HMMER User's Guide

Total Page:16

File Type:pdf, Size:1020Kb

HMMER User's Guide HMMER User’s Guide Biological sequence analysis using profile hidden Markov models http://hmmer.wustl.edu/ Version 2.3.2; Oct 2003 Sean Eddy Howard Hughes Medical Institute and Dept. of Genetics Washington University School of Medicine 660 South Euclid Avenue, Box 8232 Saint Louis, Missouri 63110, USA http://www.genetics.wustl.edu/eddy/ With contributions by Ewan Birney ([email protected]) Copyright (C) 1992-2003 HHMI/Washington University School of Medicine. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are retained on all copies. The free version of the HMMER software package is a copyrighted work that may be freely distributed and modified under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Alternative license terms may be obtained (for instance, for commercial purposes) from the Office of Technology Management at Washington University. See the files COPYING and LICENSE that came with your copy of the Infernal software for details. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. For a copy of the full text of the GNU General Public License, see www.gnu.org/licenses. 1 Contents 1 Introduction 6 How to avoid reading this manual . 6 What profile HMMs are . 6 Applications of profile HMMs . 7 How to avoid using this software (links to similar software) . 8 How to learn more about profile HMMs . 8 2 Installation 9 Quick installation instructions . 9 configuring, compiling, and installing a source code distribution . 9 configuring and installing a precompiled binary distribution . 9 System requirements and portability . 10 Running the configure script . 10 setting installation targets . 10 setting compiler and compiler flags . 11 turning on POSIX thread support for multiprocessors . 11 turning on PVM support for clusters . 12 turning on LFS support for files >2GB ............................ 12 turning on Altivec optimization for Macintosh PowerPC . 12 other options, used in development code . 12 example configuration . 12 The config.h header file . 13 controlling memory footprint with RAMLIMIT ......................... 13 limiting the default number of processors with HMMER NCPU . 13 the other stuff in config.h .................................. 13 Running make . 14 Shell environment variables understood by HMMER . 14 Configuring a PVM cluster for HMMER . 15 example of a PVM cluster . 16 3 Tutorial 19 The programs in HMMER . 19 Files used in the tutorial . 19 Format of input alignment files . 20 Searching a sequence database with a single profile HMM . 20 build a profile HMM with hmmbuild . 20 calibrate the profile HMM with hmmcalibrate . 21 search the sequence database with hmmsearch . 22 searching major databases like NCBI NR or SWISSPROT . 25 local alignment versus global alignment . 25 Searching a query sequence against a profile HMM database . 26 creating your own profile HMM database . 26 parsing the domain structure of a sequence with hmmpfam . 26 obtaining the PFAM database . 28 2 Creating and maintaining multiple alignments with hmmalign . 28 General notes on using the programs in HMMER . 28 getting quick help on the command line . 28 sequence file formats . 29 using compressed files . 29 reading from pipes . 29 protein analysis versus nucleic acid analysis . 30 environment variables . 30 exit status from the programs . 30 4 How HMMER builds profile HMMs from alignments 31 The Plan 7 profile HMM architecture . 31 the philosophy of Plan 7 . 32 the fully probabilistic “local” alignment models of Plan 7 . 33 available alignment modes . 34 wing retraction in Plan 7 dynamic programming . 35 Parsing the residue information in input multiple sequence alignments . 35 alphabet type: DNA or protein . 35 case insensitivity . 36 handling of degenerate residue codes . 36 Model architecture construction . 36 maximum a posteriori model architecture construction, the default . 36 fast model architecture construction . 37 hand model architecture construction . 37 Collecting observed emission/transition counts . 37 sequence weighting . 38 determining the effective sequence number . 38 adjustments to the alignment . 39 Estimating probability parameters from counts . 40 using customized priors . 40 the ad hoc PAM prior . 40 Calculating scores from counts . 41 Setting the alignment mode . 41 Naming and saving the HMM . 41 5 How HMMER scores alignments and determines significance 43 Executive summary . 43 In more detail: HMMER bit scores . 43 interaction of multihit alignment with negative bit scores . 44 In more detail: HMMER E-values . 44 fitting extreme value distributions to HMMER score histograms . 45 In more detail: Pfam TC/NC/GA cutoffs . 46 Biased composition filtering: the null2 model . 47 derivation of the null2 score correction . 48 3 6 File formats 51 HMMER save files . 51 header section . 52 main model section . 55 renormalization . 56 note to developers . 56 HMMER null model files . 57 HMMER prior files . 58 Sequence files . 58 supported file formats . 58 FASTA unaligned sequence format . 59 Stockholm, the recommended multiple sequence alignment format . 60 a minimal Stockholm file . 60 syntax of Stockholm markup . 60 semantics of Stockholm markup . ..
