Penicillium Chrysogenum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification and Nomenclature of the Genus Penicillium
Downloaded from orbit.dtu.dk on: Dec 20, 2017 Identification and nomenclature of the genus Penicillium Visagie, C.M.; Houbraken, J.; Frisvad, Jens Christian; Hong, S. B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Published in: Studies in Mycology Link to article, DOI: 10.1016/j.simyco.2014.09.001 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., ... Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78, 343-371. DOI: 10.1016/j.simyco.2014.09.001 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M. -
Pulmonary Infection Caused by Talaromyces Purpurogenus in a Patient with Multiple Myeloma
Le Infezioni in Medicina, n. 2, 153-157, 2016 CASE REPORT 153 Pulmonary infection caused by Talaromyces purpurogenus in a patient with multiple myeloma Altay Atalay1, Ayse Nedret Koc1, Gulsah Akyol2, Nuri Cakır1, Leylagul Kaynar2, Aysegul Ulu-Kilic3 1Department of Medical Microbiology, University of Erciyes, Kayseri, Turkey; 2Department of Haematology, University of Erciyes, Kayseri, Turkey; 3Department of Infectious Disease and Clinical Microbiology, University of Erciyes, Kayseri, Turkey SUMMARY A 66-year-old female patient with multiple myelo- based on the CT images. The sputum sample was sent ma (MM) was admitted to the emergency service on to the mycology laboratory and direct microscopic ex- 29.09.2014 with an inability to walk, and urinary and amination performed with Gram and Giemsa’s stain- faecal incontinence. She had previously undergone au- ing showed the presence of septate hyphae; there- tologous bone marrow transplantation (ABMT) twice. fore voriconazole was added to the treatment. Slow The patient was hospitalized at the Department of growing (at day 10), grey-greenish colonies and red Haematology. Further investigations showed findings pigment formation were observed in all culture media suggestive of a spinal mass at the T5-T6-T7 level, and except cycloheximide-containing Sabouraud dextrose a mass lesion in the iliac fossa. The mass lesion was agar (SDA) medium. The isolate was initially consid- resected and needle biopsy was performed during a ered to be Talaromyces marneffei. However, it was sub- colonoscopy. Examination of the specimens revealed sequently identified by DNA sequencing analysis as plasmacytoma. The patient also had chronic obstruc- Talaromyces purpurogenus. The patient was discharged tive pulmonary disease (COPD) and was suffering at her own wish, as she was willing to continue treat- from respiratory distress. -
Identification and Nomenclature of the Genus Penicillium
available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M. Visagie1, J. Houbraken1*, J.C. Frisvad2*, S.-B. Hong3, C.H.W. Klaassen4, G. Perrone5, K.A. Seifert6, J. Varga7, T. Yaguchi8, and R.A. Samson1 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands; 2Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; 3Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, Korea; 4Medical Microbiology & Infectious Diseases, C70 Canisius Wilhelmina Hospital, 532 SZ Nijmegen, The Netherlands; 5Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; 6Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada; 7Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közep fasor 52, Hungary; 8Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan *Correspondence: J. Houbraken, [email protected]; J.C. Frisvad, [email protected] Abstract: Penicillium is a diverse genus occurring worldwide and its species play important roles as decomposers of organic materials and cause destructive rots in the food industry where they produce a wide range of mycotoxins. Other species are considered enzyme factories or are common indoor air allergens. Although DNA sequences are essential for robust identification of Penicillium species, there is currently no comprehensive, verified reference database for the genus. To coincide with the move to one fungus one name in the International Code of Nomenclature for algae, fungi and plants, the generic concept of Penicillium was re-defined to accommodate species from other genera, such as Chromocleista, Eladia, Eupenicillium, Torulomyces and Thysanophora, which together comprise a large monophyletic clade. -
Phylogeny and Nomenclature of the Genus Talaromyces and Taxa Accommodated in Penicillium Subgenus Biverticillium
