Physics 3550, Fall 2012 Two Body, Central-Force Problem Relevant Sections in Text: §8.1 – 8.7

Total Page:16

File Type:pdf, Size:1020Kb

Physics 3550, Fall 2012 Two Body, Central-Force Problem Relevant Sections in Text: §8.1 – 8.7 Two Body, Central-Force Problem. Physics 3550, Fall 2012 Two Body, Central-Force Problem Relevant Sections in Text: x8.1 { 8.7 Two Body, Central-Force Problem { Introduction. I have already mentioned the two body central force problem several times. This is, of course, an important dynamical system since it represents in many ways the most fundamental kind of interaction between two bodies. For example, this interaction could be gravitational { relevant in astrophysics, or the interaction could be electromagnetic { relevant in atomic physics. There are other possibilities, too. For example, a simple model of strong interactions involves two-body central forces. Here we shall begin a systematic study of this dynamical system. As we shall see, the conservation laws admitted by this system allow for a complete determination of the motion. Many of the topics we have been discussing in previous lectures come into play here. While this problem is very instructive and physically quite important, it is worth keeping in mind that the complete solvability of this system makes it an exceptional type of dynamical system. We cannot solve for the motion of a generic system as we do for the two body problem. The two body problem involves a pair of particles with masses m1 and m2 described by a Lagrangian of the form: 1 2 1 2 L = m ~r_ + m ~r_ − V (j~r − ~r j): 2 1 1 2 2 2 1 2 Reflecting the fact that it describes a closed, Newtonian system, this Lagrangian is in- variant under spatial translations, time translations, rotations, and boosts.* Thus we will have conservation of total energy, total momentum and total angular momentum for this system. The EL equations are equivalent to (exercise) ¨ 0 ~r2 − ~r1 m1~r1 = V (j~r1 − ~r2j) ; j~r1 − ~r2j ¨ 0 ~r1 − ~r2 m2~r2 = V (j~r1 − ~r2j) : j~r1 − ~r2j * \Boosts" are transformations corresponding to changing to a reference frame moving with constant relative velocity. The totality of these symmetry transformations (spacetime translations, rotations, boosts) in non-relativistic Newtonian mechanics forms a group known as the Galileo group. 1 Two Body, Central-Force Problem. Here the prime on the potential energy function denotes a derivative with respect to its argument. The equations of motion consist of 6 coupled ODEs corresponding to the 6 degrees of freedom. In general these equations are non-linear. There is one exceptional case where the equations are linear. Can you see what this case is? From these equations we see that the force exerted on each particle (i) is equal in magni- tude and opposite in direction to that on the other particle (i.e., this force obeys Newton's third law); (ii) is directed along a line joining the (instantaneous) particle positions, and (iii) has a magnitude depending only on the distance between the particles. Of course, the standard example of such a two body problem arises in the motion of gravitating bodies (\Kepler problem"), or in the motion of a pair of electric charges ignoring magnetic and radiative effects. In each case the potential energy is of the form 1 V / : j~r1 − ~r2j The constant of proportionality depends upon the masses, charges, gravitational constant, etc. Reduction to relative motion Our first step toward solving the two body problem is to reduce the problem to that of the relative motion of the two bodies. The physical idea is simple. Given the homogeneity of space, the absolute position of either of the particles has no relevant meaning. Only the relative position should matter. This idea manifests itself as follows. Because the system is invariant under spatial translations, total momentum will be conserved. This means the motion of the center of mass will be at constant velocity in any inertial reference frame (IRF) (exercise). So, this conservation law tells us that 3 degrees of freedom move as a free particle. The remaining 3 degrees of freedom describe the relative motion of the particles; it is here where all the interesting dynamics lie. This effective reduction in degrees of freedom from 6 to 3 as arises from the conservation of total momentum (which is the center of mass momentum) of the system. Let us now make the above comments mathematically precise. Define six generalized coordinates which are to replace the 6 Cartesian coordinates labeling the position of each of the bodies: m ~r + m ~r R~ = 1 1 2 2 ; m1 + m2 ~r = ~r1 − ~r2: We call R~ the center of mass position and we call ~r the relative position. This