Analysis of the Active Site Cysteine Residue of the Sacrificial Sulfur

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of the Active Site Cysteine Residue of the Sacrificial Sulfur Article Cite This: Biochemistry 2018, 57, 5513−5523 pubs.acs.org/biochemistry Analysis of the Active Site Cysteine Residue of the Sacrificial Sulfur Insertase LarE from Lactobacillus plantarum † ⊥ † ‡ † § † ∥ Matthias Fellner, , Joel A. Rankin, Benoît Desguin, Jian Hu, , and Robert P. Hausinger*, , † Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States ‡ Institute of Life Sciences, Universitécatholique de Louvain, B-1348 Louvain-La-Neuve, Belgium § Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States ∥ Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States *S Supporting Information ABSTRACT: LarE from Lactobacillus plantarum is an ATP- dependent sulfur transferase that sacrifices its Cys176 sulfur atom to form a dehydroalanine (Dha) side chain during biosynthesis of the covalently linked nickel-pincer nucleotide (NPN) cofactor (pyridinium 3-thioamide-5-thiocarboxylic acid mononucleotide) of lactate racemase. Coenzyme A (CoA) stabilizes LarE and forms a CoA-Cys176 mixed disulfide with the protein. This study presents the crystal structure of the LarE/CoA complex, revealing protein interactions with CoA that mimic those for binding ATP. CoA weakly inhibits LarE activity, and the persulfide of CoA is capable of partially regenerating functional LarE from the Dha176 form of the protein. The physiological relevance of this cycling reaction is unclear. A new form of LarE was discovered, an NPN-LarE covalent adduct, explaining prior results in which activation of the lactate racemase apoprotein required only the isolated LarE. The crystal structure of the inactive C176A variant revealed a fold essentially identical to that of wild-type LarE. Additional active site variants of LarE were created and their activities characterized, with all LarE variants analyzed in terms of the structure. Finally, the L. plantarum LarE structure was compared to a homology model of Thermoanaerobacterium thermosaccharolyticum LarE, predicted to contain three cysteine residues at the active site, and to other proteins with a similar fold and multiple active site cysteine residues. These findings suggest that some LarE orthologs may not be sacrificial but instead may catalyze sulfur transfer by using a persulfide mechanism or from a labile site on a [4Fe-4S] cluster at this position. actate racemase (Lar) interconverts the D and L isomers of from Thermoanaerobacterium thermosaccharolyticum (Uni- L lactic acid, a central metabolite of many microorganisms.1 ProtKB entry D9TQ02) does not require adduct formation.8 The enzyme allows for the production of D-lactate for cell wall This study focuses on LarE, a member of the PP-loop biosynthesis in bacteria that possess only L-lactate dehydrogen- pyrophosphatase family containing a PP-loop SGGxDS motif Downloaded via MICHIGAN STATE UNIV on September 25, 2018 at 12:31:05 (UTC). ase and permits the metabolism of both isomers from racemic in its N-terminal region. Transformation of pyridinium 3,5- mixtures of lactate in microorganisms containing a single form biscarboxylic acid mononucleotide (P2CMN) to pyridinium See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. 2−4 of lactate dehydrogenase. The Lar enzyme from Lactoba- 3,5-bisthiocarboxylic acid mononucleotide (P2TMN) by LarE cillus plantarum includes the protein LarA (UnitProtKB entry requires two cycles of carboxylate activation (involving ATP- F9USS9) and a covalently tethered (via Lys184) cofactor, dependent adenylylation) and sulfur insertion, with the sulfur pyridinium 3-thioamide-5-thiocarboxylic acid mononucleotide originating from a cysteine residue (Cys176) of the protein, with nickel bound to C4 of the pyridinium ring, the two sulfur thus making LarE a sacrificial sulfur transferase that acquires a atoms of the pincer complex, and the His200 side chain 8,9 dehydroalanine (Dha) residue. (Figure 1).5,6 This organometallic complex will subsequently Here, we examine several unusual and interesting features of be termed the nickel-pincer nucleotide (NPN) cofactor.7 The LarE with focus on its Cys176 residue. First, we investigate the NPN cofactor is synthesized from nicotinic acid adenine dinucleotide (NaAD) by the sequential actions of LarB unresolved nonsubstrate interaction of LarE with coenzyme A (UniProtKB entry F9UST0),8 which carboxylates C5 of the (CoA), a cellular component that stabilizes LarE and forms a disulfide with Cys176 but is not believed to be required for pyridinium ring and hydrolyzes the phosphoanhydride bond, 8,9 LarE (UniProtKB entry F9UST4), which converts the two LarE activity, by presenting