Penicillium Chrysogenum Strains Salo, Oleksandr

Total Page:16

File Type:pdf, Size:1020Kb

Penicillium Chrysogenum Strains Salo, Oleksandr University of Groningen Secondary metabolism by industrially improved Penicillium chrysogenum strains Salo, Oleksandr IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2016 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Salo, O. (2016). Secondary metabolism by industrially improved Penicillium chrysogenum strains. University of Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 28-09-2021 CCChhhaaa apppt ttteee rrr 1 1 1 1 Secondary metabolite production aapptteerr 11 by Penicillium chrysogenum hh Oleksandr Salo1, Roel A.L. Bovenberg2,3, Arnold J.M. Driessen1,4,* CC ¹Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands ²Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands ³DSM Biotechnology Centre, Delft, The Netherlands ⁴Kluyver Centre for Genomics of Industrial Fermentations, Julianalaan 67, 2628BC Delft, The Netherlands Chapter 1 Submitted in modified form to Horizon Press Abstract The filamentous fungus Penicillium chrysogenum is a major industrial producer of the β-lactam antibiotic penicillin. Penicillin was discovered by Alexander Fleming in 1928, and was among the first medications to be effective against bacterial infections. Penicillins are still widely used today but are now produced by high β-lactam yielding strains that emerged from extensive classical strain improvement programs lasting for several decades. In 2008, the genome of P. chrysogenum was sequenced revealing a largely unexploited reservoir of nonribosomal peptide synthetase and polyketide synthase genes that specify potential bioactive compounds. In recent years, several pathways have been resolved that are responsible for the production of a wide variety of secondary metabolites (but these are), mostly nonribosomal peptides. Therefore, a challenge lies ahead to also elucidate the function of novel polyketide synthases and their associated products 4 Secondary metabolite production by Penicillium chrysogenum Introduction The filamentous fungus Penicillium chrysogenum belongs to the genus Penicillium and features the typical brush-shaped morphology of its conidiophores. Because of the importance of this penicillin producing fungus, it was intensive- ly studied by taxonomists during the last seven decades. Initially classified by Alexander Fleming as P. rubrum [1], this fungus has later been re-identified by Thom as P. notatum [2]. Further improvement of the taxonomical schemes resulted in association of Fleming’s isolate with the names P. chrysogenum [3], P. griseoro- seum or P. rubens [4]. The phenotypic similarities between P. chrysogenum and P. notatum were considered by Raper and Thom in 1949, who included both species into the newly established section Chrysogena (subsection Radiata). In 1977, Sam- son [3] assigned P. notatum, P. meleagrinum, P. cyaneofulvum and six addition- al species as synonymous to P. chrysogenum. Eventually, both Fleming’s isolate and the industrial penicillin producer Wisconsin were given the name Penicillium chrysogenum as nomen conservandum [5, 6]. According to the latest phylogenetic findings based on multi-gene analysis, morphological and extrolite similarities the section Chrysogena was expanded with up to eighteen species. Eight of those are producing penicillins [5]. P. chrysogenum is found in diverse environments like soil, spoiled fruits, air and even at the extreme conditions of the Antarctic ice core [7, 8]. Recently, the interest towards marine derived microorganisms as a potential source of the novel bioactive compounds, lead to the identification of P. chrysogenum species living in symbiosis with halophilic spongy Ircinia fasciculata [9] and red algal genera Lau- rencia [10]. Commonly known as non-pathogenic, P. chrysogenum has also been related to invasive human infections in patients with an immune system disorder [11]. Moreover, P. chrysogenum induces a dose-dependent allergic asthma-like re- sponse in mice [12]. The latter observation is of particular importance for human health, considering the identification of this fungus in common domestic environ- ments like old buildings, on walls and in industrial dust. 5 Chapter 1 Submitted in modified form to Horizon Press Metabolites produced by Penicillium chrysogenum During the last few decades, many bioactive compounds have been detected in the culture broth of P. chrysogenum and for several of these compounds the genes involved in their biosynthesis have been identified. Secondary metabolites are pro- duced through two main mechanisms, namely by nonribosomal peptide syntheth- ases (NRPS) and polyketide synthases (PKS). In addition, there are also hybrid NRPS-PKS enzymes. Ribosome unrelated polypeptide biosynthesis is performed by NRPS enzymes according to a thio-template mechanism. This results in poly- peptide chain assembly that is preprogrammed according to the modular sequence of the substrate specific domains within these multifunctional enzymes. The broad substrate specificity of the NRPS domains allows the incorporation of proteinogenic and non-proteinogenic amino acids as well as pseudo, hydroxy and N-methylated analogs. This provides a wide structural diversity and correspondingly broad bio- activity spectra for NRPS derived metabolites [13]. In contrast, for the biosynthesis of polyketides, CoA activated acetyl, malonyl, methylmalonyl units are required as the building