Multi-Domain Protein Families and Domain Pairs: Comparison with Known Structures and a Random Model of Domain Recombination

Total Page:16

File Type:pdf, Size:1020Kb

Multi-Domain Protein Families and Domain Pairs: Comparison with Known Structures and a Random Model of Domain Recombination Journal of Structural and Functional Genomics 4: 67–78, 2003. 67 © 2003 Kluwer Academic Publishers. Printed in the Netherlands. Multi-domain protein families and domain pairs: comparison with known structures and a random model of domain recombination Gordana Apic1, Wolfgang Huber2 & Sarah A. Teichmann1* 1MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK and 2DKFZ (German Cancer Research Center), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; * To whom correspondence should be addressed at [email protected] Received 26 November 2002; Accepted in final form 11 March 2003 Key words: structural genomics, multi-domain proteins, recombination, domain combinations Abstract There is a limited repertoire of domain families in nature that are duplicated and combined in different ways to form the set of proteins in a genome. Most proteins in both prokaryote and eukaryote genomes consist of two or more domains, and we show that the family size distribution of multi-domain protein families follows a power law like that of individual families. Most domain pairs occur in four to six different domain architectures: in isolation and in combinations with different partners. We showed previously that within the set of all pairwise domain combinations, most small and medium-sized families are observed in combination with one or two other families, while a few large families are very versatile and combine with many different partners. Though this may appear to be a stochastic pattern, in which large families have more combination partners by virtue of their size, we establish here that all the domain families with more than three members in genomes are duplicated more frequently than would be expected by chance considering their number of neighbouring domains. This duplication of domain pairs is statistically significant for between one and three quarters of all families with seven or more members. For the majority of pairwise domain combinations, there is no known three-dimensional structure of the two domains together, and we term these novel combinations. Novel domain combinations are interesting and important targets for structural elucidation, as the geometry and interaction between the domains will help understand the function and evolution of multi-domain proteins. Of particular interest are those com- binations that occur in the largest number of multi-domain proteins, and several of these frequent novel combi- nations contain DNA-binding domains. Abbreviations: SCOP: Structural Classification of Proteins database, PDB: Protein DataBank, HMM: hidden Markov model Introduction percent of eukaryote proteins are multi-domain pro- teins (Teichmann et al. 1998, Gerstein 1998a). Multi-domain proteins are the result of duplication The domains and evolutionary relationships of and combination of domains. In nature, there is a multi-domain proteins can be determined through limited number of domain families (Chothia 1992, structural annotation of genome sequences. The defi- Wolf et al. 2000), currently 1110 families of known nitions of domains and protein families for the pro- structure (Murzin et al. 1995, LoConte et al. 2002). teins of known three-dimensional structure are pro- Though the domains from these families occur on vided by the Structural Classification of Proteins their own in single-domain proteins, multi-domain (SCOP) database (Murzin et al. 1995) at the super- proteins represent the majority of proteins in a pro- family level. Based on the same sequential domain teome: two thirds of prokaryote proteins and eighty architecture, we group multi-domain proteins into 68 families, and explore the characteristics of these fam- procedure to define domain boundaries is described ilies in eighty-five genomes from the three kingdoms. in Gough et al. (2001). The domain architectures of multi-domain proteins The eighty-five completely sequenced genomes consist of sets of pairwise domain combinations from studied here have 449,823 predicted protein se- N- to C-terminus along a polypeptide chain. Previ- quences, and for more than half (241,831) of these ously, we showed that there is a limited repertoire