroides Trematosaurus 77 87 98 Haldanodon Metoposaurus 97 Paedotherium 96 Pseudotherium 100 Groeberia Trimerorhachis 71 Pachygenelus Vintana Dendrerpeton Therioherpeton Priacodon 85 Balbaroo 81 Heleosaurus 88 76 87 Perryella Mesenosaurus OMNH 73209 Sinoconodon Trioracodon 86 Phalanger 81 Brasilodon 81 92 Dactylopsia Tersomius 95 9 4 96 99 Mycterosaurus FMNH UC169 98 Haramiyavia 72 Petaurus 97 82 Dissorophus 81 Nikkasaurus Thylacoleo Cacops 89 Microdocodon 65 <50 Broiliellus Mesenosaurus PIN 3706/4 Oligokyphus 94 Mesenosaurus PIN 3717/1 88 100 Kayentatherium 97 Fedexia 94 87 <50 Phascolarctos Ecolsonia Mesenosaurus PIN 158/1 Tritylodon Vombatus 97 <50 98 Chaliminia 64 74 89 Tambachia 79 Niaftasuchus <50 Riograndia Pyrotherium 84 Acheloma 74 57 Platyhistrix <50 Diprotodon 100 Spinolestes Propalorchestes Anningia Jeholodens 81 100 Georgenthalia 88 96 <50 Palorchestes Micromelerpeton 89 Archaeovenator 76 Yanoconodon 96 Interatherium Doleserpeton 95 Orovenator 90 Maotherium 98 71 Asaphestera Gobiconodon 77 Hegetotherium 98 Apateon 83 Pyozia 80 100 92 Gerobatrachus Utaherpeton 52 Liaoconodon 84 Mesotherium 76 Tuditanus 100 Broomia Repenomamus robustus 98 Andrias 88 60 <50 100 Euygenium Necturus Llistrofus 89 Milleropsis BPI-720 Repenomamus giganticus Toxodon 80 Rana Batropetes 98 Erpetonyx <50 100 55 Procoptodon Karaurus 99 Rhynchonkos 54 100 Micraroter Monodelphis Nambaroo Celtedens 97 87 Ascendonanus MNC-TA0924 Chironectes 91 Euryodus primus 80 Proargyrolagus Dendrolagus Eudibamus Huerfanodon 67 97 100 Macropus <50 Kirktonecta Aphelosaurus 61 92 Vincelestes Scincosaurus 100 99 83 Conoryctes 77 92 Petrolacosaurus Pantylus 87 Araeoscelis 83 99 Schowalteria 69 Balanerpeton 91 Stegostretus Thylacosmilus 91 Caerorhachis 94 Spinoaequalis Batrachiderpeton Galesphyrus 99 Amphibamus 94 86 Dasyurus Platyrhinops 100 Keraterpeton 94 Youngina BPI 3859 Sinopa Cimolestes 82 Diceratosaurus 85 Acerosodontosaurus 74 77 80 100 <50 Diplocaulus 100 Sarcophilus Utegenia 2 78 72 85 Thadeosaurus Ernanodon Utegenia 1 Diploceraspis 100 Tangasaurus 98 Sauropleura Hovasaurus 66 Thylacinus 95 Ariekanerprton 83 99 Ptyonius 90 Claudiosaurus 89 Thylophorops Kotlassia 73 Adelosaurus not Amphicyon 91 Seymouria Acherontiscus 61 95 100 Rileymillerus 100 98 Atopodentatus Discosauriscus Sinosaurosphargis 75 Deltatheridium 75 69 76 98 Phlegethontia CGH129 100 Austraolhyaena 63 Makowskia 77 Largocephalosaurus 91 Phlegethontia AMNH6966 72 84 Oxyaena Seymouria.tadpole 92 Omphalosaurus Arctocyon 100 Lethiscus 98 Oestocephalus 100 54 Deltatherium Eusauropleura Anarosaurus Caluromys 100 Mayulestes 86 Tulerpeton <50 Microbrachis Diandongosaurus <50 80 Masrasector 86 77 80 Eucritta <50 Adelospondylus Palatodonta 53 Loxolophus Hyaenodon Borhyaena 86 Stegops Adelogyrinus 98 Pappochelys Vulpavus 82 Callistoe Gephyrostegeus bohemicus 96 Chinlestegophis Palacrodon Didelphodon 78 98 85 <50 Majiashanosaurus 97 Protictis Brachydectes 97 87 93 Lysorophus Paraplacodus 91 Nandinia 99 <50 Eocaecilia Pachypleurosaurus Placodus inexpectatus 99 Talpa 72 99 99 96 Dermophis 97 100 Qianxisaurus 