blocks during extension. The produced molecules vary in length and the β-keto reduction level. Here we provide a historical overview of the secondary metabolites associated with P. chrysogenum (Fig. 1). Significant progress has been made to characterize NRPS-derived secondary metabolites but linking specific metabolites to any of the PKS-encoding genes present in the genome still lags behind. The genome of P. chrysogenum encodes 10 NPRS, 20 PKS and two hybrid NRPS-PKS genes [14]. Several of these genes have now been associated with specific products. Interest- ingly, the intensive classical strain improvement program of P. chrysogenum that was implemented from the early forties fourteens’ of last century and onwards in order to increase the yield of β-lactams eliminated pigment and other secondary metabolite formation [15]. Therefore, many of the metabolites described below are only produced in significant quantities by wild-type likeP. chrysogenum strains. The mechanisms of gene inactivation underlying this phenomenon, however, remained unresolved until now. 6 Secondary metabolite production by Penicillium chrysogenum Penicillins Penicillins were the first discovered β-lactam antibiotics that have remained ther- apeutically and commercially important for the last six decades. This class of com- pounds comprises molecules carrying a β-lactam ring nucleus within their chemical structure. β-lactam antibiotics show antimicrobial activity against Gram-positive bacteria by inhibiting cell wall biosynthesis. The β-lactam ring covalently binds to the active site of the DD-transpeptidase enzyme which is responsible for the cross- linking of the peptidoglycan bundles in the bacterial cell wall. There are three main genes involved in penicillin biosynthesis and these are clustered in the genome [16, 17]. These are the pcbAB, pcbC and penDE genes that encode the non-ri- bosomal peptide synthetase L-α-(δ-aminoadipyl)-L-α-cysteinyl-D-α-valine synthe- tase (ACVS), isopenicillin N synthase (IPNS) and isopenicillin N acetyltransferase (AT), respectively. The biosynthesis starts with the NRPS mediated condensation of α-aminoadipic acid (A), cysteine (C) and valine (V) and the formation of ACV tripeptide. β-lactam ring formation is catalyzed by Isopenicillin N (1) synthase fol- lowed by the attachment of the CoA activated side chains by Isopenicillin N acetyl- transferase. The acyltransferase enzyme also harbors hydrolytic activity, and con- verts isopenicillin N into 6-aminopenicillanic acid (6-APA). The latter is an important precursor for the production of semi-synthetic β-lactams such as amoxicillin and ampicillin. These semisynthetic production processes has expanded the activity spectrum of this class of antibiotics. Under natural conditions, a variety of side chain precursors determines the formation of the natural penicillins like, Penicillin K (2) but these
Recommended publications
  • Identification and Nomenclature of the Genus Penicillium
    Downloaded from orbit.dtu.dk on: Dec 20, 2017 Identification and nomenclature of the genus Penicillium Visagie, C.M.; Houbraken, J.; Frisvad, Jens Christian; Hong, S. B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Published in: Studies in Mycology Link to article, DOI: 10.1016/j.simyco.2014.09.001 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., ... Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78, 343-371. DOI: 10.1016/j.simyco.2014.09.001 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M.
    [Show full text]
  • Pulmonary Infection Caused by Talaromyces Purpurogenus in a Patient with Multiple Myeloma
    Le Infezioni in Medicina, n. 2, 153-157, 2016 CASE REPORT 153 Pulmonary infection caused by Talaromyces purpurogenus in a patient with multiple myeloma Altay Atalay1, Ayse Nedret Koc1, Gulsah Akyol2, Nuri Cakır1, Leylagul Kaynar2, Aysegul Ulu-Kilic3 1Department of Medical Microbiology, University of Erciyes, Kayseri, Turkey; 2Department of Haematology, University of Erciyes, Kayseri, Turkey; 3Department of Infectious Disease and Clinical Microbiology, University of Erciyes, Kayseri, Turkey SUMMARY A 66-year-old female patient with multiple myelo- based on the CT images. The sputum sample was sent ma (MM) was admitted to the emergency service on to the mycology laboratory and direct microscopic ex- 29.09.2014 with an inability to walk, and urinary and amination performed with Gram and Giemsa’s stain- faecal incontinence. She had previously undergone au- ing showed the presence of septate hyphae; there- tologous bone marrow transplantation (ABMT) twice. fore voriconazole was added to the treatment. Slow The patient was hospitalized at the Department of growing (at day 10), grey-greenish colonies and red Haematology. Further investigations showed findings pigment formation were observed in all culture media suggestive of a spinal mass at the T5-T6-T7 level, and except cycloheximide-containing Sabouraud dextrose a mass lesion in the iliac fossa. The mass lesion was agar (SDA) medium. The isolate was initially consid- resected and needle biopsy was performed during a ered to be Talaromyces marneffei. However, it was sub- colonoscopy. Examination of the specimens revealed sequently identified by DNA sequencing analysis as plasmacytoma. The patient also had chronic obstruc- Talaromyces purpurogenus. The patient was discharged tive pulmonary disease (COPD) and was suffering at her own wish, as she was willing to continue treat- from respiratory distress.