of there is at least one structural domain assignment (Ta- domain combinations (Apic et al. 2001) and that this ble 1b) from 1041 domain families (SCOP superfam- repertoire is mainly formed by the combinatorial ver- ilies). In this work, we are interested in direct neigh- satility of a few large families. This relationship bours in a protein sequence, and so allow linkers between the size of a family and the number of dif- between domains not more than thirty residues long, ferent types of neighbouring domains in protein which is about the size of the smallest SCOP domain, sequences might suggest a stochastic basis for domain but do not consider domains that are inserted into combinations, rather than selection for particular other domains. About one half of the sequences with domain architectures. Here we show that all families structural assignments have complete assignments ac- with more than three members have fewer domain cording to this criterion, as shown in Table 1b. combinations than expected according to a random model of domain shuffling, suggesting that selection pressure is exerted to maintain the same domain pairs Families of multi-domain proteins in the evolution of domain combinations. The function of each multi-domain protein is de- We consider multi-domain proteins with the same termined by its domain composition and, in most sequential arrangement of assigned structural cases, their interactions. The protease function of chy- domains as being members of the same family. In motrypsin, for example, is carried out by the active other words, if structural domains A,B,C and D occur site buried at the interface of two domains (Sigler et in two different sequential arrangements as A-B-C-D al. 1966, Blevins et al. 1985). Therefore, elucidating and as A-B-D-C, we would form two families con- the structure of novel combinations is important in taining all the proteins with each respective domain terms of the structural and functional characterization architecture. The assumption that almost all proteins of multi-domain proteins as well as for elucidating the with the same domain architecture have descended history of protein evolution (Ponting and Russell from a common ancestor is supported by an analysis 2002). We analyze the pairwise combinations of of two-domain proteins of known structure (Bashton unknown structure and present the most popular com- and Chothia, 2001). Though many of these two- binations as targets for structural genomics projects in domain proteins had little sequence similarity, conser- the same way that individual new folds are viewed as vation of details of the sequence and structure of targets (Brenner 2001; Blundell & Mizuguchi 2000). linker regions showed that all domain pairs of the same type were related by duplications of the whole two-domain module. This is also the idea behind the Identifying domains and families Conserved Domain Architecture Retrieval Tool (Geer et al. 2002). The eighty-five genomes we study here are from the Using our definition of families of multi-domain three kingdoms of life: the fifty-five Bacteria, seven- proteins, 241,831 protein sequences with structural teen Archaea and thirteen Eukarya given in Table 1a. assignments cluster into 13,606 families of which 69 The domain assignments were taken from the are single-domain families. The size distribution of SUPERFAMILY database (Gough et al. 2001; Gough multi-domain protein families follows a power law and Chothia, 2002), which provides matches between (Figure 1) with a similar exponent to the power law the domains of the Structural Classification of Pro- of the size distribution of individual domain families teins database (SCOP, LoConte et al. 2002) and pre- (Qian et al., 2001). There is an additional pattern dicted proteins of completely sequenced genomes. within the family size distribution in that longer The method used in the SUPERFAMILY database is domain architectures tend to be less duplicated (data the iterative hidden Markov model (HMM) method not shown). In other words, longer multi-domain pro- SAM-T99 (Karplus et al. 1998), and the assignments tein families tend to have fewer members. This means described here are based on SCOP version 1.61. The that shorter domain combinations are re-used more Table 1a. 85 completely sequenced genomes used. Bacteria Archaea Eukarya Agrobacterium tumefaciens C58 Haemophilus influenzae Rickettsia prowazekii Aeropyrum pernix