Recommended publications
  • RDA COVID-19 Recommendations and Guidelines on Data Sharing
    RDA COVID-19 Recommendations and Guidelines on Data Sharing DOI: 10.15497/RDA00052 Authors: RDA COVID-19 Working Group Published: 30th June 2020 Abstract: This is the final version of the Recommendations and Guidelines from the RDA COVID19 Working Group, and has been endorsed through the official RDA process. Keywords: RDA; Recommendations; COVID-19. Language: English License: CC0 1.0 Universal (CC0 1.0) Public Domain Dedication RDA webpage: https://www.rd-alliance.org/group/rda-covid19-rda-covid19-omics-rda-covid19- epidemiology-rda-covid19-clinical-rda-covid19-1 Related resources: - RDA COVID-19 Guidelines and Recommendations – preliminary version, https://doi.org/10.15497/RDA00046 - Data Sharing in Epidemiology, https://doi.org/10.15497/RDA00049 - RDA COVID-19 Zotero Library, https://doi.org/10.15497/RDA00051 Citation and Download: RDA COVID-19 Working Group. Recommendations and Guidelines on data sharing. Research Data Alliance. 2020. DOI: https://doi.org/10.15497/RDA00052 RDA COVID-19 Recommendations and Guidelines on Data Sharing RDA Recommendation (FINAL Release) Produced by: RDA COVID-19 Working Group, 2020 Document Metadata Identifier DOI: https://doi.org/10.15497/rda00052 Citation To cite this document please use: RDA COVID-19 Working Group. Recommendations and Guidelines on data sharing. Research Data Alliance. 2020. DOI: https://doi.org/10.15497/rda00052 Title RDA COVID-19; Recommendations and Guidelines on Data Sharing, Final release 30 June 2020 Description This is the final version of the Recommendations and Guidelines
    [Show full text]
  • Enhanced Representation of Natural Product Metabolism in Uniprotkb
    H OH metabolites OH Article Diverse Taxonomies for Diverse Chemistries: Enhanced Representation of Natural Product Metabolism in UniProtKB Marc Feuermann 1,* , Emmanuel Boutet 1,* , Anne Morgat 1 , Kristian B. Axelsen 1, Parit Bansal 1, Jerven Bolleman 1 , Edouard de Castro 1, Elisabeth Coudert 1, Elisabeth Gasteiger 1,Sébastien Géhant 1, Damien Lieberherr 1, Thierry Lombardot 1,†, Teresa B. Neto 1, Ivo Pedruzzi 1, Sylvain Poux 1, Monica Pozzato 1, Nicole Redaschi 1 , Alan Bridge 1 and on behalf of the UniProt Consortium 1,2,3,4,‡ 1 Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; [email protected] (A.M.); [email protected] (K.B.A.); [email protected] (P.B.); [email protected] (J.B.); [email protected] (E.d.C.); [email protected] (E.C.); [email protected] (E.G.); [email protected] (S.G.); [email protected] (D.L.); [email protected] (T.L.); [email protected] (T.B.N.); [email protected] (I.P.); [email protected] (S.P.); [email protected] (M.P.); [email protected] (N.R.); [email protected] (A.B.); [email protected] (U.C.) 2 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK 3 Protein Information Resource, University of Delaware, 15 Innovation Way, Suite 205, Newark, DE 19711, USA 4 Protein Information Resource, Georgetown University Medical Center, 3300 Whitehaven Street NorthWest, Suite 1200, Washington, DC 20007, USA * Correspondence: [email protected] (M.F.); [email protected] (E.B.); Tel.: +41-22-379-58-75 (M.F.); +41-22-379-49-10 (E.B.) † Current address: Centre Informatique, Division Calcul et Soutien à la Recherche, University of Lausanne, CH-1015 Lausanne, Switzerland.