    [Show full text]
  • Identification and Nomenclature of the Genus Penicillium
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M. Visagie1, J. Houbraken1*, J.C. Frisvad2*, S.-B. Hong3, C.H.W. Klaassen4, G. Perrone5, K.A. Seifert6, J. Varga7, T. Yaguchi8, and R.A. Samson1 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands; 2Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; 3Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, Korea; 4Medical Microbiology & Infectious Diseases, C70 Canisius Wilhelmina Hospital, 532 SZ Nijmegen, The Netherlands; 5Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; 6Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada; 7Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közep fasor 52, Hungary; 8Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan *Correspondence: J. Houbraken, [email protected]; J.C. Frisvad, [email protected] Abstract: Penicillium is a diverse genus occurring worldwide and its species play important roles as decomposers of organic materials and cause destructive rots in the food industry where they produce a wide range of mycotoxins. Other species are considered enzyme factories or are common indoor air allergens. Although DNA sequences are essential for robust identification of Penicillium species, there is currently no comprehensive, verified reference database for the genus. To coincide with the move to one fungus one name in the International Code of Nomenclature for algae, fungi and plants, the generic concept of Penicillium was re-defined to accommodate species from other genera, such as Chromocleista, Eladia, Eupenicillium, Torulomyces and Thysanophora, which together comprise a large monophyletic clade.
    [Show full text]
  • Species-Specific PCR to Describe Local-Scale Distributions of Four
    fungal ecology 6 (2013) 419e429 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/funeco Species-specific PCR to describe local-scale distributions of four cryptic species in the Penicillium 5 chrysogenum complex Alexander G.P. BROWNE*, Matthew C. FISHER, Daniel A. HENK* Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom article info abstract Article history: Penicillium chrysogenum is a ubiquitous airborne fungus detected in every sampled region of Received 2 October 2012 the Earth. Owing to its role in Alexander Fleming’s serendipitous discovery of Penicillin in Revision received 8 March 2013 1928, the fungus has generated widespread scientific interest; however its natural history is Accepted 13 March 2013 not well understood. Research has demonstrated speciation within P. chrysogenum, Available online 15 June 2013 describing the existence of four cryptic species. To discriminate the four species, we Corresponding editor: developed protocols for species-specific diagnostic PCR directly from fungal conidia. 430 Gareth W. Griffith Penicillium isolates were collected to apply our rapid diagnostic tool and explore the dis- tribution of these fungi across the London Underground rail transport system revealing Keywords: significant differences between Underground lines. Phylogenetic analysis of multiple type Alexander Fleming isolates confirms that the ‘Fleming species’ should be named Penicillium rubens and that London Underground divergence of the four ‘Chrysogenum complex’ fungi occurred about 0.75 million yr ago. Mycology Finally, the formal naming of two new species, Penicillium floreyi and Penicillium chainii,is Penicillium chrysogenum performed. Phylogeny ª 2013 The Authors. Published by Elsevier Ltd. All rights reserved. Taxonomy Introduction In Sep.