the crystal structure of LarE with carboxylates to thiocarboxylates,9 and LarC (UniProtKB entry F9UST1), which installs the nickel.8,10 The process by which Received: May 29, 2018 the NPN cofactor becomes covalently attached to LarA from Revised: August 28, 2018 L. plantarum has not been described, and activation of LarA Published: August 29, 2018 © 2018 American Chemical Society 5513 DOI: 10.1021/acs.biochem.8b00601 Biochemistry 2018, 57, 5513−5523 Biochemistry Article pentaerythritol ethoxylate (15/4 EO/OH), 50 mM Bis-Tris (pH 6.5), and 100 mM ammonium sulfate. The CoA-bound sample contained 28 mg/mL WT LarE mixed with 0.9 mM CoA and was incubated for ∼10 min on ice before setting up the drop. The C176A LarE sample contained 8 mg/mL variant protein. Using the same setup that was used for C176A, we also set up unsuccessful crystal drops for W97A (∼1 mg/mL), S180A (∼10, 12, and 15 mg/mL), R212A (∼6 mg/mL), and D231R (∼3, 11, and 24 mg/mL) variants of LarE using the same procedures.9 Diffraction Data Collection, Structure Determination, and Analysis. Data sets were collected at the Advanced Photon Source LS-CAT beamlines (21-ID-F and 21-ID-G). Data sets were processed with xdsapp11 and iMos,12 with merging and scaling done using aimless.13 Phaser molecular replacement14 was utilized using the WT apoprotein model fi Figure 1. NPN cofactor in lactate racemase. Lys184 of LarA binds 5UDQ. Model building and re nement were conducted in Coot15 and Phenix.14 Data set statistics are listed in Table 1. pyridinium 3-thioamide-5-thiocarboxylic acid mononucleotide 16 [shown as sticks with cyan carbon atoms; Protein Data Bank UCSF Chimera was used to create structure figures. (PDB) entry 5HUQ]. Two sulfur atoms and one carbon atom of the Purification of Dha-Containing LarE. LarEDha was cofactor along with His200 coordinate nickel (green sphere). purified from Lactococcus lactis NZ3900 containing pGIR172 that carries the larA−larE genes from L. plantarum with larE bound CoA. Second, we provide evidence that CoA weakly translationally fused to DNA encoding the Strep-tag II5 as inhibits LarE activity. Third, we demonstrate the ability of previously described.8 The cells were grown overnight without CoA-persulfide to regenerate Cys-containing LarE from the being shaken in 15 mL of M17 medium (Oxoid or Difco) Dha Dha176-containing protein (LarE ). Fourth, we provide containing 0.5% (w/v) D-glucose and 10 mg/L chloramphe- evidence of the presence of a novel NPN adduct of LarE, nicol at 30 °C. This inoculum was added to 1.5 L of the same providing an explanation for earlier confounding observations medium, but containing 5 mg/L chloramphenicol, and related to the ability of purified LarE to activate the LarA incubated at 28 °C while being shaken (40 rpm) until the ∼ apoprotein. Fifth, we investigate whether the loss of the OD600 reached 0.3. The culture was supplemented with 1 fi μ Cys176 side chain signi cantly impacts the protein fold by mM NiCl2, induced with 10 g/L nisin A (Sigma), and grown characterizing the structure of the C176A variant. Sixth, we for 4 h before the cells were harvested by centrifugation at characterize the functions of several other key residues of LarE 5000g for 10 min. The cell pellet was washed using 100 mM and summarize all LarE mutagenesis studies to better define Tris-HCl buffer (pH 7.5) containing 300 mM NaCl and stored the sacrificial sulfur insertion reaction.9 Lastly, we speculate until it was needed at −80 °C. The thawed cells were about whether LarE homologues containing additional active suspended in 40 mL of 100 mM Tris-HCl buffer (pH 7.5) site cysteine residues may operate by a catalytic sulfur transfer containing 300 mM NaCl, 1 mM phenylmethanesulfonyl process. fluoride (PMSF, added as a 100 mM stock in ethanol), and 1 unit/mL Benzonase (Millipore) on ice and then lysed by two ■ MATERIALS AND METHODS passes through a chilled French pressure cell at 16000 psi. The Genes, Plasmids, and Cloning. Site-directed mutagenesis debris and intact cells were removed by centrifugation at of the gene encoding Strep II-tagged wild-type (WT) LarE 27000g and 4 °C for 40 min. Purification of LarEDha was from L. plantarum was performed using a QuikChange performed by using a 1 mL bed volume of Strep-tactin-XT mutagenesis kit (Agilent) for creating the K101A, E128A, (IBA) resin equilibrated in 20 mM Tris-HCl buffer (pH 7.5) and E223A variants. All of the constructs were verified by DNA containing 300 mM NaCl at 4 °C. The lysates were loaded at a sequencing. Details, including instructions for creating the rate of 1 mL/min; the resin was washed by gravity flow with C176A variant, are summarized in our previous work.9 five 1 mL additions of 20 mM Tris-HCl buffer (pH 7.5) LarE Overexpression, Purification, and Character- containing 300 mM NaCl, and the protein was eluted with six ization. WT, C176A, and the new variant forms of LarE 0.5 mL additions of 20 mM Tris-HCl buffer (pH 7.5) were overexpressed and purified using our previously described containing 300 mM NaCl and 50 mM biotin (Santa Cruz pGIR076 Escherichia coli ArcticExpress-Strep-tactin (IBA) Biotechnology) that had been neutralized with 50 mM NaOH.
