Engineering Mechanics : Dynamics Uniform Rectilinear Motion

Total Page:16

File Type:pdf, Size:1020Kb

Engineering Mechanics : Dynamics Uniform Rectilinear Motion Engineering Mechanics : Dynamics Uniform Rectilinear Motion For particle in uniform rectilinear motion, the acceleration is zero and the velocity is constant. dx = v = constant dt x t ∫ dx = v∫ dt x0 0 x − x0 = vt x = x0 + vt 11 - 1 Engineering Mechanics : Dynamics Uniformly Accelerated Rectilinear Motion For particle in uniformly accelerated rectilinear motion, the acceleration of the particle is constant. dv v t = a = constant ∫ dv = a∫ dt v − v = at dt 0 v0 0 v = v0 + at dx x t = v + at ∫ dx = ∫ ()v + at dt x − x = v t + 1 at 2 dt 0 0 0 0 2 x0 0 x = x + v t + 1 at 2 0 0 2 v x dv 2 2 v = a = constant ∫ v dv = a ∫ dx 1 (v − v )= a()x − x dx 2 0 0 v0 x0 2 2 v = v0 + 2a()x − x0 11 - 2 Engineering Mechanics : Dynamics Motion of Several Particles: Relative Motion • For particles moving along the same line, time should be recorded from the same starting instant and displacements should be measured from the same origin in the same direction. xB A = xB − xA = relative position of B with respect to A xB = xA + xB A vB A = vB − vA = relative velocity of B with respect to A vB = vA + vB A aB A = aB − aA = relative acceleration of B with respect to A aB = aA + aB A 11 - 3 Engineering Mechanics : Dynamics Motion of Several Particles: Dependent Motion • Position of a particle may depend on position of one or more other particles. • Position of block B depends on position of block A. Since rope is of constant length, it follows that sum of lengths of segments must be constant. xA + 2xB = constant (one degree of freedom) • Positions of three blocks are dependent. 2xA + 2xB + xC = constant (two degrees of freedom) • For linearly related positions, similar relations hold between velocities and accelerations. dx dx dx 2 A + 2 B + C = 0 or 2v + 2v + v = 0 dt dt dt A B C dv dv dv 2 A + 2 B + C = 0 or 2a + 2a + a = 0 dt dt dt A B C 11 - 4 Engineering Mechanics : Dynamics Curvilinear Motion: Position, Velocity & Acceleration • Consider particle which occupies position P defined r r by r at time t and P’ defined by r ′ at t + ∆t, r r r ∆r rd v = lim = ∆t→0 ∆t dt = instantaneous velocity (vector) ∆s ds v = lim = ∆t→0 ∆t dt = instantaneous speed (scalar) 11 - 5 Engineering Mechanics : Dynamics Curvilinear Motion: Position, Velocity & Acceleration r v • Considerr velocity of particle at time t and velocity v′ at t + ∆t, r r r ∆v vd a = lim = ∆t→0 ∆t dt = instantaneous acceleration (vector) • In general, acceleration vector is not tangent to particle path and velocity vector. 11 - 6 Engineering Mechanics : Dynamics Rectangular Components of Velocity & Acceleration • When position vector of particle P is given by its rectangular components, r r r r r = ix + jy + kz • Velocity vector, r dx r dy r dz r r r r v = i + j + k = x&i + y& j + z&k dt dt dt r r r = vx i + vy j + vzk • Acceleration vector, r d 2xr d 2 y r d 2 z r r r r a = i + j + k = &&ix + && jy + &&kz dt 2 dt 2 dt 2 r r r = ax i + a y j + azk 11 - 7 Engineering Mechanics : Dynamics Rectangular Components of Velocity & Acceleration • Rectangular components particularly effective when component accelerations can be integrated independently, e.g., motion of a projectile, ax = x&& = 0 a y = y&& = −g az = z&& = 0 with initial conditions, x = y = z = 0 (v ) , v ,(v ) = 0 0 0 0 x 0 ( y )0 z 0 Integrating twice yields v = v v = v − gt v = 0 x ( x )0 y ( y )0 z x = v t y = v t − 1 gt 2 z = 0 ()x 0 ()y 0 2 • Motion in horizontal direction is uniform. • Motion in vertical direction is uniformly accelerated. • Motion of projectile could be replaced by two independent rectilinear motions. 11 - 8 Engineering Mechanics : Dynamics Motion Relative to a Frame in Translation • Designate one frame as the fixed frame of reference . All other frames not rigidly attached to the fixed reference frame are moving frames of reference . • Position vectors for particles A and B rwith respectr to the fixed frame of reference Oxyz are rA and rB. r • VectorrB A joining A and B defines the position of B with respect to the moving frame Ax’y’z’ and r r r rB = rA + rB A • Differentiating twice, r r r r vB = vA + vB A vB A = velocity of B relative to A. r r r r a B = aA + aB A aB A = acceleration of B relative to A. • Absolute motion of B can be obtained by combining motion of A with relative motion of B with respect to moving reference frame attached to A. 11 - 9 Engineering Mechanics : Dynamics Tangential and Normal Components r dv r v2 r dv v2 a = e + e a = a = dt t ρ n t dt n ρ • Tangential component of acceleration reflects change of speed and normal component reflects change of direction. • Tangential component may be positive or negative. Normal component always points toward center of path curvature. 11 - 10.
Recommended publications
  • Classical Mechanics
    Classical Mechanics Hyoungsoon Choi Spring, 2014 Contents 1 Introduction4 1.1 Kinematics and Kinetics . .5 1.2 Kinematics: Watching Wallace and Gromit ............6 1.3 Inertia and Inertial Frame . .8 2 Newton's Laws of Motion 10 2.1 The First Law: The Law of Inertia . 10 2.2 The Second Law: The Equation of Motion . 11 2.3 The Third Law: The Law of Action and Reaction . 12 3 Laws of Conservation 14 3.1 Conservation of Momentum . 14 3.2 Conservation of Angular Momentum . 15 3.3 Conservation of Energy . 17 3.3.1 Kinetic energy . 17 3.3.2 Potential energy . 18 3.3.3 Mechanical energy conservation . 19 4 Solving Equation of Motions 20 4.1 Force-Free Motion . 21 4.2 Constant Force Motion . 22 4.2.1 Constant force motion in one dimension . 22 4.2.2 Constant force motion in two dimensions . 23 4.3 Varying Force Motion . 25 4.3.1 Drag force . 25 4.3.2 Harmonic oscillator . 29 5 Lagrangian Mechanics 30 5.1 Configuration Space . 30 5.2 Lagrangian Equations of Motion . 32 5.3 Generalized Coordinates . 34 5.4 Lagrangian Mechanics . 36 5.5 D'Alembert's Principle . 37 5.6 Conjugate Variables . 39 1 CONTENTS 2 6 Hamiltonian Mechanics 40 6.1 Legendre Transformation: From Lagrangian to Hamiltonian . 40 6.2 Hamilton's Equations . 41 6.3 Configuration Space and Phase Space . 43 6.4 Hamiltonian and Energy . 45 7 Central Force Motion 47 7.1 Conservation Laws in Central Force Field . 47 7.2 The Path Equation .