    [Show full text]
  • Sequencing Alignment I Outline: Sequence Alignment
    Sequencing Alignment I Lectures 16 – Nov 21, 2011 CSE 527 Computational Biology, Fall 2011 Instructor: Su-In Lee TA: Christopher Miles Monday & Wednesday 12:00-1:20 Johnson Hall (JHN) 022 1 Outline: Sequence Alignment What Why (applications) Comparative genomics DNA sequencing A simple algorithm Complexity analysis A better algorithm: “Dynamic programming” 2 1 Sequence Alignment: What Definition An arrangement of two or several biological sequences (e.g. protein or DNA sequences) highlighting their similarity The sequences are padded with gaps (usually denoted by dashes) so that columns contain identical or similar characters from the sequences involved Example – pairwise alignment T A C T A A G T C C A A T 3 Sequence Alignment: What Definition An arrangement of two or several biological sequences (e.g. protein or DNA sequences) highlighting their similarity The sequences are padded with gaps (usually denoted by dashes) so that columns contain identical or similar characters from the sequences involved Example – pairwise alignment T A C T A A G | : | : | | : T C C – A A T 4 2 Sequence Alignment: Why The most basic sequence analysis task First aligning the sequences (or parts of them) and Then deciding whether that alignment is more likely to have occurred because the sequences are related, or just by chance Similar sequences often have similar origin or function New sequence always compared to existing sequences (e.g. using BLAST) 5 Sequence Alignment Example: gene HBB Product: hemoglobin Sickle-cell anaemia causing gene Protein sequence (146 aa) MVHLTPEEKS AVTALWGKVN VDEVGGEALG RLLVVYPWTQ RFFESFGDLS TPDAVMGNPK VKAHGKKVLG AFSDGLAHLD NLKGTFATLS ELHCDKLHVD PENFRLLGNV LVCVLAHHFG KEFTPPVQAA YQKVVAGVAN ALAHKYH BLAST (Basic Local Alignment Search Tool) The most popular alignment tool Try it! Pick any protein, e.g.
    [Show full text]
  • The EMBL-European Bioinformatics Institute the Hub for Bioinformatics in Europe
    The EMBL-European Bioinformatics Institute The hub for bioinformatics in Europe Blaise T.F. Alako, PhD [email protected] www.ebi.ac.uk What is EMBL-EBI? • Part of the European Molecular Biology Laboratory • International, non-profit research institute • Europe’s hub for biological data, services and research The European Molecular Biology Laboratory Heidelberg Hamburg Hinxton, Cambridge Basic research Structural biology Bioinformatics Administration Grenoble Monterotondo, Rome EMBO EMBL staff: 1500 people Structural biology Mouse biology >60 nationalities EMBL member states Austria, Belgium, Croatia, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Israel, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom Associate member state: Australia Who we are ~500 members of staff ~400 work in services & support >53 nationalities ~120 focus on basic research EMBL-EBI’s mission • Provide freely available data and bioinformatics services to all facets of the scientific community in ways that promote scientific progress • Contribute to the advancement of biology through basic investigator-driven research in bioinformatics • Provide advanced bioinformatics training to scientists at all levels, from PhD students to independent investigators • Help disseminate cutting-edge technologies to industry • Coordinate biological data provision throughout Europe Services Data and tools for molecular life science www.ebi.ac.uk/services Browse our services 9 What services do we provide? Labs around the
    [Show full text]
  • Comparative Analysis of Multiple Sequence Alignment Tools
    I.J. Information Technology and Computer Science, 2018, 8, 24-30 Published Online August 2018 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijitcs.2018.08.04 Comparative Analysis of Multiple Sequence Alignment Tools Eman M. Mohamed Faculty of Computers and Information, Menoufia University, Egypt E-mail: [email protected]. Hamdy M. Mousa, Arabi E. keshk Faculty of Computers and Information, Menoufia University, Egypt E-mail: [email protected], [email protected]. Received: 24 April 2018; Accepted: 07 July 2018; Published: 08 August 2018 Abstract—The perfect alignment between three or more global alignment algorithm built-in dynamic sequences of Protein, RNA or DNA is a very difficult programming technique [1]. This algorithm maximizes task in bioinformatics. There are many techniques for the number of amino acid matches and minimizes the alignment multiple sequences. Many techniques number of required gaps to finds globally optimal maximize speed and do not concern with the accuracy of alignment. Local alignments are more useful for aligning the resulting alignment. Likewise, many techniques sub-regions of the sequences, whereas local alignment maximize accuracy and do not concern with the speed. maximizes sub-regions similarity alignment. One of the Reducing memory and execution time requirements and most known of Local alignment is Smith-Waterman increasing the accuracy of multiple sequence alignment algorithm [2]. on large-scale datasets are the vital goal of any technique. The paper introduces the comparative analysis of the Table 1. Pairwise vs. multiple sequence alignment most well-known programs (CLUSTAL-OMEGA, PSA MSA MAFFT, BROBCONS, KALIGN, RETALIGN, and Compare two biological Compare more than two MUSCLE).