Recommended publications
  • The Aryl Hydrocarbon Receptor: Structural Analysis and Activation Mechanisms
    The Aryl Hydrocarbon Receptor: Structural Analysis and Activation Mechanisms This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the School of Molecular and Biomedical Sciences (Biochemistry), The University of Adelaide, Australia Fiona Whelan, B.Sc. (Hons) 2009 2 Table of Contents THESIS SUMMARY................................................................................. 6 DECLARATION....................................................................................... 7 PUBLICATIONS ARISING FROM THIS THESIS.................................... 8 ACKNOWLEDGEMENTS...................................................................... 10 ABBREVIATIONS ................................................................................. 12 CHAPTER 1: INTRODUCTION ............................................................. 17 1.1 BHLH.PAS PROTEINS ............................................................................................17 1.1.1 General background..................................................................................17 1.1.2 bHLH.PAS Class I Proteins.........................................................................18 1.2 THE ARYL HYDROCARBON RECEPTOR......................................................................19 1.2.1 Domain Structure and Ligand Activation ..............................................19 1.2.2 AhR Expression and Developmental Activity .......................................21 1.2.3 Mouse AhR Knockout Phenotype ...........................................................23
    [Show full text]
  • Non-Homologous Isofunctional Enzymes: a Systematic Analysis Of
    Omelchenko et al. Biology Direct 2010, 5:31 http://www.biology-direct.com/content/5/1/31 RESEARCH Open Access Non-homologousResearch isofunctional enzymes: A systematic analysis of alternative solutions in enzyme evolution Marina V Omelchenko, Michael Y Galperin*, Yuri I Wolf and Eugene V Koonin Abstract Background: Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC) numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted) to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (non)homologous relationships between proteins. Results: We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE) that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress.
    [Show full text]
  • Biosynthesis in Vitro of Bacillamide Intermediate-Heterocyclic Alacysthiazole by Heterologous Expression of Nonribosomal Peptide Synthetase (NRPS) T
    Journal of Biotechnology 292 (2019) 5–11 Contents lists available at ScienceDirect Journal of Biotechnology journal homepage: www.elsevier.com/locate/jbiotec Biosynthesis in vitro of bacillamide intermediate-heterocyclic AlaCysthiazole by heterologous expression of nonribosomal peptide synthetase (NRPS) T Fengli Zhang, Nayila Mulati, Yukun Wang, Yingxin Li, Sanqiang Gong, Loganathan Karthik, ⁎ Wei Sun, Zhiyong Li Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China ARTICLE INFO ABSTRACT Keywords: Bacillamide C, a potential natural antialgae active compound, is produced by Bacillus atrophaeus C89 derived Bacillus atrophaeus from marine sponge Dysidea avara. A nonribosomal peptide synthetase (NRPS) cluster is hypothesized to be Bacillamides involved in the biosynthesis of bacillamide C. The NRPS with a domain string of A1-PCP1-Cy-A2-PCP2-C can be Heterologous expression divided into three functional modules. After heterologous expression and purification of module A1-PCP1 and Nonribosomal peptide synthetase (NRPS) module Cy-A2-PCP2, their catalytic activities were biochemically proven in vitro by the reaction with the apo- Thiazole PCP domain transformed to the holo-PCP domain through a phosphopantetheinyl transferase, ATP, and substrate amino acids. Five– membered heterocyclic AlaCysthiazole with molecular weight of 172.0389 was detected. This proved the formation of the heterocyclic dipeptide AlaCysthiazole, which is considered to be a building block for the biosynthesis of bacillamide. This study provides a basis for further biosynthesis of bacillamides. 1. Introduction et al., 2017). Even though the biosynthesis of bacillamide C was opti- mized, the yield was very low (Jin et al., 2011; Yu et al., 2015).