83 Placodus gigas Prohesperocyon 91 99 Cartorhynchus 98 Henodus 97 Eupleres Reptilia 94 Sclerocormus 100 Placochelys 99 Cryptoprocta 99 Puijila 100 100 Keichousaurus Cyamodus 72 Neotherium Dianmeisaurus 93 Herpestes 84 100 Procyon 80 99 Ursus arctos 97 Dawazisaurus 71 Ursus maritimus Silvanerpeton Hanosaurus 95 Ailurus 60 100 88 76 Lariosaurus Ailuropoda 95 Gulo 98 Bobosaurus Mustela Arctodus Corosaurus 71 53 Cymatosaurus 87 Kerberos 100 Lepidosaurmorpha <50 87 Patriofelis 80 Sachicasaurus 90 Urumqia Nothosaurus Sarkastodon <50 57 Bruktererpeton Wangosaurus Machaeroides 63 97 82 100 Simosaurus 87 Thuringothyris MNG 7729 89 Paludidraco 100 Ectoganus 62 82 Thuringothyris MNG 10183 79 84 Hauffiosaurus 66 Stylinodon Amphicynodon 98 Anningsaura 81 93 Psittacotherium Acostasaurus Pistosaurus 75 Megistotherium Saurorictus 64 90 Thalassiodracon 93 99 99 75 Yunguisaurus Palaeosinopa 70 Cephalerpeton 91 Opisthodontosaurus <50 Rhomaleosaurus 98 Phoca 80 98 Odobenus Reiszorhinus 92 Vinialesaurus 75 Concordia KUVP 8702a 100 Tricleidus 95 Miacis 96 Concordia KUVP 96/95 59 <50 Plesiosaurus Hyopsodus 81 Romeria primus 61 Psilotrachelosaurus 51 Libonectes 75 Enaliarctos Romeria texana PIMUZ AIII 0192 97 Albertocnectes 99 Desmatophoca 74 69 77 Protocaptorhinus 96 SMF R 4710 50 Styxosaurus 74 Pithanotaria 66 Stereosternum Simolestes Zalophus Paracaptorhinus 96 99 86 76 99 Brazilosaurus holotype 96 Eocaptorhinus 79 Mesosaurus 72 81 Trinacromerum Speothos 99 Captorhinus YAGM V1401 85 Dolichorhynchops 82 97 Proteles Labidosaurus 95 Peloneustes Canis Serpianosaurus 98 Megacephalosaurus 98 93 87 Amphicyon major 94 Concavispina Brachauchenius 94 Hesperocyon 98 Palaechthon 84 100 Limnoscelis 83 Xinpusaurus kohi 92 Stenorhynchus Cynocephalus 78 Panthera 77 Xinpusaurus suni Pliosaurus kevani 80 Orobates 90 97 94 Zhangheotherium 83 Crocuta Feeserpeton <50 Thalattosaurus Kronosaurus Tseajaia Australothyris 99 Metachcheiromys 89 Amphicyon galushi 79 50 Wachtlerosaurus 98 81 Amphicyon idoneus 98 Tetraceratops Eocasea 87 Manis 73 100 79 Endennasaurus Delorhynchus 100 Chriacus 85 Clarazia 62 Milleretta RC14 Microleter
Recommended publications
  • Sauropareion Anoplus, with a Discussion of Possible Life History
    The postcranial skeleton of the Early Triassic parareptile Sauropareion anoplus, with a discussion of possible life history MARK J. MACDOUGALL, SEAN P. MODESTO, and JENNIFER BOTHA−BRINK MacDougall, M.J., Modesto, S.P., and Botha−Brink, J. 2013. The postcranial skeleton of the Early Triassic parareptile Sauropareion anoplus, with a discussion of possible life history. Acta Palaeontologica Polonica 58 (4): 737–749. The skeletal anatomy of the Early Triassic (Induan) procolophonid reptile Sauropareion anoplus is described on the basis of three partial skeletons from Vangfontein, Middelburg District, South Africa. Together these three specimens preserve the large majority of the pectoral and pelvic girdles, articulated forelimbs and hindlimbs, and all but the caudal portion of the vertebral column, elements hitherto undescribed. Our phylogenetic