    [Show full text]
  • Meeting Review: Bioinformatics and Medicine – from Molecules To
    Comparative and Functional Genomics Comp Funct Genom 2002; 3: 270–276. Published online 9 May 2002 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cfg.178 Feature Meeting Review: Bioinformatics And Medicine – From molecules to humans, virtual and real Hinxton Hall Conference Centre, Genome Campus, Hinxton, Cambridge, UK – April 5th–7th Roslin Russell* MRC UK HGMP Resource Centre, Genome Campus, Hinxton, Cambridge CB10 1SB, UK *Correspondence to: Abstract MRC UK HGMP Resource Centre, Genome Campus, The Industrialization Workshop Series aims to promote and discuss integration, automa- Hinxton, Cambridge CB10 1SB, tion, simulation, quality, availability and standards in the high-throughput life sciences. UK. The main issues addressed being the transformation of bioinformatics and bioinformatics- based drug design into a robust discipline in industry, the government, research institutes and academia. The latest workshop emphasized the influence of the post-genomic era on medicine and healthcare with reference to advanced biological systems modeling and simulation, protein structure research, protein-protein interactions, metabolism and physiology. Speakers included Michael Ashburner, Kenneth Buetow, Francois Cambien, Cyrus Chothia, Jean Garnier, Francois Iris, Matthias Mann, Maya Natarajan, Peter Murray-Rust, Richard Mushlin, Barry Robson, David Rubin, Kosta Steliou, John Todd, Janet Thornton, Pim van der Eijk, Michael Vieth and Richard Ward. Copyright # 2002 John Wiley & Sons, Ltd. Received: 22 April 2002 Keywords: bioinformatics;
    [Show full text]
  • The ELIXIR Core Data Resources: ​Fundamental Infrastructure for The
    Supplementary Data: The ELIXIR Core Data Resources: fundamental infrastructure ​ for the life sciences The “Supporting Material” referred to within this Supplementary Data can be found in the Supporting.Material.CDR.infrastructure file, DOI: 10.5281/zenodo.2625247 (https://zenodo.org/record/2625247). ​ ​ Figure 1. Scale of the Core Data Resources Table S1. Data from which Figure 1 is derived: Year 2013 2014 2015 2016 2017 Data entries 765881651 997794559 1726529931 1853429002 2715599247 Monthly user/IP addresses 1700660 2109586 2413724 2502617 2867265 FTEs 270 292.65 295.65 289.7 311.2 Figure 1 includes data from the following Core Data Resources: ArrayExpress, BRENDA, CATH, ChEBI, ChEMBL, EGA, ENA, Ensembl, Ensembl Genomes, EuropePMC, HPA, IntAct /MINT , InterPro, PDBe, PRIDE, SILVA, STRING, UniProt ● Note that Ensembl’s compute infrastructure physically relocated in 2016, so “Users/IP address” data are not available for that year. In this case, the 2015 numbers were rolled forward to 2016. ● Note that STRING makes only minor releases in 2014 and 2016, in that the interactions are re-computed, but the number of “Data entries” remains unchanged. The major releases that change the number of “Data entries” happened in 2013 and 2015. So, for “Data entries” , the number for 2013 was rolled forward to 2014, and the number for 2015 was rolled forward to 2016. The ELIXIR Core Data Resources: fundamental infrastructure for the life sciences ​ 1 Figure 2: Usage of Core Data Resources in research The following steps were taken: 1. API calls were run on open access full text articles in Europe PMC to identify articles that ​ ​ mention Core Data Resource by name or include specific data record accession numbers.