    [Show full text]
  • Motion and Time Study the Goals of Motion Study
    Motion and Time Study The Goals of Motion Study • Improvement • Planning / Scheduling (Cost) •Safety Know How Long to Complete Task for • Scheduling (Sequencing) • Efficiency (Best Way) • Safety (Easiest Way) How Does a Job Incumbent Spend a Day • Value Added vs. Non-Value Added The General Strategy of IE to Reduce and Control Cost • Are people productive ALL of the time ? • Which parts of job are really necessary ? • Can the job be done EASIER, SAFER and FASTER ? • Is there a sense of employee involvement? Some Techniques of Industrial Engineering •Measure – Time and Motion Study – Work Sampling • Control – Work Standards (Best Practices) – Accounting – Labor Reporting • Improve – Small group activities Time Study • Observation –Stop Watch – Computer / Interactive • Engineering Labor Standards (Bad Idea) • Job Order / Labor reporting data History • Frederick Taylor (1900’s) Studied motions of iron workers – attempted to “mechanize” motions to maximize efficiency – including proper rest, ergonomics, etc. • Frank and Lillian Gilbreth used motion picture to study worker motions – developed 17 motions called “therbligs” that describe all possible work. •GET G •PUT P • GET WEIGHT GW • PUT WEIGHT PW •REGRASP R • APPLY PRESSURE A • EYE ACTION E • FOOT ACTION F • STEP S • BEND & ARISE B • CRANK C Time Study (Stopwatch Measurement) 1. List work elements 2. Discuss with worker 3. Measure with stopwatch (running VS reset) 4. Repeat for n Observations 5. Compute mean and std dev of work station time 6. Be aware of allowances/foreign element, etc Work Sampling • Determined what is done over typical day • Random Reporting • Periodic Reporting Learning Curve • For repetitive work, worker gains skill, knowledge of product/process, etc over time • Thus we expect output to increase over time as more units are produced over time to complete task decreases as more units are produced Traditional Learning Curve Actual Curve Change, Design, Process, etc Learning Curve • Usually define learning as a percentage reduction in the time it takes to make a unit.
    [Show full text]
  • 1 the Principle of Wave–Particle Duality: an Overview
    3 1 The Principle of Wave–Particle Duality: An Overview 1.1 Introduction In the year 1900, physics entered a period of deep crisis as a number of peculiar phenomena, for which no classical explanation was possible, began to appear one after the other, starting with the famous problem of blackbody radiation. By 1923, when the “dust had settled,” it became apparent that these peculiarities had a common explanation. They revealed a novel fundamental principle of nature that wascompletelyatoddswiththeframeworkofclassicalphysics:thecelebrated principle of wave–particle duality, which can be phrased as follows. The principle of wave–particle duality: All physical entities have a dual character; they are waves and particles at the same time. Everything we used to regard as being exclusively a wave has, at the same time, a corpuscular character, while everything we thought of as strictly a particle behaves also as a wave. The relations between these two classically irreconcilable points of view—particle versus wave—are , h, E = hf p = (1.1) or, equivalently, E h f = ,= . (1.2) h p In expressions (1.1) we start off with what we traditionally considered to be solely a wave—an electromagnetic (EM) wave, for example—and we associate its wave characteristics f and (frequency and wavelength) with the corpuscular charac- teristics E and p (energy and momentum) of the corresponding particle. Conversely, in expressions (1.2), we begin with what we once regarded as purely a particle—say, an electron—and we associate its corpuscular characteristics E and p with the wave characteristics f and of the corresponding wave.
    [Show full text]
  • 6. Non-Inertial Frames
    6. Non-Inertial Frames We stated, long ago, that inertial frames provide the setting for Newtonian mechanics. But what if you, one day, find yourself in a frame that is not inertial? For example, suppose that every 24 hours you happen to spin around an axis which is 2500 miles away. What would you feel? Or what if every year you spin around an axis 36 million miles away? Would that have any e↵ect on your everyday life? In this section we will discuss what Newton’s equations of motion look like in non- inertial frames. Just as there are many ways that an animal can be not a dog, so there are many ways in which a reference frame can be non-inertial. Here we will just consider one type: reference frames that rotate. We’ll start with some basic concepts. 6.1 Rotating Frames Let’s start with the inertial frame S drawn in the figure z=z with coordinate axes x, y and z.Ourgoalistounderstand the motion of particles as seen in a non-inertial frame S0, with axes x , y and z , which is rotating with respect to S. 0 0 0 y y We’ll denote the angle between the x-axis of S and the x0- axis of S as ✓.SinceS is rotating, we clearly have ✓ = ✓(t) x 0 0 θ and ✓˙ =0. 6 x Our first task is to find a way to describe the rotation of Figure 31: the axes. For this, we can use the angular velocity vector ! that we introduced in the last section to describe the motion of particles.