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Harmonization Project Document No. 4
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the World Health Organization, the International Labour Organization, or the United Nations Environment Programme. Harmonization Project Document No. 4 PART 1: IPCS FRAMEWORK FOR ANALYSING THE RELEVANCE OF A CANCER MODE OF ACTION FOR HUMANS AND CASE-STUDIES PART 2: IPCS FRAMEWORK FOR ANALYSING THE RELEVANCE OF A NON-CANCER MODE OF ACTION FOR HUMANS This project was conducted within the IPCS project on the Harmonization of Approaches to the Assessment of Risk from Exposure to Chemicals. Published under the joint sponsorship of the World Health Organization, the International Labour Organization, and the United Nations Environment Programme, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 by UNEP, ILO, the Food and Agriculture Organization of the United Nations, WHO, the United Nations Industrial Development Organization, the United Nations Institute for Training and Research, and the Organisation for Economic Co-operation and Development (Participating Organizations), following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase coordination in the field of chemical safety.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Peter Midford Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_003855395Cyc: Shewanella livingstonensis LMG 19866 Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Auxiliary Table 2 Proteomics.Xlsx
    Gene names log2(fold-Change) -Log(p-value) Significant Protein IDs Majority protein IDs Protein names gatZ -3.515 2.827 + P0C8J8;P0C8K0 P0C8J8 D-tagatose-1,6-bisphosphate aldolase subunit GatZ dps -3.362 4.596 + P0ABT2 P0ABT2 DNA protection during starvation protein sstT -3.219 3.423 + P0AGE4 P0AGE4 Ser/Thr transporter SstT iraP -3.074 3.623 + P0AAN9 P0AAN9 Anti-adapter protein IraP ilvC -3.054 3.692 + P05793 P05793 Ketol-acid reductoisomerase rfbB -3.006 4.290 + P37759 P37759 dTDP-glucose 4,6-dehydratase 1 gdhA -2.847 5.732 + P00370 P00370 NADP-specific glutamate dehydrogenase rstA -2.796 3.542 + P52108 P52108 Transcriptional regulatory protein RstA ompT -2.790 4.251 + P09169 P09169 Protease 7 uspF -2.719 4.817 + P37903 P37903 Universal stress protein F crl -2.649 4.248 + P24251 P24251 σ factor-binding protein Crl yncE -2.514 1.994 + P76116 P76116 Uncharacterized protein YncE yiiS -2.507 4.223 + P32162 P32162 UPF0381 protein YiiS yagU -2.494 2.430 + P0AAA1 P0AAA1 Inner membrane protein YagU stpA -2.488 3.540 + P0ACG1 P0ACG1 DNA-binding protein StpA ydgJ -2.476 3.366 + P77376 P77376 Uncharacterized oxidoreductase YdgJ kgtP -2.462 2.665 + P0AEX3 P0AEX3 α-ketoglutarate permease sodB -2.436 3.704 + P0AGD3 P0AGD3 Superoxide dismutase [Fe] purT -2.386 2.851 + P33221 P33221 Phosphoribosylglycinamide formyltransferase 2 trpA -2.371 3.261 + P0A877 P0A877 Trp synthase α chain acnB -2.319 2.707 + P36683 P36683 Aconitate hydratase B iadA -2.316 4.127 + P39377 P39377 Isoaspartyl dipeptidase modF -2.244 2.107 + P31060 P31060 Putative molybdenum transport
    [Show full text]
  • The [4Fe-4S] Cluster of Sulfurtransferase Ttua Desulfurizes
    ARTICLE https://doi.org/10.1038/s42003-020-0895-3 OPEN The [4Fe-4S] cluster of sulfurtransferase TtuA desulfurizes TtuB during tRNA modification in Thermus thermophilus ✉ Minghao Chen 1,7, Masato Ishizaka2,7, Shun Narai2,7, Masaki Horitani 3, Naoki Shigi 4, Min Yao1 & ✉ 1234567890():,; Yoshikazu Tanaka 1,5,6 TtuA and TtuB are the sulfurtransferase and sulfur donor proteins, respectively, for bio- synthesis of 2-thioribothymidine (s2T) at position 54 of transfer RNA (tRNA), which is responsible for adaptation to high temperature environments in Thermus thermophilus. The enzymatic activity of TtuA requires an iron-sulfur (Fe-S) cluster, by which a sulfur atom supplied by TtuB is transferred to the tRNA substrate. Here, we demonstrate that the Fe-S cluster directly receives sulfur from TtuB through its inherent coordination ability. TtuB forms a [4Fe-4S]-TtuB intermediate, but that sulfur is not immediately released from TtuB. Further desulfurization assays and mutation studies demonstrated that the release of sulfur from the thiocarboxylated C-terminus of TtuB is dependent on adenylation of the substrate tRNA, and the essential residue for TtuB desulfurization was identified. Based on these findings, the molecular mechanism of sulfur transfer from TtuB to Fe-S cluster is proposed. 1 Faculty of Advanced Life Science, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan. 2 Graduate School of Life Science, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan. 3 Faculty of Agriculture, Department of Applied Biochemistry and Food Science, Saga University, 1 Honjo-machi, Saga 840-8502, Japan. 4 Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.