analysis of the Procolophonoidea is consonant with previous work, positing S. anoplus as the sister taxon to a clade composed of all other procolophonids exclusive of Coletta seca. Previous studies have suggested that procolophonids were burrowers, and this seems to have been the case for S. anoplus, based on comparisons with characteristic skeletal anatomy of living digging animals, such as the presence of a spade−shaped skull, robust phalanges, and large unguals. Key words: Parareptilia, Procolophonidae, phylogenetic analysis, burrowing, Induan, Triassic, South Africa. Mark J. MacDougall [[email protected]], Department of Biology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada and Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Ontario, L5L 1C6, Canada; Sean P. Modesto [[email protected]], Department of Biology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada; Jennifer Botha−Brink [[email protected]], Karoo Palaeontology, National Museum, P.O.
    [Show full text]
  • Ontogenetic Change in the Temporal Region of the Early Permian Parareptile Delorhynchus Cifellii and the Implications for Closure of the Temporal Fenestra in Amniotes
    RESEARCH ARTICLE Ontogenetic Change in the Temporal Region of the Early Permian Parareptile Delorhynchus cifellii and the Implications for Closure of the Temporal Fenestra in Amniotes Yara Haridy*, Mark J. Macdougall, Diane Scott, Robert R. Reisz Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada * [email protected] a11111 Abstract A juvenile specimen of Delorhynchus cifellii, collected from the Early Permian fissure-fill deposits of Richards Spur, Oklahoma, permits the first detailed study of cranial ontogeny in this parareptile. The specimen, consisting of a partially articulated skull and mandible, exhib- OPEN ACCESS its several features that identify it as juvenile. The dermal tuberosities that ornament the dor- Citation: Haridy Y, Macdougall MJ, Scott D, Reisz sal side and lateral edges of the largest skull of D. cifellii specimens, are less prominent in RR (2016) Ontogenetic Change in the Temporal the intermediate sized holotype, and are absent in the new specimen. This indicates that the Region of the Early Permian Parareptile new specimen represents an earlier ontogenetic stage than all previously described mem- Delorhynchus cifellii and the Implications for bers of this species. In addition, the incomplete interdigitation of the sutures, most notably Closure of the Temporal Fenestra in Amniotes. PLoS ONE 11(12): e0166819. doi:10.1371/journal. along the fronto-nasal contact, plus the proportionally larger sizes of the orbit and temporal pone.0166819 fenestrae further support an early ontogenetic stage for this specimen. Comparisons Editor: Thierry Smith, Royal Belgian Institute of between this juvenile and previously described specimens reveal that the size and shape of Natural Sciences, BELGIUM the temporal fenestra in Delorhynchus appear to vary through ontogeny, due to changes in Received: July 18, 2016 the shape and size of the bordering cranial elements.