is easily seen to be an invertible transformation. We have m2 m1 ~r1 = R~ + ~r; ~r2 = R~ − ~r: m1 + m2 m1 + m2 2 Two Body, Central-Force Problem. Substituting these expressions (and their time derivatives) into the Lagrangian, we get 1 _ 2 1 2 L = (m + m )R~ + m~r_ − V (j~rj); 2 1 2 2 where m m m = 1 2 m1 + m2 is called the reduced mass of the system. We see that, in these coordinates, the Lagrangian is of the form ~ _ ~_ ~_ _ L(~r; R; ~r; R) = Lcm(R) + Lrelative(~r; ~r); indicating that the center of mass motion R~(t) and relative motion ~r(t) are completely decoupled (exercise). We can solve for the motion of R~ and ~r separately. The motion of R~ is obvious: R~(t) = R~ 0 + V~ t: By a suitable choice of inertial reference frame we can even set R~(t) = 0 without affecting ~r(t) (exercise). Put differently, up to a boost | which is a symmetry for this system | all solutions to the equations of motion can be obtained by setting R~(t) = 0 and solving for the relative motion. Once we have determined ~r(t), we can easily reconstruct ~r1(t) and ~r2(t) from ~r(t) and R~(t) (exercise). In any case, the only non-trivial problem to solve is the relative motion problem. We henceforth focus on the Lagrangian 1 2 L = m~r_ − V (j~rj); 2 which describes the relative motion. Note that, mathematically speaking, this dynamical system is indistinguishable from a single particle moving in three dimensions subject to a central force field directed at fixed point in space. We have thus used the conservation of total momentum to reduce the analysis of the motion of two bodies interacting by a central force to the analysis of a system mathematically equivalent to that of a single particle moving in a central force field. All our subsequent analysis will apply to this physical system. Keep in mind that, in applications to the 2-body problem, the \particle" with mass m and position ~r is fictitious: its position is really the relative position of the two bodies, and the \particle" mass is really the reduced mass of the two body system. Exercise: Show that when m2 >> m1 we can work in a reference frame in which m2 is (approximately) at rest and we can view the reduced Lagrangian as describing the motion of m1 in the fixed force field of m2. 3 Two Body, Central-Force Problem. A small digression: Lagrangian Reduction By a clever change of variables in the 2 body problem, (~r1; ~r2) ! (R;~ ~r), we are able to obtain a Lagrangian in which three coordinates, namely (Rx;Ry;Rz), are cyclic. Thus the center of mass degrees of freedom \move" according to free particle EL equations and can be eliminated from the problem leaving us with a reduced problem involving 3 fewer degrees of freedom. You can see now why cyclic coordinates are also sometimes called \ignorable". The reduction of the 2 body problem to a problem involving only 3 degrees of freedom by using conservation of total momentum is an instance of what is usually called Lagrangian reduction. This term describes the effective reduction in degrees of freedom afforded by a conservation law. A trivial example of Lagrangian reduction occurs already for motion in one-dimension q described by a time independent Lagrangian. The conservation of energy allows us to completely solve for q(t) (up to quadrature)|thus leaving no more degrees of freedom to worry with. As we shall see, the complete integration of the EL equations for the 2-body problem is nothing but a sequence of Lagrangian reductions. There is a very general and powerful theory of reduction in mechanics (and field theory), but it will take us too far afield to develop it systematically. The best version of it takes place in the Hamiltonian formalism (to be discussed later), where the technique is called \symplectic reduction". Still, even though we will refrain from developing the general theory of Lagrangian reduction, because this is such an important tool in mechanics it is worth digressing for a moment to look at a couple of other examples of this phenomenon. Example: Spherical Pendulum The Lagrangian is 1 L = mR2(θ_2 + sin2 θφ_2) + mgR cos θ: 2 The coordinate φ is ignorable { it does not appear in L { and hence (exercise) mR2 sin2 θφ_ = l = constant: For any given l, this equation can be used to eliminate the φ degree of freedom in terms of an integral involving θ(t) (exercise). Thus we have a reduced problem involving a single degree of freedom θ. Once we find θ(t) we can easily obtain φ(t) by an integral, and the problem is solved. The motion in θ, i.e., θ(t), is determined by the equation of motion for θ with φ(t) eliminated using the conservation law above (exercise). This can be done because φ(t) does not appear in the equation, only φ_(t).