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector available online at www.studiesinmycology.org StudieS in Mycology 70: 159–183. 2011. doi:10.3114/sim.2011.70.04 Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium R.A. Samson1, N. Yilmaz1,6, J. Houbraken1,6, H. Spierenburg1, K.A. Seifert2, S.W. Peterson3, J. Varga4 and J.C. Frisvad5 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada, 3Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, U.S.A., 4Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary, 5Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark; 6Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. *Correspondence: R.A. Samson, [email protected] Abstract: The taxonomic history of anamorphic species attributed to Penicillium subgenus Biverticillium is reviewed, along with evidence supporting their relationship with teleomorphic species classified inTalaromyces. To supplement previous conclusions based on ITS, SSU and/or LSU sequencing that Talaromyces and subgenus Biverticillium comprise a monophyletic group that is distinct from Penicillium at the generic level, the phylogenetic relationships of these two groups with other genera of Trichocomaceae was further studied by sequencing a part of the RPB1 (RNA polymerase II largest subunit) gene. -
Species-Specific PCR to Describe Local-Scale Distributions of Four
fungal ecology 6 (2013) 419e429 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/funeco Species-specific PCR to describe local-scale distributions of four cryptic species in the Penicillium 5 chrysogenum complex Alexander G.P. BROWNE*, Matthew C. FISHER, Daniel A. HENK* Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom article info abstract Article history: Penicillium chrysogenum is a ubiquitous airborne fungus detected in every sampled region of Received 2 October 2012 the Earth. Owing to its role in Alexander Fleming’s serendipitous discovery of Penicillin in Revision received 8 March 2013 1928, the fungus has generated widespread scientific interest; however its natural history is Accepted 13 March 2013 not well understood. Research has demonstrated speciation within P. chrysogenum, Available online 15 June 2013 describing the existence of four cryptic species. To discriminate the four species, we Corresponding editor: developed protocols for species-specific diagnostic PCR directly from fungal conidia. 430 Gareth W. Griffith Penicillium isolates were collected to apply our rapid diagnostic tool and explore the dis- tribution of these fungi across the London Underground rail transport system revealing Keywords: significant differences between Underground lines. Phylogenetic analysis of multiple type Alexander Fleming isolates confirms that the ‘Fleming species’ should be named Penicillium rubens and that London Underground divergence of the four ‘Chrysogenum complex’ fungi occurred about 0.75 million yr ago. Mycology Finally, the formal naming of two new species, Penicillium floreyi and Penicillium chainii,is Penicillium chrysogenum performed. Phylogeny ª 2013 The Authors. Published by Elsevier Ltd. All rights reserved. Taxonomy Introduction In Sep. -
Penicillium Chrysogenum Isolated from Subclinical Bovine Mastitis
Jameel and Yassein Iraqi Journal of Science, 2021, Vol. 62, No. 7, pp: 2131-2142 DOI: 10.24996/ijs.2021.62.7.2 ISSN: 0067-2904 Virulence Potential of Penicillium Chrysogenum Isolated from Subclinical Bovine Mastitis Shaimaa Nabhan Yassein ,٭Fadwa Abdul Razaq Jameel Department of Microbiology, college of Veterinary Medicine, University of Baghdad, Baghdad, Iraq Received: 28/7/2020 Accepted: 9/10/2020 Abstract The present study aimed to the isolation and identification of Penicillium chrysogenum from subclinical bovine mastitis as well as the evaluation of their potential to produce the main virulence factors by assessing proteinase production, urease production, growth rate at 3 C, and hemolytic activity on Blood agar. One hundred milk samples were assembled from the White Gold village and surrounded outlying farms of Abu-Ghraib, Baghdad province, during the period from November 2018 to March 2019. Each milk sample was tested for California Mastitis (CMT). The results indicated that 85% of the samples gave positive (+ve) results for CMT. Sixty six mycotic isolates were detected, including 31 isolates of Penicillium spp. (46.9%) and 23 isolates of P. chrysogenum (34.8%). All of P. chrysogenum isolates were identified by culturing on Sabouraud Dextrose Agar and Czapek Doxes Agar at 25 ºC for 5-7 days. P. chrysogenum was diagnosed by polymerase chain reaction (PCR) based on the internal transcribed spacer (ITS) region of fungal ribosomal DNA (rDNA). The results of genetic identities showed that this fungus had 94% matching with the reference strain. Also, this study indicated that P. chrysogenum has several virulence factors with the ability of this fungus to degrade both proteins (albumin and casein), hydrolyse urea, and grow ate C, but not to confer hemolytic activity on Blood Agar. -
Penicillium Chrysogenum Thom 1910