Anopheles gambiae Aquifex aeolicus Helicobacter pylori 26695 Salmonella typhimurium LT2 Archaeoglobus fulgidus Arabidopsis thaliana Bacillus halodurans Lactococcus lactis Shewanella oneidensis MR-1 Halobacterium sp. NRC-1 Caenorhabditis elegans rel. WS93b Bacillus subtilis Listeria innocua Sinorhizobium meliloti Methanobacterium thermoau- Ciona intestinalis 1.0 totrophicum Borrelia burgdorferi Listeria monocytogenes Staphylococcus aureus Mu50 Methanococcus jannaschii Drosophila melanogaster rel. 3 Brucella melitensis Mesorhizobium loti Streptococcus pneumoniae R6 Methanopyrus kandleri AV19 Encephalitozoon cuniculi Buchnera sp. Mycobacterium leprae Streptococcus pyogenes Methanosarcina acetivorans C2A Fugu rubripes 8.1 Campylobacter jejuni Mycobacterium tuberculosis H37Rv Streptomyces coelicolor Methanosarcina mazei Goe1 Homo sapiens 8.30 Caulobacter crescentus Mycoplasma genitalium Synechocystis sp. PCC 6803 Methanothermobacter thermau- Mus musculus
Recommended publications
  • Meeting Review: Bioinformatics and Medicine – from Molecules To
    Comparative and Functional Genomics Comp Funct Genom 2002; 3: 270–276. Published online 9 May 2002 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cfg.178 Feature Meeting Review: Bioinformatics And Medicine – From molecules to humans, virtual and real Hinxton Hall Conference Centre, Genome Campus, Hinxton, Cambridge, UK – April 5th–7th Roslin Russell* MRC UK HGMP Resource Centre, Genome Campus, Hinxton, Cambridge CB10 1SB, UK *Correspondence to: Abstract MRC UK HGMP Resource Centre, Genome Campus, The Industrialization Workshop Series aims to promote and discuss integration, automa- Hinxton, Cambridge CB10 1SB, tion, simulation, quality, availability and standards in the high-throughput life sciences. UK. The main issues addressed being the transformation of bioinformatics and bioinformatics- based drug design into a robust discipline in industry, the government, research institutes and academia. The latest workshop emphasized the influence of the post-genomic era on medicine and healthcare with reference to advanced biological systems modeling and simulation, protein structure research, protein-protein interactions, metabolism and physiology. Speakers included Michael Ashburner, Kenneth Buetow, Francois Cambien, Cyrus Chothia, Jean Garnier, Francois Iris, Matthias Mann, Maya Natarajan, Peter Murray-Rust, Richard Mushlin, Barry Robson, David Rubin, Kosta Steliou, John Todd, Janet Thornton, Pim van der Eijk, Michael Vieth and Richard Ward. Copyright # 2002 John Wiley & Sons, Ltd. Received: 22 April 2002 Keywords: bioinformatics;
    [Show full text]
  • Assessing Sequence Comparison Methods with Reliable Structurally Identified Distant Evolutionary Relationships
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 6073–6078, May 1998 Biochemistry Assessing sequence comparison methods with reliable structurally identified distant evolutionary relationships STEVEN E. BRENNER*†‡,CYRUS CHOTHIA*, AND TIM J. P. HUBBARD§ *MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom; and §Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, United Kingdom Communicated by David R. Davies, National Institute of Diabetes, Bethesda, MD, March 16, 1998 (received for review November 12, 1997) ABSTRACT Pairwise sequence comparison methods have Sequence comparison methodologies have evolved rapidly, been assessed using proteins whose relationships are known so no previously published tests has evaluated modern versions reliably from their structures and functions, as described in of programs commonly used. For example, parameters in the SCOP database [Murzin, A. G., Brenner, S. E., Hubbard, T. BLAST (1) have changed, and WU-BLAST2 (2)—which produces & Chothia C. (1995) J. Mol. Biol. 247, 536–540]. The evalua- gapped alignments—has become available. The latest version tion tested the programs BLAST [Altschul, S. F., Gish, W., of FASTA (3) previously tested was 1.6, but the current release Miller, W., Myers, E. W. & Lipman, D. J. (1990). J. Mol. Biol. (version 3.0) provides fundamentally different results in the 215, 403–410], WU-BLAST2 [Altschul, S. F. & Gish, W. (1996) form of statistical scoring. Methods Enzymol. 266, 460–480], FASTA [Pearson, W. R. & The previous reports also have left gaps in our knowledge. Lipman, D. J. (1988) Proc. Natl. Acad. Sci. USA 85, 2444–2448], For example, there has been no published assessment of and SSEARCH [Smith, T.