Recommended publications
  • Rotational Motion (The Dynamics of a Rigid Body)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body) Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body)" (1958). Robert Katz Publications. 141. https://digitalcommons.unl.edu/physicskatz/141 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 11 Rotational Motion (The Dynamics of a Rigid Body) 11-1 Motion about a Fixed Axis The motion of the flywheel of an engine and of a pulley on its axle are examples of an important type of motion of a rigid body, that of the motion of rotation about a fixed axis. Consider the motion of a uniform disk rotat­ ing about a fixed axis passing through its center of gravity C perpendicular to the face of the disk, as shown in Figure 11-1. The motion of this disk may be de­ scribed in terms of the motions of each of its individual particles, but a better way to describe the motion is in terms of the angle through which the disk rotates.
    [Show full text]
  • Classical Mechanics
    Classical Mechanics Hyoungsoon Choi Spring, 2014 Contents 1 Introduction4 1.1 Kinematics and Kinetics . .5 1.2 Kinematics: Watching Wallace and Gromit ............6 1.3 Inertia and Inertial Frame . .8 2 Newton's Laws of Motion 10 2.1 The First Law: The Law of Inertia . 10 2.2 The Second Law: The Equation of Motion . 11 2.3 The Third Law: The Law of Action and Reaction . 12 3 Laws of Conservation 14 3.1 Conservation of Momentum . 14 3.2 Conservation of Angular Momentum . 15 3.3 Conservation of Energy . 17 3.3.1 Kinetic energy . 17 3.3.2 Potential energy . 18 3.3.3 Mechanical energy conservation . 19 4 Solving Equation of Motions 20 4.1 Force-Free Motion . 21 4.2 Constant Force Motion . 22 4.2.1 Constant force motion in one dimension . 22 4.2.2 Constant force motion in two dimensions . 23 4.3 Varying Force Motion . 25 4.3.1 Drag force . 25 4.3.2 Harmonic oscillator . 29 5 Lagrangian Mechanics 30 5.1 Configuration Space . 30 5.2 Lagrangian Equations of Motion . 32 5.3 Generalized Coordinates . 34 5.4 Lagrangian Mechanics . 36 5.5 D'Alembert's Principle . 37 5.6 Conjugate Variables . 39 1 CONTENTS 2 6 Hamiltonian Mechanics 40 6.1 Legendre Transformation: From Lagrangian to Hamiltonian . 40 6.2 Hamilton's Equations . 41 6.3 Configuration Space and Phase Space . 43 6.4 Hamiltonian and Energy . 45 7 Central Force Motion 47 7.1 Conservation Laws in Central Force Field . 47 7.2 The Path Equation .