    [Show full text]
  • Introduction (Pdf)
    Dictionary of Natural Products on CD-ROM This introduction screen gives access to (a) a general introduction to the scope and content of DNP on CD-ROM, followed by (b) an extensive review of the different types of natural product and the way in which they are organised and categorised in DNP. You may access the section of your choice by clicking on the appropriate line below, or you may scroll through the text forwards or backwards from any point. Introduction to the DNP database page 3 Data presentation and organisation 3 Derivatives and variants 3 Chemical names and synonyms 4 CAS Registry Numbers 6 Diagrams 7 Stereochemical conventions 7 Molecular formula and molecular weight 8 Source 9 Importance/use 9 Type of Compound 9 Physical Data 9 Hazard and toxicity information 10 Bibliographic References 11 Journal abbreviations 12 Entry under review 12 Description of Natural Product Structures 13 Aliphatic natural products 15 Semiochemicals 15 Lipids 22 Polyketides 29 Carbohydrates 35 Oxygen heterocycles 44 Simple aromatic natural products 45 Benzofuranoids 48 Benzopyranoids 49 1 Flavonoids page 51 Tannins 60 Lignans 64 Polycyclic aromatic natural products 68 Terpenoids 72 Monoterpenoids 73 Sesquiterpenoids 77 Diterpenoids 101 Sesterterpenoids 118 Triterpenoids 121 Tetraterpenoids 131 Miscellaneous terpenoids 133 Meroterpenoids 133 Steroids 135 The sterols 140 Aminoacids and peptides 148 Aminoacids 148 Peptides 150 β-Lactams 151 Glycopeptides 153 Alkaloids 154 Alkaloids derived from ornithine 154 Alkaloids derived from lysine 156 Alkaloids
    [Show full text]
  • Conserved Active Site Cysteine Residue of Archaeal THI4 Homolog Is Essential for Thiamine Biosynthesis in Haloferax Volcanii Hwang Et Al
    glycine COOH CONH 2 H2N COOH COOH + NUDIX N N ADP-O S hydrolase? N S O THI4-SH THI4-C=CH ? OH OH O-ADP OP HVO_0665 ADT S NAD HET-P or OP THZ-P + ThiE, ThiN N N THI6-Ntd N TMP HVO_2668 NH2 HVO_0662 ATP ThiL N ThiD HVO_1861 THI20-/THI21-Ntd Purine N ThiC PurM O NH2 N ATP N S biosynthetic SAM OPP PO + pathway HVO_1557 HVO_2154 N OP HVO_2666 N OPP N N OHOH NH2 NH2 AIR HMP-P HMP-PP N TPP NH2 Conserved active site cysteine residue of archaeal THI4 homolog is essential for thiamine biosynthesis in Haloferax volcanii Hwang et al. Hwang et al. BMC Microbiology 2014, 14:260 http://www.biomedcentral.com/1471-2180/14/260 Hwang et al. BMC Microbiology 2014, 14:260 http://www.biomedcentral.com/1471-2180/14/260 RESEARCH ARTICLE Open Access Conserved active site cysteine residue of archaeal THI4 homolog is essential for thiamine biosynthesis in Haloferax volcanii Sungmin Hwang1, Bryan Cordova1, Nikita Chavarria1, Dina Elbanna1, Stephen McHugh1, Jenny Rojas1, Friedhelm Pfeiffer3 and Julie A Maupin-Furlow1,2* Abstract Background: Thiamine (vitamin B1) is synthesized de novo by certain yeast, fungi, plants, protozoans, bacteria and archaea. The pathway of thiamine biosynthesis by archaea is poorly understood, particularly the route of sulfur relay to form the thiazole ring. Archaea harbor structural homologs of both the bacterial (ThiS-ThiF) and eukaryotic (THI4) proteins that mobilize sulfur to thiazole ring precursors by distinct mechanisms. Results: Based on comparative genome analysis, halophilic archaea are predicted to synthesize the pyrimidine moiety of thiamine by the bacterial pathway, initially suggesting that also a bacterial ThiS-ThiF type mechanism for synthesis of the thiazole ring is used in which the sulfur carrier ThiS is first activated by ThiF-catalyzed adenylation.