    [Show full text]
  • A Novel and Effective Scoring Scheme for Structure Classification And
    A novel and effective scoring scheme for structure classification and pairwise similarity measurement Rezaul Karim∗, Md. Momin Al Aziz†,Swakkhar Shatabda‡ and M. Sohel Rahman∗ ∗Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology †Department of Computer Science, University of Manitoba, Canada ‡Department of Computer Science and Engineering, United International University Abstract—Protein tertiary structure defines its functions, clas- However, a major drawback of these approaches with re- sification and binding sites. Similar structural characteristics gards to the global structure similarity comparison is that these between two proteins often lead to the similar characteristics are much sensitive to local structure dissimilarity. Furthermore, thereof. Determining structural similarity accurately in real these approaches need to find an optimal alignment before time is a crucial research issue. In this paper, we present computing the score despite that often there are no remarkable a novel and effective scoring scheme that is dependent on alignment possible. Also finding proper alignment between two novel features extracted from protein alpha carbon distance matrices. Our scoring scheme is inspired from pattern recog- protein structures is computationally expensive if the size of nition and computer vision. Our method is significantly better the protein is large [9]. In spite of these inherent limitations than the current state of the art methods in terms of fam- and drawbacks, there exist a number of such methods in the ily match of pairs of protein structures and other statistical literature and the most notable ones among these are DALI measurements. The effectiveness of our method is tested on [10], [11], CE [12], TM Align [13], [14] and SP Align [15].
    [Show full text]
  • Relative Orientation of Close-Packed ,8-Pleated Sheets in Proteins
    Proc. Nati Acad. Sci. USA Vol. 78, No. 7, pp. 4146-4150, July 1981 Biochemistry Relative orientation of close-packed ,8-pleated sheets in proteins (twisted ,3sheets/protein secondary and tertiary structure) CYRUS CHOTHIA*t AND JOEL JANINt *William Ramsay, Ralph Foster and Christopher Ingold Laboratories, University College London, Gower Street, London WC1E 6BT, England; tMedical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England; and *Unit6 de Biochimie Cellulaire, Department de Biochimie et Gen~tique Moleculaire, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France Communicated by Max F. Perutz, March 30, 1981 ABSTRACT When (3-pleated sheets pack face to face in pro- curve from left to right, while those that point down curve from teins, the angle between the strand directions ofthe two (3-sheets right to left. is observed to be near -30°. We propose a simple model for f3- Fig. 2 b and c illustrates some of the effects of twisting two sheet-to-(-sheet packing in concanavalin A, plastocyanin, y-crys- ,(3pleated sheets that are packed together. We show, on the left tallin, superoxide dismutase, prealbumin, and the immunoglobin ofthe figures, two hypothetical untwisted (3-sheets packed with fragment VREI. This model shows how the observed relative ori- their rows of side chains aligned: those in the top (-sheet are entation of two packed (3-sheets is a consequence of (i) the rows parallel to those in the bottom. On the right of the figures we of side chains at the interface being approximately aligned and show what happens when these packed (3-sheets are twisted (ii) the (3-sheet having a right-handed twist.
    [Show full text]
  • Transformer Neural Networks for Protein Prediction Tasks
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.15.153643; this version posted June 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. TRANSFORMING THE LANGUAGE OF LIFE:TRANSFORMER NEURAL NETWORKS FOR PROTEIN PREDICTION TASKS Ananthan Nambiar ∗ Maeve Heflin∗ Department of Bioengineering Department of Computer Science Carl R. Woese Inst. for Genomic Biol. Carl R. Woese Inst. for Genomic Biol. University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign Urbana, IL 61801 Urbana, IL 61801 [email protected] Simon Liu∗ Sergei Maslov Department of Computer Science Department Bioengineering Carl R. Woese Inst. for Genomic Biol. Department of Physics University of Illinois at Urbana-Champaign Carl R. Woese Inst. for Genomic Biol. Urbana, IL 61801 University of Illinois at Urbana-Champaign Urbana, IL 61801 Mark Hopkinsy Anna Ritzy Department of Computer Science Department of Biology Reed College Reed College Portland, OR 97202 Portland, OR 97202 June 16, 2020 ABSTRACT The scientific community is rapidly generating protein sequence information, but only a fraction of these proteins can be experimentally characterized. While promising deep learning approaches for protein prediction tasks have emerged, they have computational limitations or are designed to solve a specific task. We present a Transformer neural network that pre-trains task-agnostic sequence representations. This model is fine-tuned to solve two different protein prediction tasks: protein family classification and protein interaction prediction.