    [Show full text]
  • L-9 Conservation of Energy, Friction and Circular Motion Kinetic Energy Potential Energy Conservation of Energy Amusement Pa
    L-9 Conservation of Energy, Friction and Circular Motion Kinetic energy • If something moves in • Kinetic energy, potential energy and any way, it has conservation of energy kinetic energy • kinetic energy (KE) • What is friction and what determines how is energy of motion m v big it is? • If I drive my car into a • Friction is what keeps our cars moving tree, the kinetic energy of the car can • What keeps us moving in a circular path? do work on the tree – KE = ½ m v2 • centripetal vs. centrifugal force it can knock it over KE does not depend on which direction the object moves Potential energy conservation of energy • If I raise an object to some height (h) it also has • if something has energy W stored as energy – potential energy it doesn’t loose it GPE = mgh • If I let the object fall it can do work • It may change from one • We call this Gravitational Potential Energy form to another (potential to kinetic and F GPE= m x g x h = m g h back) h • KE + PE = constant mg mg m in kg, g= 10m/s2, h in m, GPE in Joules (J) • example – roller coaster • when we do work in W=mgh PE regained • the higher I lift the object the more potential lifting the object, the as KE energy it gas work is stored as • example: pile driver, spring launcher potential energy. Amusement park physics Up and down the track • the roller coaster is an excellent example of the conversion of energy from one form into another • work must first be done in lifting the cars to the top of the first hill.
    [Show full text]
  • Velocity-Corrected Area Calculation SCIEX PA 800 Plus Empower
    Velocity-corrected area calculation: SCIEX PA 800 Plus Empower Driver version 1.3 vs. 32 Karat™ Software Firdous Farooqui1, Peter Holper1, Steve Questa1, John D. Walsh2, Handy Yowanto1 1SCIEX, Brea, CA 2Waters Corporation, Milford, MA Since the introduction of commercial capillary electrophoresis (CE) systems over 30 years ago, it has been important to not always use conventional “chromatography thinking” when using CE. This is especially true when processing data, as there are some key differences between electrophoretic and chromatographic data. For instance, in most capillary electrophoresis separations, peak area is not only a function of sample load, but also of an analyte’s velocity past the detection window. In this case, early migrating peaks move past the detection window faster than later migrating peaks. This creates a peak area bias, as any relative difference in an analyte’s migration velocity will lead to an error in peak area determination and relative peak area percent. To help minimize Figure 1: The PA 800 Plus Pharmaceutical Analysis System. this bias, peak areas are normalized by migration velocity. The resulting parameter is commonly referred to as corrected peak The capillary temperature was maintained at 25°C in all area or velocity corrected area. separations. The voltage was applied using reverse polarity. This technical note provides a comparison of velocity corrected The following methods were used with the SCIEX PA 800 Plus area calculations using 32 Karat™ and Empower software. For Empower™ Driver v1.3: both, standard processing methods without manual integration were used to process each result. For 32 Karat™ software, IgG_HR_Conditioning: conditions the capillary Caesar integration1 was turned off.
    [Show full text]
  • Three Body Problem
    PHYS 7221 - The Three-Body Problem Special Lecture: Wednesday October 11, 2006, Juhan Frank, LSU 1 The Three-Body Problem in Astronomy The classical Newtonian three-body gravitational problem occurs in Nature exclusively in an as- tronomical context and was the subject of many investigations by the best minds of the 18th and 19th centuries. Interest in this problem has undergone a revival in recent decades when it was real- ized that the evolution and ultimate fate of star clusters and the nuclei of active galaxies depends crucially on the interactions between stellar and black hole binaries and single stars. The general three-body problem remains unsolved today but important advances and insights have been enabled by the advent of modern computational hardware and methods. The long-term stability of the orbits of the Earth and the Moon was one of the early concerns when the age of the Earth was not well-known. Newton solved the two-body problem for the orbit of the Moon around the Earth and considered the e®ects of the Sun on this motion. This is perhaps the earliest appearance of the three-body problem. The ¯rst and simplest periodic exact solution to the three-body problem is the motion on collinear ellipses found by Euler (1767). Also Euler (1772) studied the motion of the Moon assuming that the Earth and the Sun orbited each other on circular orbits and that the Moon was massless. This approach is now known as the restricted three-body problem. At about the same time Lagrange (1772) discovered the equilateral triangle solution described in Goldstein (2002) and Hestenes (1999).