    [Show full text]
  • Newtonian Mechanics Is Most Straightforward in Its Formulation and Is Based on Newton’S Second Law
    CLASSICAL MECHANICS D. A. Garanin September 30, 2015 1 Introduction Mechanics is part of physics studying motion of material bodies or conditions of their equilibrium. The latter is the subject of statics that is important in engineering. General properties of motion of bodies regardless of the source of motion (in particular, the role of constraints) belong to kinematics. Finally, motion caused by forces or interactions is the subject of dynamics, the biggest and most important part of mechanics. Concerning systems studied, mechanics can be divided into mechanics of material points, mechanics of rigid bodies, mechanics of elastic bodies, and mechanics of fluids: hydro- and aerodynamics. At the core of each of these areas of mechanics is the equation of motion, Newton's second law. Mechanics of material points is described by ordinary differential equations (ODE). One can distinguish between mechanics of one or few bodies and mechanics of many-body systems. Mechanics of rigid bodies is also described by ordinary differential equations, including positions and velocities of their centers and the angles defining their orientation. Mechanics of elastic bodies and fluids (that is, mechanics of continuum) is more compli- cated and described by partial differential equation. In many cases mechanics of continuum is coupled to thermodynamics, especially in aerodynamics. The subject of this course are systems described by ODE, including particles and rigid bodies. There are two limitations on classical mechanics. First, speeds of the objects should be much smaller than the speed of light, v c, otherwise it becomes relativistic mechanics. Second, the bodies should have a sufficiently large mass and/or kinetic energy.
    [Show full text]
  • Special Relativity Announcements: • Homework Solutions Will Soon Be Culearn • Homework Set 1 Returned Today
    Special relativity Announcements: • Homework solutions will soon be CULearn • Homework set 1 returned today. • Homework #2 is due today. • Homework #3 is posted – due next Wed. • First midterm is 2 weeks from Christian Doppler tomorrow. (1803—1853) Today we will investigate the relativistic Doppler effect and look at momentum and energy. http://www.colorado.edu/physics/phys2170/ Physics 2170 – Fall 2013 1 Clickers Unmatched • #12ACCD73 • #3378DD96 • #3639101F • #36BC3FB5 Need to register your clickers for me to be able to associate • #39502E47 scores with you • #39BEF374 • #39CAB340 • #39CEDD2A http://www.colorado.edu/physics/phys2170/ Physics 2170 – Fall 2013 2 Clicker question 4 last lecture Set frequency to AD A spacecraft travels at speed v=0.5c relative to the Earth. It launches a missile in the forward direction at a speed of 0.5c. How fast is the missile moving relative to Earth? This actually uses the A. 0 inverse transformation: B. 0.25c C. 0.5c Have to keep signs straight. Depends on D. 0.8c which way you are transforming. Also, E. c the velocities can be positive or negative! Best way to solve these is to figure out if the speeds add or subtract and then use the appropriate formula. Since the missile if fired forward in the spacecraft frame, the spacecraft and missile velocities add in the Earth frame. http://www.colorado.edu/physics/phys2170/ Physics 2170 – Fall 2013 3 Velocity addition works with light too! A Spacecraft moving at 0.5c relative to Earth sends out a beam of light in the forward direction. What is the light velocity in the Earth frame? What about if it sends the light out in the backward direction? It works.