    [Show full text]
  • Dual Proteome-Scale Networks Reveal Cell-Specific Remodeling of the Human Interactome
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dual Proteome-scale Networks Reveal Cell-specific Remodeling of the Human Interactome Edward L. Huttlin1*, Raphael J. Bruckner1,3, Jose Navarrete-Perea1, Joe R. Cannon1,4, Kurt Baltier1,5, Fana Gebreab1, Melanie P. Gygi1, Alexandra Thornock1, Gabriela Zarraga1,6, Stanley Tam1,7, John Szpyt1, Alexandra Panov1, Hannah Parzen1,8, Sipei Fu1, Arvene Golbazi1, Eila Maenpaa1, Keegan Stricker1, Sanjukta Guha Thakurta1, Ramin Rad1, Joshua Pan2, David P. Nusinow1, Joao A. Paulo1, Devin K. Schweppe1, Laura Pontano Vaites1, J. Wade Harper1*, Steven P. Gygi1*# 1Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA. 2Broad Institute, Cambridge, MA, 02142, USA. 3Present address: ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, 02115, USA. 4Present address: Merck, West Point, PA, 19486, USA. 5Present address: IQ Proteomics, Cambridge, MA, 02139, USA. 6Present address: Vor Biopharma, Cambridge, MA, 02142, USA. 7Present address: Rubius Therapeutics, Cambridge, MA, 02139, USA. 8Present address: RPS North America, South Kingstown, RI, 02879, USA. *Correspondence: [email protected] (E.L.H.), [email protected] (J.W.H.), [email protected] (S.P.G.) #Lead Contact: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Cryptic Inoviruses Revealed As Pervasive in Bacteria and Archaea Across Earth’S Biomes
    ARTICLES https://doi.org/10.1038/s41564-019-0510-x Corrected: Author Correction Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biomes Simon Roux 1*, Mart Krupovic 2, Rebecca A. Daly3, Adair L. Borges4, Stephen Nayfach1, Frederik Schulz 1, Allison Sharrar5, Paula B. Matheus Carnevali 5, Jan-Fang Cheng1, Natalia N. Ivanova 1, Joseph Bondy-Denomy4,6, Kelly C. Wrighton3, Tanja Woyke 1, Axel Visel 1, Nikos C. Kyrpides1 and Emiley A. Eloe-Fadrosh 1* Bacteriophages from the Inoviridae family (inoviruses) are characterized by their unique morphology, genome content and infection cycle. One of the most striking features of inoviruses is their ability to establish a chronic infection whereby the viral genome resides within the cell in either an exclusively episomal state or integrated into the host chromosome and virions are continuously released without killing the host. To date, a relatively small number of inovirus isolates have been extensively studied, either for biotechnological applications, such as phage display, or because of their effect on the toxicity of known bacterial pathogens including Vibrio cholerae and Neisseria meningitidis. Here, we show that the current 56 members of the Inoviridae family represent a minute fraction of a highly diverse group of inoviruses. Using a machine learning approach lever- aging a combination of marker gene and genome features, we identified 10,295 inovirus-like sequences from microbial genomes and metagenomes. Collectively, our results call for reclassification of the current Inoviridae family into a viral order including six distinct proposed families associated with nearly all bacterial phyla across virtually every ecosystem.
    [Show full text]
  • To Find Information About Arabidopsis Genes Leonore Reiser1, Shabari
    UNIT 1.11 Using The Arabidopsis Information Resource (TAIR) to Find Information About Arabidopsis Genes Leonore Reiser1, Shabari Subramaniam1, Donghui Li1, and Eva Huala1 1Phoenix Bioinformatics, Redwood City, CA USA ABSTRACT The Arabidopsis Information Resource (TAIR; http://arabidopsis.org) is a comprehensive Web resource of Arabidopsis biology for plant scientists. TAIR curates and integrates information about genes, proteins, gene function, orthologs gene expression, mutant phenotypes, biological materials such as clones and seed stocks, genetic markers, genetic and physical maps, genome organization, images of mutant plants, protein sub-cellular localizations, publications, and the research community. The various data types are extensively interconnected and can be accessed through a variety of Web-based search and display tools. This unit primarily focuses on some basic methods for searching, browsing, visualizing, and analyzing information about Arabidopsis genes and genome, Additionally we describe how members of the community can share data using TAIR’s Online Annotation Submission Tool (TOAST), in order to make their published research more accessible and visible. Keywords: Arabidopsis ● databases ● bioinformatics ● data mining ● genomics INTRODUCTION The Arabidopsis Information Resource (TAIR; http://arabidopsis.org) is a comprehensive Web resource for the biology of Arabidopsis thaliana (Huala et al., 2001; Garcia-Hernandez et al., 2002; Rhee et al., 2003; Weems et al., 2004; Swarbreck et al., 2008, Lamesch, et al., 2010, Berardini et al., 2016). The TAIR database contains information about genes, proteins, gene expression, mutant phenotypes, germplasms, clones, genetic markers, genetic and physical maps, genome organization, publications, and the research community. In addition, seed and DNA stocks from the Arabidopsis Biological Resource Center (ABRC; Scholl et al., 2003) are integrated with genomic data, and can be ordered through TAIR.