    [Show full text]
  • Orbital Mechanics
    Orbital Mechanics These notes provide an alternative and elegant derivation of Kepler's three laws for the motion of two bodies resulting from their gravitational force on each other. Orbit Equation and Kepler I Consider the equation of motion of one of the particles (say, the one with mass m) with respect to the other (with mass M), i.e. the relative motion of m with respect to M: r r = −µ ; (1) r3 with µ given by µ = G(M + m): (2) Let h be the specific angular momentum (i.e. the angular momentum per unit mass) of m, h = r × r:_ (3) The × sign indicates the cross product. Taking the derivative of h with respect to time, t, we can write d (r × r_) = r_ × r_ + r × ¨r dt = 0 + 0 = 0 (4) The first term of the right hand side is zero for obvious reasons; the second term is zero because of Eqn. 1: the vectors r and ¨r are antiparallel. We conclude that h is a constant vector, and its magnitude, h, is constant as well. The vector h is perpendicular to both r and the velocity r_, hence to the plane defined by these two vectors. This plane is the orbital plane. Let us now carry out the cross product of ¨r, given by Eqn. 1, and h, and make use of the vector algebra identity A × (B × C) = (A · C)B − (A · B)C (5) to write µ ¨r × h = − (r · r_)r − r2r_ : (6) r3 { 2 { The r · r_ in this equation can be replaced by rr_ since r · r = r2; and after taking the time derivative of both sides, d d (r · r) = (r2); dt dt 2r · r_ = 2rr;_ r · r_ = rr:_ (7) Substituting Eqn.
    [Show full text]
  • The Origins of Velocity Functions
    The Origins of Velocity Functions Thomas M. Humphrey ike any practical, policy-oriented discipline, monetary economics em- ploys useful concepts long after their prototypes and originators are L forgotten. A case in point is the notion of a velocity function relating money’s rate of turnover to its independent determining variables. Most economists recognize Milton Friedman’s influential 1956 version of the function. Written v = Y/M = v(rb, re,1/PdP/dt, w, Y/P, u), it expresses in- come velocity as a function of bond interest rates, equity yields, expected inflation, wealth, real income, and a catch-all taste-and-technology variable that captures the impact of a myriad of influences on velocity, including degree of monetization, spread of banking, proliferation of money substitutes, devel- opment of cash management practices, confidence in the future stability of the economy and the like. Many also are aware of Irving Fisher’s 1911 transactions velocity func- tion, although few realize that it incorporates most of the same variables as Friedman’s.1 On velocity’s interest rate determinant, Fisher writes: “Each per- son regulates his turnover” to avoid “waste of interest” (1963, p. 152). When rates rise, cashholders “will avoid carrying too much” money thus prompting a rise in velocity. On expected inflation, he says: “When...depreciation is anticipated, there is a tendency among owners of money to spend it speedily . the result being to raise prices by increasing the velocity of circulation” (p. 263). And on real income: “The rich have a higher rate of turnover than the poor. They spend money faster, not only absolutely but relatively to the money they keep on hand.
    [Show full text]
  • VELOCITY from Our Establishment in 1957, We Have Become One of the Oldest Exclusive Manufacturers of Commercial Flooring in the United States
    VELOCITY From our establishment in 1957, we have become one of the oldest exclusive manufacturers of commercial flooring in the United States. As one of the largest privately held mills, our FAMILY-OWNERSHIP provides a heritage of proven performance and expansive industry knowledge. Most importantly, our focus has always been on people... ensuring them that our products deliver the highest levels of BEAUTY, PERFORMANCE and DEPENDABILITY. (cover) Velocity Move, quarter turn. (right) Velocity Move with Pop Rojo and Azul, quarter turn. VELOCITY 3 velocity 1814 style 1814 style 1814 style 1814 color 1603 color 1604 color 1605 position direction magnitude style 1814 style 1814 style 1814 color 1607 color 1608 color 1609 reaction move constant style 1814 color 1610 vector Velocity Vector, quarter turn. VELOCITY 5 where to use kinetex Healthcare Fitness Centers kinetex overview Acute care hospitals, medical Health Clubs/Gyms office buildings, urgent care • Cardio Centers clinics, outpatient surgery • Stationary Weight Centers centers, outpatient physical • Dry Locker Room Areas therapy/rehab centers, • Snack Bars outpatient imaging centers, etc. • Offices Kinetex® is an advanced textile composite flooring that combines key attributes of • Cafeteria, dining areas soft-surface floor covering with the long-wearing performance characteristics of • Chapel Retail / Mercantile hard-surface flooring. Created as a unique floor covering alternative to hard-surface Wholesale / Retail merchants • Computer room products, J+J Flooring’s Kinetex encompasses an unprecedented range of • Corridors • Checkout / cash wrap performance attributes for retail, healthcare, education and institutional environments. • Diagnostic imaging suites • Dressing rooms In addition to its human-centered qualities and highly functional design, Kinetex • Dry physical therapy • Sales floor offers a reduced environmental footprint compared to traditional hard-surface options.