    [Show full text]
  • Motion and Forces Notes Key Speed • to Describe How Fast Something Is Traveling, You Have to Know Two Things About Its Motion
    Motion and Forces Notes Key Speed • To describe how fast something is traveling, you have to know two things about its motion. • One is the distance it has traveled, or how far it has gone. • The other is how much time it took to travel that distance. Average Speed • To calculate average speed, divide the distance traveled by the time it takes to travel that distance. • Speed Equation Average speed (in m/s) = distance traveled (in m) divided by time (in s) it took to travel the distance s = d t • Because average speed is calculated by dividing distance by time, its units will always be a distance unit divided by a time unit. • For example, the average speed of a bicycle is usually given in meters per second. • Average speed is useful if you don't care about the details of the motion. • When your motion is speeding up and slowing down, it might be useful to know how fast you are going at a certain time. Instantaneous Speed • The instantaneous speed is the speed of an object at any instant of time. Constant Speed • Sometimes an object is moving such that its instantaneous speed doesn’t change. • When the instantaneous speed doesn't change, an object is moving with constant speed. • The average speed and the instantaneous speed are the same. Calculating Distance • If an object is moving with constant speed, then the distance it travels over any period of time can be calculated using the equation for average speed. • When both sides of this equation are multiplied by the time, you have the equation for distance.
    [Show full text]
  • Gravity, Orbital Motion, and Relativity
    Gravity, Orbital Motion,& Relativity Early Astronomy Early Times • As far as we know, humans have always been interested in the motions of objects in the sky. • Not only did early humans navigate by means of the sky, but the motions of objects in the sky predicted the changing of the seasons, etc. • There were many early attempts both to describe and explain the motions of stars and planets in the sky. • All were unsatisfactory, for one reason or another. The Earth-Centered Universe • A geocentric (Earth-centered) solar system is often credited to Ptolemy, an Alexandrian Greek, although the idea is very old. • Ptolemy’s solar system could be made to fit the observational data pretty well, but only by becoming very complicated. Copernicus’ Solar System • The Polish cleric Copernicus proposed a heliocentric (Sun centered) solar system in the 1500’s. Objections to Copernicus How could Earth be moving at enormous speeds when we don’t feel it? . (Copernicus didn’t know about inertia.) Why can’t we detect Earth’s motion against the background stars (stellar parallax)? Copernicus’ model did not fit the observational data very well. Galileo • Galileo Galilei - February15,1564 – January 8, 1642 • Galileo became convinced that Copernicus was correct by observations of the Sun, Venus, and the moons of Jupiter using the newly-invented telescope. • Perhaps Galileo was motivated to understand inertia by his desire to understand and defend Copernicus’ ideas. Orbital Motion Tycho and Kepler • In the late 1500’s, a Danish nobleman named Tycho Brahe set out to make the most accurate measurements of planetary motions to date, in order to validate his own ideas of planetary motion.
    [Show full text]
  • The Von Neumann/Stapp Approach
    4. The von Neumann/Stapp Approach Von Neumann quantum theory is a formulation in which the entire physical universe, including the bodies and brains of the conscious human participant/observers, is represented in the basic quantum state, which is called the state of the universe. The state of a subsystem, such as a brain, is formed by averaging (tracing) this basic state over all variables other than those that describe the state of that subsystem. The dynamics involves three processes. Process 1 is the choice on the part of the experimenter about how he will act. This choice is sometimes called “The Heisenberg Choice,” because Heisenberg emphasized strongly its crucial role in quantum dynamics. At the pragmatic level it is a “free choice,” because it is controlled, at least in practice, by the conscious intentions of the experimenter/participant, and neither the Copenhagen nor von Neumann formulations provide any description of the causal origins of this choice, apart from the mental intentions of the human agent. Each intentional action involves an effort that is intended to result in a conceived experiential feedback, which can be an immediate confirmation of the success of the action, or a delayed monitoring the experiential consequences of the action. Process 2 is the quantum analog of the equations of motion of classical physics. As in classical physics, these equations of motion are local (i.e., all interactions are between immediate neighbors) and deterministic. They are obtained from the classical equations by a certain quantization procedure, and are reduced to the classical equations by taking the classical approximation of setting to zero the value of Planck’s constant everywhere it appears.