    [Show full text]
  • Genetic and Biochemical Characterization of Yrkf, a Novel
    Genetic and biochemical characterization of YrkF, a novel two-domain sulfurtransferase in Bacillus subtilis Jeremy Hunt Thesis submitted to the faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Biochemistry Timothy J. Larson, Chair Dennis R. Dean Brenda J. Winkel August 11, 2004 Blacksburg, Virginia Keywords: YrkF, rhodanese, Ccd1, persulfide sulfur, disulfide cross-linking Genetic and biochemical characterization of YrkF, a novel two-domain sulfurtransferase in Bacillus subtilis Jeremy Hunt Timothy J. Larson, Chair Department of Biochemistry ABSTRACT Sulfur-containing compounds such as thiamin, biotin, molybdopterin, lipoic acid, and [Fe-S] clusters are essential for life. Sulfurtransferases are present in eukaryotes, eubacteria, and archaea and are believed to play important roles in mobilizing sulfur necessary for biosynthesis of these compounds and for normal cellular functions. The rhodanese homology domain is a ubiquitous structural module containing a characteristic active site cysteine residue. Some proteins containing a rhodanese domain display thiosulfate:cyanide sulfurtransferase activity in vitro. However, the physiological functions of rhodaneses remain largely unknown. YrkF, the first rhodanese to be characterized from Bacillus subtilis, is a unique protein containing two domains, an N-terminal Ccd1 domain and a C-terminal rhodanese domain. Ccd1 (conserved cysteine domain 1) is a ubiquitous structural module characterized by a Cys-Pro-X-Pro sequence motif. Thus, YrkF contains two cysteine residues (Cys15 and Cys149), one in each domain. Biochemical, genetic, and bioinformatic approaches were used in order to characterize YrkF. First, YrkF was overexpressed and assayed for rhodanese activity to show that the protein is a functional rhodanese.
    [Show full text]
  • Sex-Dependent and -Independent Transcriptional Changes
    bioRxiv preprint doi: https://doi.org/10.1101/690289; this version posted July 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Sex-dependent and -independent transcriptional changes during 2 haploid phase gametogenesis in the sugar kelp 3 Saccharina latissima 4 5 6 7 8 Gareth A Pearson1*¶, Neusa Martins1¶, Pedro Madeira1, Ester A Serrão1, Inka Bartsch2 9 10 1Centre for Marine Sciences (CCMAR)-CIMAR, University of Algarve, Faro 8005-139, Portugal 11 2 Alfred-Wegener-Institute, Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 12 27570 Bremerhaven, Germany 13 14 15 16 * Corresponding author 17 E-mail: [email protected] 18 19 ¶These authors contributed equally to this work 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/690289; this version posted July 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 22 Abstract 23 In haplodiplontic lineages, sexual reproduction occurs in haploid parents without meiosis. Although 24 widespread in multicellular lineages such as brown algae (Phaeophyceae), haplodiplontic 25 gametogenesis has been little studied at the molecular level. We addressed this by generating an 26 annotated reference transcriptome for the gametophytic phase of the sugar kelp, Saccharina 27 latissima.
    [Show full text]