    [Show full text]
  • Laplace-Runge-Lenz Vector
    Laplace-Runge-Lenz Vector Alex Alemi June 6, 2009 1 Alex Alemi CDS 205 LRL Vector The central inverse square law force problem is an interesting one in physics. It is interesting not only because of its applicability to a great deal of situations ranging from the orbits of the planets to the spectrum of the hydrogen atom, but also because it exhibits a great deal of symmetry. In fact, in addition to the usual conservations of energy E and angular momentum L, the Kepler problem exhibits a hidden symmetry. There exists an additional conservation law that does not correspond to a cyclic coordinate. This conserved quantity is associated with the so called Laplace-Runge-Lenz (LRL) vector A: A = p × L − mkr^ (LRL Vector) The nature of this hidden symmetry is an interesting one. Below is an attempt to introduce the LRL vector and begin to discuss some of its peculiarities. A Some History The LRL vector has an interesting and unique history. Being a conservation for a general problem, it appears as though it was discovered independently a number of times. In fact, the proper name to attribute to the vector is an open question. The modern popularity of the use of the vector can be traced back to Lenz’s use of the vector to calculate the perturbed energy levels of the Kepler problem using old quantum theory [1]. In his paper, Lenz describes the vector as “little known” and refers to a popular text by Runge on vector analysis. In Runge’s text, he makes no claims of originality [1].
    [Show full text]
  • 1 the Basic Set-Up 2 Poisson Brackets
    MATHEMATICS 7302 (Analytical Dynamics) YEAR 2016–2017, TERM 2 HANDOUT #12: THE HAMILTONIAN APPROACH TO MECHANICS These notes are intended to be read as a supplement to the handout from Gregory, Classical Mechanics, Chapter 14. 1 The basic set-up I assume that you have already studied Gregory, Sections 14.1–14.4. The following is intended only as a succinct summary. We are considering a system whose equations of motion are written in Hamiltonian form. This means that: 1. The phase space of the system is parametrized by canonical coordinates q =(q1,...,qn) and p =(p1,...,pn). 2. We are given a Hamiltonian function H(q, p, t). 3. The dynamics of the system is given by Hamilton’s equations of motion ∂H q˙i = (1a) ∂pi ∂H p˙i = − (1b) ∂qi for i =1,...,n. In these notes we will consider some deeper aspects of Hamiltonian dynamics. 2 Poisson brackets Let us start by considering an arbitrary function f(q, p, t). Then its time evolution is given by n df ∂f ∂f ∂f = q˙ + p˙ + (2a) dt ∂q i ∂p i ∂t i=1 i i X n ∂f ∂H ∂f ∂H ∂f = − + (2b) ∂q ∂p ∂p ∂q ∂t i=1 i i i i X 1 where the first equality used the definition of total time derivative together with the chain rule, and the second equality used Hamilton’s equations of motion. The formula (2b) suggests that we make a more general definition. Let f(q, p, t) and g(q, p, t) be any two functions; we then define their Poisson bracket {f,g} to be n def ∂f ∂g ∂f ∂g {f,g} = − .