    [Show full text]
  • Predicting RNA Binding Proteins Using Discriminative Methods
    Predicting RNA binding proteins using discriminative methods by Shweta Bhandare M.S. Department of Interdisciplinary Telecommunications, University of Colorado at Boulder 2003 B.E., College of Engineering, University of Goa, 1995 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Computer Science 2017 This thesis entitled: Predicting RNA binding proteins using discriminative methods written by Shweta Bhandare has been approved for the Department of Computer Science Prof. Robin Dowell Dr. Debra S. Goldberg Prof. Larry E. Hunter Dr. Daniel Weaver Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Bhandare, Shweta (Ph.D., Computer Science) Predicting RNA binding proteins using discriminative methods Thesis directed by Prof. Robin Dowell and Dr. Debra S. Goldberg This thesis examines the role of computational methods in identifying the motifs utilized by RNA-binding proteins (RBPs). RBPs play an important role in post-transcriptional regulation and identify their targets in a highly specific fashion through recognition of primary sequence and/or secondary structure hence making the prediction a complex problem. I applied the existing k-spectrum kernel method to a support vector machine and verified the published binding sites of two RBPs: Human antigen R (HuR) and Tristetraprolin (TTP). These RBPs exhibit opposing effects to the bound messenger RNA (mRNA) transcript but have simi- lar binding preferences.
    [Show full text]
  • Wolfson Review Wolfson The
    2012 – 2013 2013 No.37 – 2012 The Wolfson Review Wolfson The THE Wolfson Review 2012 – 2013 2013 No.37 – 2012 Wolfson College Barton Road Cambridge CB3 9BB www.wolfson.cam.ac.uk Upon 50 Years by John McClenahen (1986), Press Fellow The College is stone and mortar, and wood and glass. The College is ideas, great and small. The College is books and the Internet. Published in 2013 by Wolfson College, Cambridge The College is gates, gardens, paths, Barton Road, Cambridge CB3 9BB courts, and plaques, and a sundial. © Wolfson College, 2013 The College is Lee Library, the Dining Hall, and Bredon House. The College is students, and tutors, and Fellows. The College is fellowship, principles, and ritual. And the College, this College, Wolfson College, Cambridge, is much more. For this remarkable College is a diverse universe, ever expanding. From this College, in their diversity, those who study, guide, and reside here seek knowledge and truth in myriad ways. From this College, this special place, those who study, guide, and reside here seek to create, to find, to explore, to challenge, and to validate. Now and forever may their efforts – all our efforts wherever we are – Cover photograph Coloured primary hypothalamic neuronal culture, labelled ring true to the diversity and distinguishing humanness of this College, with MAP2, GFAP and Dapi under microscope, part of our young College in this ancient University. Wolfson Fellow Giles Yeo’s research into the brain control of food intake. Image created by Dr Brian Lam and Mr Joseph Polex-Wolf from the Yeo laboratory. The paper used for the Review contains material sourced from responsibly managed forests, certified in accordance with the Forestry Stewardship Council, and is printed using vegetable based inks.