    [Show full text]
  • The Anatomy of Asilisaurus Kongwe, a Dinosauriform from the Lifua
    THE ANATOMICAL RECORD (2019) The Anatomy of Asilisaurus kongwe,a Dinosauriform from the Lifua Member of the Manda Beds (~Middle Triassic) of Africa 1 2 3 STERLING J. NESBITT , * MAX C. LANGER, AND MARTIN D. EZCURRA 1Department of Geosciences, Virginia Tech, Blacksburg, Virginia 2Departamento de Biologia, Universidade de Sao~ Paulo, Ribeirao~ Preto, Brazil 3Sección Paleontología de Vertebrados CONICET—Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Argentina ABSTRACT The diagnosis of Dinosauria and interrelationships of the earliest dino- saurs relies on careful documentation of the anatomy of their closest rela- tives. These close relatives, or dinosaur “precursors,” are typically only documented by a handful of fossils from across Pangea and nearly all speci- mens are typically missing important regions (e.g., forelimbs, pelves, skulls) that appear to be important to help resolving the relationships of dinosaurs. Here, we fully describe the known skeletal elements of Asilisaurus kongwe, a dinosauriform from the Middle Triassic Manda Beds of the Ruhuhu Basin of Tanzania. The taxon is known from many disarticulated and partially articulated remains and, most importantly, from a spectacularly preserved associated skeleton of an individual containing much of the skull, pectoral and pelvic girdles, forelimb and hindlimb, and parts of the vertebral column including much of the tail. The unprecedented detail of the anatomy indi- cates that Asilisaurus kongwe had a unique skull that was short and had both a premaxillary and dentary edentulous margin, but retained a number of character states plesiomorphic for Archosauria, including a crocodylian- like ankle configuration and a rather short foot with well-developed meta- tarsals I and V.
    [Show full text]
  • Reptile Family Tree
    Reptile Family Tree - Peters 2015 Distribution of Scales, Scutes, Hair and Feathers Fish scales 100 Ichthyostega Eldeceeon 1990.7.1 Pederpes 91 Eldeceeon holotype Gephyrostegus watsoni Eryops 67 Solenodonsaurus 87 Proterogyrinus 85 100 Chroniosaurus Eoherpeton 94 72 Chroniosaurus PIN3585/124 98 Seymouria Chroniosuchus Kotlassia 58 94 Westlothiana Casineria Utegenia 84 Brouffia 95 78 Amphibamus 71 93 77 Coelostegus Cacops Paleothyris Adelospondylus 91 78 82 99 Hylonomus 100 Brachydectes Protorothyris MCZ1532 Eocaecilia 95 91 Protorothyris CM 8617 77 95 Doleserpeton 98 Gerobatrachus Protorothyris MCZ 2149 Rana 86 52 Microbrachis 92 Elliotsmithia Pantylus 93 Apsisaurus 83 92 Anthracodromeus 84 85 Aerosaurus 95 85 Utaherpeton 82 Varanodon 95 Tuditanus 91 98 61 90 Eoserpeton Varanops Diplocaulus Varanosaurus FMNH PR 1760 88 100 Sauropleura Varanosaurus BSPHM 1901 XV20 78 Ptyonius 98 89 Archaeothyris Scincosaurus 77 84 Ophiacodon 95 Micraroter 79 98 Batropetes Rhynchonkos Cutleria 59 Nikkasaurus 95 54 Biarmosuchus Silvanerpeton 72 Titanophoneus Gephyrostegeus bohemicus 96 Procynosuchus 68 100 Megazostrodon Mammal 88 Homo sapiens 100 66 Stenocybus hair 91 94 IVPP V18117 69 Galechirus 69 97 62 Suminia Niaftasuchus 65 Microurania 98 Urumqia 91 Bruktererpeton 65 IVPP V 18120 85 Venjukovia 98 100 Thuringothyris MNG 7729 Thuringothyris MNG 10183 100 Eodicynodon Dicynodon 91 Cephalerpeton 54 Reiszorhinus Haptodus 62 Concordia KUVP 8702a 95 59 Ianthasaurus 87 87 Concordia KUVP 96/95 85 Edaphosaurus Romeria primus 87 Glaucosaurus Romeria texana Secodontosaurus
    [Show full text]
  • University of Birmingham a New Dinosaur With
    University of Birmingham A new dinosaur with theropod affinities from the Late Triassic Santa Maria Formation, South Brazil Marsola, Julio; Bittencourt, Jonathas; Butler, Richard; Da Rosa, Atila; Sayao, Juliana; Langer, Max DOI: 10.1080/02724634.2018.1531878 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Marsola, J, Bittencourt, J, Butler, R, Da Rosa, A, Sayao, J & Langer, M 2019, 'A new dinosaur with theropod affinities from the Late Triassic Santa Maria Formation, South Brazil', Journal of Vertebrate Paleontology, vol. 38, no. 5, e1531878. https://doi.org/10.1080/02724634.2018.1531878 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 25/07/2018 This is the accepted manuscript for a forthcoming publication in Journal of Vertebrate Paleontology. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.