    [Show full text]
  • Integrals of Motion Key Point #15 from Bachelor Course
    KeyKey12-10-07 see PointPoint http://www.strw.leidenuniv.nl/˜ #15#10 fromfrom franx/college/ BachelorBachelor mf-sts-07-c4-5 Course:Course:12-10-07 see http://www.strw.leidenuniv.nl/˜ IntegralsIntegrals ofof franx/college/ MotionMotion mf-sts-07-c4-6 4.2 Constants and Integrals of motion Integrals (BT 3.1 p 110-113) Much harder to define. E.g.: 1 2 Energy (all static potentials): E(⃗x,⃗v)= 2 v + Φ First, we define the 6 dimensional “phase space” coor- dinates (⃗x,⃗v). They are conveniently used to describe Lz (axisymmetric potentials) the motions of stars. Now we introduce: L⃗ (spherical potentials) • Integrals constrain geometry of orbits. • Constant of motion: a function C(⃗x,⃗v, t) which is constant along any orbit: examples: C(⃗x(t1),⃗v(t1),t1)=C(⃗x(t2),⃗v(t2),t2) • 1. Spherical potentials: E,L ,L ,L are integrals of motion, but also E,|L| C is a function of ⃗x, ⃗v, and time t. x y z and the direction of L⃗ (given by the unit vector ⃗n, Integral of motion which is defined by two independent numbers). ⃗n de- • : a function I(x, v) which is fines the plane in which ⃗x and ⃗v must lie. Define coor- constant along any orbit: dinate system with z axis along ⃗n I[⃗x(t1),⃗v(t1)] = I[⃗x(t2),⃗v(t2)] ⃗x =(x1,x2, 0) I is not a function of time ! Thus: integrals of motion are constants of motion, ⃗v =(v1,v2, 0) but constants of motion are not always integrals of motion! → ⃗x and ⃗v constrained to 4D region of the 6D phase space.
    [Show full text]
  • STUDENT HIGHLIGHT – Hassan Najafi Alishah - “Symplectic Geometry, Poisson Geometry and KAM Theory” (Mathematics)
    SEPTEMBER OCTOBER // 2010 NUMBER// 28 STUDENT HIGHLIGHT – Hassan Najafi Alishah - “Symplectic Geometry, Poisson Geometry and KAM theory” (Mathematics) Hassan Najafi Alishah, a CoLab program student specializing in math- The Hamiltonian function (or energy function) is constant along the ematics, is doing advanced work in the Mathematics Departments of flow. In other words, the Hamiltonian function is a constant of motion, Instituto Superior Técnico, Lisbon, and the University of Texas at Austin. a principle that is sometimes called the energy conservation law. A This article provides an overview of his research topics. harmonic spring, a pendulum, and a one-dimensional compressible fluid provide examples of Hamiltonian Symplectic and Poisson geometries underlie all me- systems. In the former, the phase spaces are symplec- chanical systems including the solar system, the motion tic manifolds, but for the later phase space one needs of a rigid body, or the interaction of small molecules. the more general concept of a Poisson manifold. The origins of symplectic and Poisson structures go back to the works of the French mathematicians Joseph-Louis A Hamiltonian system with enough suitable constants Lagrange (1736-1813) and Simeon Denis Poisson (1781- of motion can be integrated explicitly and its orbits can 1840). Hermann Weyl (1885-1955) first used “symplectic” be described in detail. These are called completely in- with its modern mathematical meaning in his famous tegrable Hamiltonian systems. Under appropriate as- monograph “The Classical groups.” (The word “sym- sumptions (e.g., in a compact symplectic manifold) plectic” itself is derived from a Greek word that means the motions of a completely integrable Hamiltonian complex.) Lagrange introduced the concept of a system are quasi-periodic.
    [Show full text]