    [Show full text]
  • Penicillium Chrysogenum Isolated from Subclinical Bovine Mastitis
    Jameel and Yassein Iraqi Journal of Science, 2021, Vol. 62, No. 7, pp: 2131-2142 DOI: 10.24996/ijs.2021.62.7.2 ISSN: 0067-2904 Virulence Potential of Penicillium Chrysogenum Isolated from Subclinical Bovine Mastitis Shaimaa Nabhan Yassein ,٭Fadwa Abdul Razaq Jameel Department of Microbiology, college of Veterinary Medicine, University of Baghdad, Baghdad, Iraq Received: 28/7/2020 Accepted: 9/10/2020 Abstract The present study aimed to the isolation and identification of Penicillium chrysogenum from subclinical bovine mastitis as well as the evaluation of their potential to produce the main virulence factors by assessing proteinase production, urease production, growth rate at 3 C, and hemolytic activity on Blood agar. One hundred milk samples were assembled from the White Gold village and surrounded outlying farms of Abu-Ghraib, Baghdad province, during the period from November 2018 to March 2019. Each milk sample was tested for California Mastitis (CMT). The results indicated that 85% of the samples gave positive (+ve) results for CMT. Sixty six mycotic isolates were detected, including 31 isolates of Penicillium spp. (46.9%) and 23 isolates of P. chrysogenum (34.8%). All of P. chrysogenum isolates were identified by culturing on Sabouraud Dextrose Agar and Czapek Doxes Agar at 25 ºC for 5-7 days. P. chrysogenum was diagnosed by polymerase chain reaction (PCR) based on the internal transcribed spacer (ITS) region of fungal ribosomal DNA (rDNA). The results of genetic identities showed that this fungus had 94% matching with the reference strain. Also, this study indicated that P. chrysogenum has several virulence factors with the ability of this fungus to degrade both proteins (albumin and casein), hydrolyse urea, and grow ate C, but not to confer hemolytic activity on Blood Agar.
    [Show full text]
  • Penicillium Chrysogenum Thom 1910
    -- CALIFORNIA D EPAUMENT OF cdfa FOOD & AGRICULTURE ~ California Pest Rating Proposal for Penicillium chrysogenum Thom 1910 Current Pest Rating: none Proposed Pest Rating: C Kingdom: Fungi, Phylum: Ascomycota Subphylum: Pezizomycotina, Class: Eurotiomycetes SubclassEurotiomycetidae, Order: Eurotiales Family: Trichocomaceae Comment Period: 9/18/2020 through 11/2/2020 Initiating Event: On August 9, 2019, USDA-APHIS published a list of “Native and Naturalized Plant Pests Permitted by Regulation”. Interstate movement of these plant pests is no longer federally regulated within the 48 contiguous United States. There are 49 plant pathogens (bacteria, fungi, viruses, and nematodes) on this list. California may choose to continue to regulate movement of some or all these pathogens into and within the state. In order to assess the needs and potential requirements to issue a state permit, a formal risk analysis for Penicillium chrysogenum is given herein and a permanent pest rating is proposed. History & Status: Background: Postharvest diseases are caused mainly by ascomycete fungi, plus a few species of oomycetes, zygomycetes, basidiomycetes, and bacteria. Ascomycetes and imperfect mitosporic fungi are by far the most common and most important causes of postharvest decay. Diseases develop on fruit, seeds, or other plant products during harvesting, grading, packing, and transportation to market and up until the moment of actual consumption. All types of plant parts are susceptible to postharvest diseases. In general, the more tender or succulent the exterior of the product and the greater the water content of the entire product, the more susceptible it is to injury and infection and post-harvest -- CALIFORNIA D EPAUMENT OF cdfa FOOD & AGRICULTURE ~ decay.
    [Show full text]
  • Synthesis of Antibiotic Penicillin-G Enzymatically by Penicillium Chrysogenum
    Asian Journal of Chemistry; Vol. 31, No. 10 (2019), 2367-2369 AJSIAN OURNAL OF C HEMISTRY https://doi.org/10.14233/ajchem.2019.21766 Synthesis of Antibiotic Penicillin-G Enzymatically by Penicillium chrysogenum *, *, REFDINAL NAWFA , ADI SETYO PURNOMO and HERDAYANTO SULISTYO PUTRO Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia *Corresponding authors: E-mail: [email protected]; [email protected] Received: 20 October 2018; Accepted: 2 July 2019; Published online: 30 August 2019; AJC-19553 Penicillin-G antibiotic was used as the basic ingredient of making antibiotic type β-lactam such as tetracycline, amoxicillin, ampicillin and other antibiotics. Penicillin-G was splited into 6-amino penicillanic acid as the source of β-lactam. The biosynthetic pathway for the formation of penicillin-G in Penicillium chrysogenum cell through the formation of intermediates was carried out in the form of amino acids such as α-aminoadipate, L-cysteine, L-valine which are formed from glucose (food ingredients).The formation of 6-amino penicillanic acid is an amino acid combination of L-cysteine and L-valine, a step part of the formation of antibiotic penicillin-G in P. chrysogenum cells, thus, it is obvious that there are enzymes involved in its formation. The objective of this study was to examine the use of enzymes present in P. chrysogenum cells to produce penicillin-G and 6-amino penicillanic acid using the intermediate compounds α-aminoadipate, L-cysteine, L-valine and phenylacetic acid assisted by NAFA® coenzymes in P. chrysogenum cells which is more permeable.