    [Show full text]
  • Width Measured at the Level of Anterior Squamosal/Parietal Suture
    Fig. 5. (A) Scaling of brain vault size (width measured at the level of anterior squamosal/parietal suture) relative to skull size (measured at the distance between the left versus right temporomandibular joints). This shows that allometry of small size of Hadrocodium, by itself, is not sufficient to account for its very large braincase. Had-rocodium's brain vault is larger (wider) than expected for the crown-group mammals with similar skull width from the allometrical regression. By contrast, all contemporaneous mammaliaforms (triangles: Sinoconodon, Morganucodon, and Haldanodon) with the postdentary trough and meckelian groove have smaller (narrower) brain vaults than those living mammal taxa (and Hadrocodium) of comparable skull size. The brain vault is narrower in nonmammaliaform cynodonts (squares: Chaliminia, Massetoganthus, Probelesodon, Probainognathus, and Yunnanodon) than in mammaliaform stem taxa and much narrower than expected for crown group mammals of similar size. The allometric equation (natural logarithmic scale) for the brain vault width (Y) to the skull width at the level of TMJ (X) for species in the mammalian crown groups (circles: 37 living and 8 fossil species): Y =0.98X -0.31 (R2 – 0.715). Data from cynodonts, mammaliaforms, and Hadrocodium are added second arily for comparison with the regression of extant and fossil species of mammalian crown group. (B) Estimated body-size distributions of mammaliaform insectivores in the Early Jurassic Lufeng fauna [following method of Gingerich (50)]. The estimated 2-g body mass of Hadrocodium is in strong contrast to its contemporary mammaliaforms of the Late Triassic and Early Jurassic, such as Sinconodon (from ~13 to ~517 g, based on skull length from 22 to 62 mm) and Morganucodon (from 27 to 89 g, based on skull length from 27 to 38 mm).
    [Show full text]
  • A Small Lepidosauromorph Reptile from the Early Triassic of Poland
    A SMALL LEPIDOSAUROMORPH REPTILE FROM THE EARLY TRIASSIC OF POLAND SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA Evans, S.E. and Borsuk−Białynicka, M. 2009. A small lepidosauromorph reptile from the Early Triassic of Poland. Palaeontologia Polonica 65, 179–202. The Early Triassic karst deposits of Czatkowice quarry near Kraków, southern Poland, has yielded a diversity of fish, amphibians and small reptiles. Two of these reptiles are lepido− sauromorphs, a group otherwise very poorly represented in the Triassic record. The smaller of them, Sophineta cracoviensis gen. et sp. n., is described here. In Sophineta the unspecial− ised vertebral column is associated with the fairly derived skull structure, including the tall facial process of the maxilla, reduced lacrimal, and pleurodonty, that all resemble those of early crown−group lepidosaurs rather then stem−taxa. Cladistic analysis places this new ge− nus as the sister group of Lepidosauria, displacing the relictual Middle Jurassic genus Marmoretta and bringing the origins of Lepidosauria closer to a realistic time frame. Key words: Reptilia, Lepidosauria, Triassic, phylogeny, Czatkowice, Poland. Susan E. Evans [[email protected]], Department of Cell and Developmental Biology, Uni− versity College London, Gower Street, London, WC1E 6BT, UK. Magdalena Borsuk−Białynicka [[email protected]], Institut Paleobiologii PAN, Twarda 51/55, PL−00−818 Warszawa, Poland. Received 8 March 2006, accepted 9 January 2007 180 SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA INTRODUCTION Amongst living reptiles, lepidosaurs (snakes, lizards, amphisbaenians, and tuatara) form the largest and most successful group with more than 7 000 widely distributed species. The two main lepidosaurian clades are Rhynchocephalia (the living Sphenodon and its extinct relatives) and Squamata (lizards, snakes and amphisbaenians).