-- CALIFORNIA D EPAUMENT OF cdfa FOOD & AGRICULTURE ~ California Pest Rating Proposal for Penicillium chrysogenum Thom 1910 Current Pest Rating: none Proposed Pest Rating: C Kingdom: Fungi, Phylum: Ascomycota Subphylum: Pezizomycotina, Class: Eurotiomycetes SubclassEurotiomycetidae, Order: Eurotiales Family: Trichocomaceae Comment Period: 9/18/2020 through 11/2/2020 Initiating Event: On August 9, 2019, USDA-APHIS published a list of “Native and Naturalized Plant Pests Permitted by Regulation”. Interstate movement of these plant pests is no longer federally regulated within the 48 contiguous United States. There are 49 plant pathogens (bacteria, fungi, viruses, and nematodes) on this list. California may choose to continue to regulate movement of some or all these pathogens into and within the state. In order to assess the needs and potential requirements to issue a state permit, a formal risk analysis for Penicillium chrysogenum is given herein and a permanent pest rating is proposed. History & Status: Background: Postharvest diseases are caused mainly by ascomycete fungi, plus a few species of oomycetes, zygomycetes, basidiomycetes, and bacteria. Ascomycetes and imperfect mitosporic fungi are by far the most common and most important causes of postharvest decay. Diseases develop on fruit, seeds, or other plant products during harvesting, grading, packing, and transportation to market and up until the moment of actual consumption. All types of plant parts are susceptible to postharvest diseases. In general, the more tender or succulent the exterior of the product and the greater the water content of the entire product, the more susceptible it is to injury and infection and post-harvest -- CALIFORNIA D EPAUMENT OF cdfa FOOD & AGRICULTURE ~ decay. -
Synthesis of Antibiotic Penicillin-G Enzymatically by Penicillium Chrysogenum
Asian Journal of Chemistry; Vol. 31, No. 10 (2019), 2367-2369 AJSIAN OURNAL OF C HEMISTRY https://doi.org/10.14233/ajchem.2019.21766 Synthesis of Antibiotic Penicillin-G Enzymatically by Penicillium chrysogenum *, *, REFDINAL NAWFA , ADI SETYO PURNOMO and HERDAYANTO SULISTYO PUTRO Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia *Corresponding authors: E-mail: [email protected]; [email protected] Received: 20 October 2018; Accepted: 2 July 2019; Published online: 30 August 2019; AJC-19553 Penicillin-G antibiotic was used as the basic ingredient of making antibiotic type β-lactam such as tetracycline, amoxicillin, ampicillin and other antibiotics. Penicillin-G was splited into 6-amino penicillanic acid as the source of β-lactam. The biosynthetic pathway for the formation of penicillin-G in Penicillium chrysogenum cell through the formation of intermediates was carried out in the form of amino acids such as α-aminoadipate, L-cysteine, L-valine which are formed from glucose (food ingredients).The formation of 6-amino penicillanic acid is an amino acid combination of L-cysteine and L-valine, a step part of the formation of antibiotic penicillin-G in P. chrysogenum cells, thus, it is obvious that there are enzymes involved in its formation. The objective of this study was to examine the use of enzymes present in P. chrysogenum cells to produce penicillin-G and 6-amino penicillanic acid using the intermediate compounds α-aminoadipate, L-cysteine, L-valine and phenylacetic acid assisted by NAFA® coenzymes in P. chrysogenum cells which is more permeable. -
Detection of Penicillin G Produced by Penicillium Chrysogenum KF 425 In
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.984930; this version posted March 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Detection of Penicillin G Produced by Penicillium chrysogenum KF 425 in Vivo with Raman Microspectroscopy and Multivariate Curve Resolution-Alternating Least Squares Methods Shumpei Horii†,‡, Masahiro Ando§,⊥, Ashok Z. Samuel§, Akira Take║, §,, Takuji Nakashima║, Atsuko Matsumoto║, Yōko Takahashi║, and Haruko Takeyama‡ §,∇,O,* †Department of Advanced Science Engineering , and OConsolidated Research Institute for Advanced Science and Medical Care, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169- 8555, Japan ‡Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan §Research Organization for Nano & Life Innovation,Waseda University, 513 Wasedatsurumaki- cho, Shinjuku-ku, Tokyo 162-0041, Japan ⊥PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332- 0012, Japan ║ Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.984930; this version posted March 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 108-8641, Japan ∇Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.984930; this version posted March 11, 2020. -
Deconstructing the Fable of the Discovery of Penicillin By