    [Show full text]
  • Frame of Reference
    Frame of Reference Ineral frame of reference– • a reference frame with a constant speed • a reference frame that is not accelerang • If frame “A” has a constant speed with respect to an ineral frame “B”, then frame “A” is also an ineral frame of reference. Newton’s 3 laws of moon are valid in an ineral frame of reference. Example: We consider the earth or the “ground” as an ineral frame of reference. Observing from an object in moon with a constant speed (a = 0) is an ineral frame of reference A non‐ineral frame of reference is one that is accelerang and Newton’s laws of moon appear invalid unless ficous forces are used to describe the moon of objects observed in the non‐ineral reference frame. Example: If you are in an automobile when the brakes are abruptly applied, then you will feel pushed toward the front of the car. You may actually have to extend you arms to prevent yourself from going forward toward the dashboard. However, there is really no force pushing you forward. The car, since it is slowing down, is an accelerang, or non‐ineral, frame of reference, and the law of inera (Newton’s 1st law) no longer holds if we use this non‐ineral frame to judge your moon. An observer outside the car however, standing on the sidewalk, will easily understand that your moon is due to your inera…you connue your path of moon unl an opposing force (contact with the dashboard) stops you. No “fake force” is needed to explain why you connue to move forward as the car stops.
    [Show full text]
  • Linear Momentum
    p-1 Linear Momentum Definition: Linear momentum of a mass m moving with velocity v : p m v Momentum is a vector. Direction of p = direction of velocity v. units [p] = kgm/s (no special name) (No one seems to know why we use the symbol p for momentum, except that we couldn't use "m" because that was already used for mass.) Definition: Total momentum of several masses: m1 with velocity v1 , m2 with velocity v2, etc.. ptot p i p 1 p 2 m 1 v 1 m 2 v 2 i Momentum is an extremely useful concept because total momentum is conserved in a system isolated from outside forces. Momentum is especially useful for analyzing collisions between particles. Conservation of Momentum: You can never create or destroy momentum; all we can do is transfer momentum from one object to another. Therefore, the total momentum of a system of masses isolated from external forces (forces from outside the system) is constant in time. Similar to Conservation of Energy – always true, no exceptions. We will give a proof that momentum is conserved later. Two objects, labeled A and B, collide. v = velocity before collision, v' (v-prime) = velocity after collision. mA vA mA vA' collide v mB mB B vB' Before After Conservation of momentum guarantees that ptot m AA v m BB v m AA v m BB v . The velocities of all the particles changes in the collision, but the total momentum does not change. 10/17/2013 ©University of Colorado at Boulder p-2 Types of collisions elastic collision : total KE is conserved (KE before = KE after) superball on concrete: KE just before collision = KE just after (almost!) The Initial KE just before collision is converted to elastic PE as the ball compresses during the first half of its collision with the floor.
    [Show full text]
  • Kinematics Definition: (A) the Branch of Mechanics Concerned with The
    Chapter 3 – Kinematics Definition: (a) The branch of mechanics concerned with the motion of objects without reference to the forces that cause the motion. (b) The features or properties of motion in an object, regarded in such a way. “Kinematics can be used to find the possible range of motion for a given mechanism, or, working in reverse, can be used to design a mechanism that has a desired range of motion. The movement of a crane and the oscillations of a piston in an engine are both simple kinematic systems. The crane is a type of open kinematic chain, while the piston is part of a closed four‐bar linkage.” Distinguished from dynamics, e.g. F = ma Several considerations: 3.2 – 3.2.2 How do wheels motions affect robot motion (HW 2) 3.2.3 Wheel constraints (rolling and sliding) for Fixed standard wheel Steered standard wheel Castor wheel Swedish wheel Spherical wheel 3.2.4 Combine effects of all the wheels to determine the constraints on the robot. “Given a mobile robot with M wheels…” 3.2.5 Two examples drawn from 3.2.4: Differential drive. Yields same result as in 3.2 (HW 2) Omnidrive (3 Swedish wheels) Conclusion (pp. 76‐77): “We can see from the preceding examples that robot motion can be predicted by combining the rolling constraints of individual wheels.” “The sliding constraints can be used to …evaluate the maneuverability and workspace of the robot rather than just its predicted motion.” 3.3 Mobility and (vs.) Maneuverability Mobility: ability to directly move in the environment.
    [Show full text]