    [Show full text]
  • New Tools for Old Organelles
    New tools for old organelles Bioinformatics for comparative cell biology Marc Gouw Dissertation presented to obtain the Ph.D degree in Bioinformatics Instituto de Tecnologia Química e Biológica António Xavier | Universidade Nova de Lisboa Oeiras, July, 2015 New tools for old organelles Bioinformatics for comparative cell biology Marc Gouw Dissertation presented to obtain the Ph.D degree in Evolutionary Biology Instituto de Tecnologia Química e Biológica António Xavier | Universidade Nova de Lisboa Research work coordinated by: Oeiras July, 2015 Acknowledgments This thesis and the years of work and inspiration put into it would not have been possible without the help of many people. First of all, I just generally want to thank everyone for being so great. Especially those who in any way contributed to making the past few years in Portugal and at the IGC such a wonderful experience: without all of you, my life and this thesis would have turned out very different indeed. A special thanks to all of the past and present members of the Computational Genomics Laboratory, who have always been kind enough to be unforgivingly critical of my work, and equally enthusiastic to go enjoy a beer on a Friday afternoon. And especially Beatriz Ferreira Gomes and Yoan Diekmann, who were essential to my PhD project: You have been truly inspiring collogues and close friends. A lot of this work would not have been possible without you. The epic mtoc-explorer.org, and indeed this thesis would also not have been possible without Renato Alves. I blame you, your programming genius and incredible patience for teaching me so much.
    [Show full text]
  • 1975.Txt 1. Computer Simulation of Protein Folding Michael Levitt
    1975.txt 1. Computer simulation of protein folding Michael Levitt* & Arieh Warshel*† †Department of Chemical Physics, Weizmann Institute of Science, Rehovoth, Israel *Present Address: MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK. A new and very simple representation of protein conformations has been used together with energy minimisation and thermalisation to simulate protein folding. Under certain conditions, the method succeeds in 'renaturing' bovine pancreatic trypsin inhibitor from an open-chain conformation into a folded conformation close to that of the native molecule. References 1.Anfinsen, C. B., Science, 181, 223–230 (1973). 2.Schulz, G. E., Barry, C. D., Friedman, J., Chou, P. Y., Fasman, G. D., Finkelstein, A. V., Lim, V. I., Ptitsyn, O. B., Kabat, E. A., Wu, T. T., Levitt, M., Robson, B., Nagano, K., Nature, 250, 140–142 (1974). 3.Scheraga, H. A., in Current topics in biochemistry (edit. by Anfinsen, C. B., and Schechter, A. N.), 1–42 (Academic, New York, 1974). 4.Ptitsyn, O. B., Vestnik Akad. Nauk S.S.S.R., 5, 57–68 (1973). 5.Flory, P. J. in Statistical Mechanics of Chain Molecules, 248–306 (Wiley, New York, 1969). 6.Hill, T. L., in Statistical Mechanics, 15–17 (McGraw-Hill, New York, 1956). 7.Nozaki, Y., and Tanford, C., J. biol. Chem., 246, 2211–2217 (1971). 8.Simon, E. M., Biopolymers, 10, 973–989 (1971). 9.Huber, R., Kukla, D., Ruhlmann, A., and Steigemann, W., Cold Spring Harbor Symp. quant. Biol., 36, 141–148 (1971). 10.Creighton, T. E., J. molec. Biol., 87, 603–624 (1974). 11.Phillips, D. C., in British Biochemistry, Past and Present (edit.
    [Show full text]
  • Weighted Graphlets and Deep Neural Networks for Protein Structure
    Weighted graphlets and deep neural networks for protein structure classification Hongyu Guo1, Khalique Newaz2,3,4, Scott Emrich5, Tijana Milenković2,3,4, and Jun Li1,* 1Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA 2Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA 3Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA 4Interdisciplinary Center for Network Science & Applications, University of Notre Dame, Notre Dame, IN 46556, USA 5Department of Electrical Engineering & Computer Science, University of Tennessee at Knoxville, TN 37996, USA *To whom correspondence should be addressed. Tel: +1 574 631 3429; Fax: +1 574 631 4822; Email: [email protected] Abstract As proteins with similar structures often have similar functions, analysis of protein structures can help predict protein functions and is thus important. We consider the problem of protein structure classification, which computationally classifies the struc- tures of proteins into pre-defined groups. We develop a weighted network that depicts the protein structures, and more importantly, we propose the first graphlet-based mea- sure that applies to weighted networks. Further, we develop a deep neural network (DNN) composed of both convolutional and recurrent layers to use this measure for classification. Put together, our approach shows dramatic improvements in performance arXiv:1910.02594v1 [stat.ML] 7 Oct 2019 over existing graphlet-based approaches on 36 real datasets. Even comparing with the state-of-the-art approach, it almost halves the classification error. In addition to protein structure networks, our weighted-graphlet measure and DNN classifier can potentially be applied to classification of other weighted networks in computational biology as well as in other domains.