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Loughborough University Institutional Repository La Moisissure et la Bactérie: Deconstructing the Fable of the Discovery of Penicillin by Ernest Duchesne Gilbert Shama Department of Chemical Engineering. Loughborough University Loughborough Leicestershire, LE11 3TU, UK. +44 1509 222514 [email protected] Abstract: Ernest Duchesne (1874–1912) completed his thesis on microbial antagonism in 1897 in Lyon. His work lay unknown for fifty years, but on being brought to light led to his being credited with having discovered penicillin prior to Alexander Fleming. The claims surrounding Duchesne are examined here both from the strictly microbiological perspective, and also for what they reveal about how the process of discovery is frequently misconstrued. The combined weight of evidence presented here militates strongly against the possibility that the species of Penicillium that Duchesne worked with produced penicillin. Keywords: Ernest Duchesne, Penicillin, Alexander Fleming, Penicillium 1 Introduction Following the appearance of an article on penicillin in The Times of London in the summer of 1942,1 Almroth Wright, head of the inoculation department at St Mary’s Hospital in Paddington, wrote to the editor concerning a colleague of his—a certain Alexander Fleming. In his letter, Wright pointed out that the newspaper had “refrained from putting the laurel wreath around anybody’s brow for [penicillin’s] discovery” and that “on the principle of palmam qui meruit ferat (let him bear the palm who has earned it) it should be decreed to Professor Fleming.”2 A number of commentators over the seventy years or so that have elapsed since the publication of this letter have sought to remove—snatch even—the wreath from Alexander Fleming’s brow and award it elsewhere. -
Phylogeny and Nomenclature of the Genus Talaromyces and Taxa Accommodated in Penicillium Subgenus Biverticillium
available online at www.studiesinmycology.org StudieS in Mycology 70: 159–183. 2011. doi:10.3114/sim.2011.70.04 Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium R.A. Samson1, N. Yilmaz1,6, J. Houbraken1,6, H. Spierenburg1, K.A. Seifert2, S.W. Peterson3, J. Varga4 and J.C. Frisvad5 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada, 3Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, U.S.A., 4Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary, 5Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark; 6Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. *Correspondence: R.A. Samson, [email protected] Abstract: The taxonomic history of anamorphic species attributed to Penicillium subgenus Biverticillium is reviewed, along with evidence supporting their relationship with teleomorphic species classified inTalaromyces. To supplement previous conclusions based on ITS, SSU and/or LSU sequencing that Talaromyces and subgenus Biverticillium comprise a monophyletic group that is distinct from Penicillium at the generic level, the phylogenetic relationships of these two groups with other genera of Trichocomaceae was further studied by sequencing a part of the RPB1 (RNA polymerase II largest subunit) gene. Talaromyces species and most species of Penicillium subgenus Biverticillium sensu Pitt reside in a monophyletic clade distant from species of other subgenera of Penicillium. -
A Worldwide List of Endophytic Fungi with Notes on Ecology and Diversity
Mycosphere 10(1): 798–1079 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/19 A worldwide list of endophytic fungi with notes on ecology and diversity Rashmi M, Kushveer JS and Sarma VV* Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, Puducherry, India Rashmi M, Kushveer JS, Sarma VV 2019 – A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10(1), 798–1079, Doi 10.5943/mycosphere/10/1/19 Abstract Endophytic fungi are symptomless internal inhabits of plant tissues. They are implicated in the production of antibiotic and other compounds of therapeutic importance. Ecologically they provide several benefits to plants, including protection from plant pathogens. There have been numerous studies on the biodiversity and ecology of endophytic fungi. Some taxa dominate and occur frequently when compared to others due to adaptations or capabilities to produce different primary and secondary metabolites. It is therefore of interest to examine different fungal species and major taxonomic groups to which these fungi belong for bioactive compound production. In the present paper a list of endophytes based on the available literature is reported. More than 800 genera have been reported worldwide. Dominant genera are Alternaria, Aspergillus, Colletotrichum, Fusarium, Penicillium, and Phoma. Most endophyte studies have been on angiosperms followed by gymnosperms. Among the different substrates, leaf endophytes have been studied and analyzed in more detail when compared to other parts. Most investigations are from Asian countries such as China, India, European countries such as Germany, Spain and the UK in addition to major contributions from Brazil and the USA.