    [Show full text]
  • Tiago Rodrigues Simões
    Diapsid Phylogeny and the Origin and Early Evolution of Squamates by Tiago Rodrigues Simões A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in SYSTEMATICS AND EVOLUTION Department of Biological Sciences University of Alberta © Tiago Rodrigues Simões, 2018 ABSTRACT Squamate reptiles comprise over 10,000 living species and hundreds of fossil species of lizards, snakes and amphisbaenians, with their origins dating back at least as far back as the Middle Jurassic. Despite this enormous diversity and a long evolutionary history, numerous fundamental questions remain to be answered regarding the early evolution and origin of this major clade of tetrapods. Such long-standing issues include identifying the oldest fossil squamate, when exactly did squamates originate, and why morphological and molecular analyses of squamate evolution have strong disagreements on fundamental aspects of the squamate tree of life. Additionally, despite much debate, there is no existing consensus over the composition of the Lepidosauromorpha (the clade that includes squamates and their sister taxon, the Rhynchocephalia), making the squamate origin problem part of a broader and more complex reptile phylogeny issue. In this thesis, I provide a series of taxonomic, phylogenetic, biogeographic and morpho-functional contributions to shed light on these problems. I describe a new taxon that overwhelms previous hypothesis of iguanian biogeography and evolution in Gondwana (Gueragama sulamericana). I re-describe and assess the functional morphology of some of the oldest known articulated lizards in the world (Eichstaettisaurus schroederi and Ardeosaurus digitatellus), providing clues to the ancestry of geckoes, and the early evolution of their scansorial behaviour.
    [Show full text]
  • Final Copy 2019 10 01 Herrera
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.
    [Show full text]
  • A Beaked Herbivorous Archosaur with Dinosaur Affinities from the Early Late Triassic of Poland
    Journal of Vertebrate Paleontology 23(3):556±574, September 2003 q 2003 by the Society of Vertebrate Paleontology A BEAKED HERBIVOROUS ARCHOSAUR WITH DINOSAUR AFFINITIES FROM THE EARLY LATE TRIASSIC OF POLAND JERZY DZIK Instytut Paleobiologii PAN, Twarda 51/55, 00-818 Warszawa, Poland, [email protected] ABSTRACTÐAn accumulation of skeletons of the pre-dinosaur Silesaurus opolensis, gen. et sp. nov. is described from the Keuper (Late Triassic) claystone of KrasiejoÂw in southern Poland. The strata are correlated with the late Carnian Lehrberg Beds and contain a diverse assemblage of tetrapods, including the phytosaur Paleorhinus, which in other regions of the world co-occurs with the oldest dinosaurs. A narrow pelvis with long pubes and the extensive development of laminae in the cervical vertebrae place S. opolensis close to the origin of the clade Dinosauria above Pseudolagosuchus, which agrees with its geological age. Among the advanced characters is the beak on the dentaries, and the relatively low tooth count. The teeth have low crowns and wear facets, which are suggestive of herbivory. The elongate, but weak, front limbs are probably a derived feature. INTRODUCTION oped nutrient foramina in its maxilla. It is closely related to Azendohsaurus from the Argana Formation of Morocco (Gauf- As is usual in paleontology, with an increase in knowledge fre, 1993). The Argana Formation also has Paleorhinus, along of the fossil record of early archosaurian reptiles, more and with other phytosaurs more advanced than those from Krasie- more lineages emerge or extend their ranges back in time. It is joÂw (see Dutuit, 1977), and it is likely to be somewhat younger.