    [Show full text]
  • Detection of Penicillin G Produced by Penicillium Chrysogenum KF 425 In
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.984930; this version posted March 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Detection of Penicillin G Produced by Penicillium chrysogenum KF 425 in Vivo with Raman Microspectroscopy and Multivariate Curve Resolution-Alternating Least Squares Methods Shumpei Horii†,‡, Masahiro Ando§,⊥, Ashok Z. Samuel§, Akira Take║, §,, Takuji Nakashima║, Atsuko Matsumoto║, Yōko Takahashi║, and Haruko Takeyama‡ §,∇,O,* †Department of Advanced Science Engineering , and OConsolidated Research Institute for Advanced Science and Medical Care, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169- 8555, Japan ‡Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan §Research Organization for Nano & Life Innovation,Waseda University, 513 Wasedatsurumaki- cho, Shinjuku-ku, Tokyo 162-0041, Japan ⊥PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332- 0012, Japan ║ Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.984930; this version posted March 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 108-8641, Japan ∇Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.984930; this version posted March 11, 2020.
    [Show full text]
  • Deconstructing the Fable of the Discovery of Penicillin By
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Loughborough University Institutional Repository La Moisissure et la Bactérie: Deconstructing the Fable of the Discovery of Penicillin by Ernest Duchesne Gilbert Shama Department of Chemical Engineering. Loughborough University Loughborough Leicestershire, LE11 3TU, UK. +44 1509 222514 [email protected] Abstract: Ernest Duchesne (1874–1912) completed his thesis on microbial antagonism in 1897 in Lyon. His work lay unknown for fifty years, but on being brought to light led to his being credited with having discovered penicillin prior to Alexander Fleming. The claims surrounding Duchesne are examined here both from the strictly microbiological perspective, and also for what they reveal about how the process of discovery is frequently misconstrued. The combined weight of evidence presented here militates strongly against the possibility that the species of Penicillium that Duchesne worked with produced penicillin. Keywords: Ernest Duchesne, Penicillin, Alexander Fleming, Penicillium 1 Introduction Following the appearance of an article on penicillin in The Times of London in the summer of 1942,1 Almroth Wright, head of the inoculation department at St Mary’s Hospital in Paddington, wrote to the editor concerning a colleague of his—a certain Alexander Fleming. In his letter, Wright pointed out that the newspaper had “refrained from putting the laurel wreath around anybody’s brow for [penicillin’s] discovery” and that “on the principle of palmam qui meruit ferat (let him bear the palm who has earned it) it should be decreed to Professor Fleming.”2 A number of commentators over the seventy years or so that have elapsed since the publication of this letter have sought to remove—snatch even—the wreath from Alexander Fleming’s brow and award it elsewhere.
    [Show full text]
  • Aspergillus and Penicillium Identification Using DNA Sequences: Barcode Or MLST?
    Appl Microbiol Biotechnol (2012) 95:339–344 DOI 10.1007/s00253-012-4165-2 MINI-REVIEW Aspergillus and Penicillium identification using DNA sequences: barcode or MLST? Stephen W. Peterson Received: 28 March 2012 /Revised: 9 May 2012 /Accepted: 10 May 2012 /Published online: 27 May 2012 # Springer-Verlag (outside the USA) 2012 Abstract Current methods in DNA technology can detect several commodities. Aspergillus fumigatus, Aspergillus single nucleotide polymorphisms with measurable accuracy flavus, Aspergillus terreus (Walsh et al. 2011), and using several different approaches appropriate for different Talaromyces (syn. 0 Penicillium) marneffei (Sudjaritruk uses. If there are even single nucleotide differences that are et al. 2012) are recognized opportunistic pathogens of humans, invariant markers of the species, we can accomplish identifi- especially those with weakened immune systems. Aspergillus cation through rapid DNA-based tests. The question of whether niger is used for the production of enzymes and citric acid we can reliably detect and identify species of Aspergillus and (e.g., Dhillon et al. 2012), Aspergillus oryzae is used to pro- Penicillium turns mainly upon the completeness of our alpha duce soy sauce, Penicillium roqueforti ripens blue cheeses and taxonomy, our species concepts, and how well the available penicillin is produced by Penicillium chrysogenum (e.g., Xu et DNA data coincide with the taxonomic diversity in the family al. 2012). Heat-resistant Byssochlamys species can grow in Trichocomaceae. No single gene is yet known that is invariant pasteurized fruit juices (Sant’ana et al. 2010). These genera within species and variable between species as would be opti- along with a few others comprise the family Trichocomaceae.