    [Show full text]
  • Learning Protein Constitutive Motifs from Sequence Data Je´ Roˆ Me Tubiana, Simona Cocco, Re´ Mi Monasson*
    TOOLS AND RESOURCES Learning protein constitutive motifs from sequence data Je´ roˆ me Tubiana, Simona Cocco, Re´ mi Monasson* Laboratory of Physics of the Ecole Normale Supe´rieure, CNRS UMR 8023 & PSL Research, Paris, France Abstract Statistical analysis of evolutionary-related protein sequences provides information about their structure, function, and history. We show that Restricted Boltzmann Machines (RBM), designed to learn complex high-dimensional data and their statistical features, can efficiently model protein families from sequence information. We here apply RBM to 20 protein families, and present detailed results for two short protein domains (Kunitz and WW), one long chaperone protein (Hsp70), and synthetic lattice proteins for benchmarking. The features inferred by the RBM are biologically interpretable: they are related to structure (residue-residue tertiary contacts, extended secondary motifs (a-helixes and b-sheets) and intrinsically disordered regions), to function (activity and ligand specificity), or to phylogenetic identity. In addition, we use RBM to design new protein sequences with putative properties by composing and ’turning up’ or ’turning down’ the different modes at will. Our work therefore shows that RBM are versatile and practical tools that can be used to unveil and exploit the genotype–phenotype relationship for protein families. DOI: https://doi.org/10.7554/eLife.39397.001 Introduction In recent years, the sequencing of many organisms’ genomes has led to the collection of a huge number of protein sequences, which are catalogued in databases such as UniProt or PFAM Finn et al., 2014). Sequences that share a common ancestral origin, defining a family (Figure 1A), *For correspondence: are likely to code for proteins with similar functions and structures, providing a unique window into [email protected] the relationship between genotype (sequence content) and phenotype (biological features).
    [Show full text]
  • Curriculum Vitae – Prof. Anders Krogh Personal Information
    Curriculum Vitae – Prof. Anders Krogh Personal Information Date of Birth: May 2nd, 1959 Private Address: Borgmester Jensens Alle 22, st th, 2100 København Ø, Denmark Contact information: Dept. of Biology, Univ. of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark. +45 3532 1329, [email protected] Web: https://scholar.google.com/citations?user=-vGMjmwAAAAJ Education Sept 1991 Ph.D. (Physics), Niels Bohr Institute, Univ. of Copenhagen, Denmark June 1987 Cand. Scient. [M. Sc.] (Physics and mathematics), NBI, Univ. of Copenhagen Professional / Work Experience (since 2000) 2018 – Professor of Bionformatics, Dept of Computer Science (50%) and Dept of Biology (50%), Univ. of Copenhagen 2002 – 2018 Professor of Bionformatics, Dept of Biology, Univ. of Copenhagen 2009 – 2018 Head of Section for Computational and RNA Biology, Dept. of Biology, Univ. of Copenhagen 2000–2002 Associate Prof., Technical Univ. of Denmark (DTU), Copenhagen Prices and Awards 2017 – Fellow of the International Society for Computational Biology https://www.iscb.org/iscb- fellows-program 2008 – Fellow, Royal Danish Academy of Sciences and Letters Public Activities & Appointments (since 2009) 2014 – Board member, Elixir, European Infrastructure for Life Science. 2014 – Steering committee member, Danish Elixir Node. 2012 – 2016 Board member, Bioinformatics Infrastructure for Life Sciences (BILS), Swedish Research Council 2011 – 2016 Director, Centre for Computational and Applied Transcriptomics (COAT) 2009 – Associate editor, BMC Bioinformatics Publications § Google Scholar: https://scholar.google.com/citations?user=-vGMjmwAAAAJ § ORCID: 0000-0002-5147-6282. ResearcherID: M-1541-2014 § Co-author of 130 peer-reviewed papers and 2 monographs § 63,000 citations and h-index of 74 (Google Scholar, June 2019) § H-index of 54 in Web of science (June 2019) § Publications in high-impact journals: Nature (5), Science (1), Cell (1), Nature Genetics (2), Nature Biotechnology (2), Nature Communications (4), Cell (1, to appear), Genome Res.
    [Show full text]