    [Show full text]
  • Technical Program
    MONDAY, JULY 30 11:00AM 1801770 Polysaccharide Composites as Barrier Materials Jeffrey Catchmark, Penn State, University Park, PA TECHNICAL PROGRAM United States (Presenter: Jeffrey Catchmark) (Jeffrey MONDAY, JULY 30 Catchmark, Kai Chi, Snehasish Basu) 9:30AM-12:00PM 11:15AM 1800994 Production and characterization of in situ synthesis of silver nanoparticles into TEMPO-mediated oxi- The purpose of these Sessions is the open exchange of dized bacterial cellulose and their antivibriocidal ac- ideas, therefore, remarks made by a participant or mem- tivity against shrimp pathogens Sivaramasamy Elayaraja, Zhejiang University, ber of the audience cannot be quoted or attributed to ei- Hangzhou, Zhejiang China, People’s Republic of (Pre- ther the individual or the individuals’ company. NO senter: Sivaramasamy Elayaraja) (Sivaramasamy Ela- RECORDING of the participants’ remarks or discussion is yaraja, Liu Gang, Jianhai Xiang, Songming Zhu) 11:30AM 1801330 Design, Development, Evaluation of Gum Arabic permitted. Pictures of any material shown here are not Milling Machine permitted. Eyad Eltigani, University of Khartoum, Khartoum, Khar- toum Sudan (Presenter: Eyad Eltigani) (Eyad Mohamed Eltigani Abuzeid, Khalid Elgassim Mohamed Ahmed, In respect for the presenters and the people attending the Hossamaldein Fadoul Brima) conference, ASABE would request that anyone having a 11:45AM 1801112 The Design of Longitudinal - axial cylinder for the combine pager, cell phone, or other electronic device please turn Meng Fanhu, Sandong University Technology, Zibo, them off. If your situation does not allow for these devices Shandong province China, People’s Republic of (Pre- to be turned off, please reseat yourself close to an exit senter: Meng Fanhu) (Meng Fanhu) such that everyone can benefit from the information pre- sented here without disruption.
    [Show full text]
  • Rapid and Early Post-Flood Mammalian Diversification Videncede in the Green River Formation
    The Proceedings of the International Conference on Creationism Volume 6 Print Reference: Pages 449-457 Article 36 2008 Rapid and Early Post-Flood Mammalian Diversification videncedE in the Green River Formation John H. Whitmore Cedarville University Kurt P. Wise Southern Baptist Theological Seminary Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Whitmore, John H. and Wise, Kurt P. (2008) "Rapid and Early Post-Flood Mammalian Diversification Evidenced in the Green River Formation," The Proceedings of the International Conference on Creationism: Vol. 6 , Article 36. Available at: https://digitalcommons.cedarville.edu/icc_proceedings/vol6/iss1/36 In A. A. Snelling (Ed.) (2008). Proceedings of the Sixth International Conference on Creationism (pp. 449–457). Pittsburgh, PA: Creation Science Fellowship and Dallas, TX: Institute for Creation Research. Rapid and Early Post-Flood Mammalian Diversification Evidenced in the Green River Formation John H. Whitmore, Ph.D., Cedarville University, 251 N. Main Street, Cedarville, OH 45314 Kurt P. Wise, Ph.D., Southern Baptist Theological Seminary, 2825 Lexington Road.
    [Show full text]