    [Show full text]
  • Signature of Author
    An Analysis of Representations for Protein Structure Prediction by Barbara K. Moore Bryant S.B., S.M., Massachusetts Institute of Technology (1986) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 1994 ( Massachusetts Institute of Technology 1994 SignatureofAuthor ............. ,...... ........-.. .. Department of Electrical Engineering and Computer Science September 2, 1994 Certified by... ..... -- Patrick. H. Winston Professor, Electrical Engineering and Computer Science This Supervisor %-"ULfrtifioAvL.Lv--k &y ho, . Tomas o) no-Perez and Computer Science L! Thp.i. .,nPrvi.qnr Accepted by .. ... , a. ,- · F' drY................... / Frederic~) R. Morgenthaler Departmental /Committee on Graduate Students Iv:r tfF:r _ ;: ! --.. t.8r'(itr i-7etFr An Analysis of Representations for Protein Structure Prediction by Barbara K. Moore Bryant Submitted to the Department of Electrical Engineering and Computer Science on September 2, 1994, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Protein structure prediction is a grand challenge in' the fields of biology and computer science. Being able to quickly determine the structure of a protein from its amino acid sequence would be extremely useful to biologists interested in elucidating the mechanisms of life and finding ways to cure disease. In spite of a wealth of knowl- edge about proteins and their structure, the structure prediction problem has gone unsolved in the nearly forty years since the first determination of a protein structure by X-ray crystallography. In this thesis, I discuss issues in the representation of protein structure and se- quence for algorithms which perform structure prediction.
    [Show full text]
  • Emma E. Hill 461B Koshland Hall, #3102 Brenner
    Emma E. Hill 461B Koshland Hall, #3102 Tel: +1 510 642-9614 Brenner Research Group, Fax: +1 413 280-7813 University of California, Berkeley http://compbio.berkeley.edu Berkeley, CA 94720-3102 [email protected] Education and Research 2002-present Post-Doctoral Researcher with Professor Steven E. Brenner, University of California, Berkeley. 1998-2002 Ph.D. in Biological Sciences with Dr. Cyrus Chothia, F.R.S. MRC Laboratory of Molecular Biology, University of Cambridge, U.K. Thesis: Evolution of Protein Families: Genome Sequences and Three Dimensional Structures. 1995-1998* B.Sc. (hons) Genetics. The University of Manchester, School of Biological Sciences, U.K. *1996-1997 ERASMUS program (one semester spent studying in France as part of B.Sc.) Université Paul Sabatier, Toulouse, France Research Interests Using genome sequence and structural genomic data to discover the functions of important proteins, and analyze protein families: ♦ For protein families directly or indirectly linked to medical disorders, we can perform structural, sequence and functional analyses to understand how mutation and/or evolution have altered the proteins and how this impacts different organisms. ♦ We can detect functionally and/or structurally important residues in proteins of clinical interest, by producing accurate structural alignments. These help (i) us to understand how a certain protein fold is maintained despite sequence divergence and (ii) give vital clues as to functionally and/or structurally important residues for that protein. ♦ Determining ancient evolutionary relationships between proteins based upon structure and sequence will permit a better understanding of molecular evolution. ♦ Deducing potential model organisms suitable for the study of proteins of medical import can be done by comparing protein repertoires within and between genomes and correlating these with known phylogenetic relationships.
    [Show full text]