    [Show full text]
  • Kreuzungstypgene Und Sexualzyklus Bei Dem Penicillin-Produzenten
    Kreuzungstypgene und Sexualzyklus bei dem Penicillin- Produzenten Penicillium chrysogenum Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Biologie und Biotechnologie an der Internationalen Graduiertenschule Biowissenschaften der Ruhr-Universität Bochum angefertigt am Lehrstuhl für Allgemeine und Molekulare Botanik vorgelegt von Julia Böhm aus Recklinghausen Bochum April, 2014 Referent: Prof. Dr. Ulrich Kück Korreferent: Prof. Dr. Dominik Begerow Mating-type genes and the sexual cycle of the penicillin producer Penicillium chrysogenum Dissertation to obtain the degree Doctor Rerum Naturalium (Dr. rer. nat.) Submitted to the International Graduate School of Biosciences, Faculty of Biology and Biotechnology at the Ruhr-University Bochum, Germany Thesis performed at the Department of General and Molecular Botany submitted by Julia Böhm from Recklinghausen, Germany Bochum April, 2014 1st Supervisor: Prof. Dr. Ulrich Kück 2nd Supervisor: Prof. Dr. Dominik Begerow Danksagung Zu Beginn bedanke ich mich herzlich bei meinem Doktorvater Herrn Prof. Dr. Ulrich Kück für das äußerst interessante Thema, die zahlreichen wissenschaftlichen Anregungen und Diskussionen, die sehr guten Arbeitsbedingungen und das rege Interesse am Fortschreiten dieser Arbeit. Herrn Prof. Dr. Dominik Begerow danke ich für die freundliche Übernahme des Korreferates. Allen Mitarbeitern des Lehrstuhls für Allgemeine und Molekulare Botanik danke ich für die gute Zusammenarbeit und das tolle Arbeitsklima. Insbesondere bedanke ich mich bei Stefanie Mertens, die mir immer mit guten Ratschlägen zur Seite stand und stets ein offenes Ohr für Sorgen oder Probleme hatte. Des Weiteren danke ich herzlich Ingeborg Godehardt, Katerina Koutsantas und Susanne Schlewinski für die Unterstützung bei einigen Experimenten. Zudem danke ich Elke Adolph und Stephanie Lorenz für die Autoklavierarbeiten, besonders wenn ich wieder mal eben 100 Kolben brauchte.
    [Show full text]
  • Studying the Gene Expression of Penicillium Rubens Under the Effect
    antibiotics Article Studying the Gene Expression of Penicillium rubens Under the Effect of Eight Essential Oils Zuzana Kisová 1, Andrea Šoltýsová 2,3,Mária Buˇcková 1,Gábor Beke 1, Andrea Puškárová 1 and Domenico Pangallo 1,* 1 Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia; [email protected] (Z.K.); [email protected] (M.B.); [email protected] (G.B.); [email protected] (A.P.) 2 Department of Molecular Biology, Faculty of Natural Sciences of Comenius University, Ilkoviˇcova6, 84215 Bratislava, Slovakia; [email protected] 3 Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia * Correspondence: [email protected]; Tel.: +421-2-5930-7443 Received: 22 May 2020; Accepted: 16 June 2020; Published: 19 June 2020 Abstract: Essential oils (EOs) are well-known for their beneficial properties against a broad range of microorganisms. For the better understanding of their mechanism of action in fungi, a microarray approach was used in order to evaluate the gene expression of Penicillium chrysogenum (recently renamed P. rubens) exposed to the indirect contact (vapors) of eight EOs. The selection of assayed EOs was based on their antifungal activity. The extraction of RNA and the microarray hybridization procedure were optimized for the analysis of P. rubens. Gene ontology annotation was performed to investigate the functional analysis of the genes. To uncover the metabolic pathway of these differentially expressed genes, they were mapped into the KEGG BRITE pathway database. The transcriptomic analysis showed that, from a total of 12,675 genes, only 551 genes are annotated, and the other 12,124 genes encoded hypothetical proteins.
    [Show full text]