Tunca Doğan , Alex Bateman , Maria J. Martin Your Choice
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Enhanced Representation of Natural Product Metabolism in Uniprotkb
H OH metabolites OH Article Diverse Taxonomies for Diverse Chemistries: Enhanced Representation of Natural Product Metabolism in UniProtKB Marc Feuermann 1,* , Emmanuel Boutet 1,* , Anne Morgat 1 , Kristian B. Axelsen 1, Parit Bansal 1, Jerven Bolleman 1 , Edouard de Castro 1, Elisabeth Coudert 1, Elisabeth Gasteiger 1,Sébastien Géhant 1, Damien Lieberherr 1, Thierry Lombardot 1,†, Teresa B. Neto 1, Ivo Pedruzzi 1, Sylvain Poux 1, Monica Pozzato 1, Nicole Redaschi 1 , Alan Bridge 1 and on behalf of the UniProt Consortium 1,2,3,4,‡ 1 Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; [email protected] (A.M.); [email protected] (K.B.A.); [email protected] (P.B.); [email protected] (J.B.); [email protected] (E.d.C.); [email protected] (E.C.); [email protected] (E.G.); [email protected] (S.G.); [email protected] (D.L.); [email protected] (T.L.); [email protected] (T.B.N.); [email protected] (I.P.); [email protected] (S.P.); [email protected] (M.P.); [email protected] (N.R.); [email protected] (A.B.); [email protected] (U.C.) 2 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK 3 Protein Information Resource, University of Delaware, 15 Innovation Way, Suite 205, Newark, DE 19711, USA 4 Protein Information Resource, Georgetown University Medical Center, 3300 Whitehaven Street NorthWest, Suite 1200, Washington, DC 20007, USA * Correspondence: [email protected] (M.F.); [email protected] (E.B.); Tel.: +41-22-379-58-75 (M.F.); +41-22-379-49-10 (E.B.) † Current address: Centre Informatique, Division Calcul et Soutien à la Recherche, University of Lausanne, CH-1015 Lausanne, Switzerland. -
Sequencing Alignment I Outline: Sequence Alignment
Sequencing Alignment I Lectures 16 – Nov 21, 2011 CSE 527 Computational Biology, Fall 2011 Instructor: Su-In Lee TA: Christopher Miles Monday & Wednesday 12:00-1:20 Johnson Hall (JHN) 022 1 Outline: Sequence Alignment What Why (applications) Comparative genomics DNA sequencing A simple algorithm Complexity analysis A better algorithm: “Dynamic programming” 2 1 Sequence Alignment: What Definition An arrangement of two or several biological sequences (e.g. protein or DNA sequences) highlighting their similarity The sequences are padded with gaps (usually denoted by dashes) so that columns contain identical or similar characters from the sequences involved Example – pairwise alignment T A C T A A G T C C A A T 3 Sequence Alignment: What Definition An arrangement of two or several biological sequences (e.g. protein or DNA sequences) highlighting their similarity The sequences are padded with gaps (usually denoted by dashes) so that columns contain identical or similar characters from the sequences involved Example – pairwise alignment T A C T A A G | : | : | | : T C C – A A T 4 2 Sequence Alignment: Why The most basic sequence analysis task First aligning the sequences (or parts of them) and Then deciding whether that alignment is more likely to have occurred because the sequences are related, or just by chance Similar sequences often have similar origin or function New sequence always compared to existing sequences (e.g. using BLAST) 5 Sequence Alignment Example: gene HBB Product: hemoglobin Sickle-cell anaemia causing gene Protein sequence (146 aa) MVHLTPEEKS AVTALWGKVN VDEVGGEALG RLLVVYPWTQ RFFESFGDLS TPDAVMGNPK VKAHGKKVLG AFSDGLAHLD NLKGTFATLS ELHCDKLHVD PENFRLLGNV LVCVLAHHFG KEFTPPVQAA YQKVVAGVAN ALAHKYH BLAST (Basic Local Alignment Search Tool) The most popular alignment tool Try it! Pick any protein, e.g. -
The EMBL-European Bioinformatics Institute the Hub for Bioinformatics in Europe
The EMBL-European Bioinformatics Institute The hub for bioinformatics in Europe Blaise T.F. Alako, PhD [email protected] www.ebi.ac.uk What is EMBL-EBI? • Part of the European Molecular Biology Laboratory • International, non-profit research institute • Europe’s hub for biological data, services and research The European Molecular Biology Laboratory Heidelberg Hamburg Hinxton, Cambridge Basic research Structural biology Bioinformatics Administration Grenoble Monterotondo, Rome EMBO EMBL staff: 1500 people Structural biology Mouse biology >60 nationalities EMBL member states Austria, Belgium, Croatia, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Israel, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom Associate member state: Australia Who we are ~500 members of staff ~400 work in services & support >53 nationalities ~120 focus on basic research EMBL-EBI’s mission • Provide freely available data and bioinformatics services to all facets of the scientific community in ways that promote scientific progress • Contribute to the advancement of biology through basic investigator-driven research in bioinformatics • Provide advanced bioinformatics training to scientists at all levels, from PhD students to independent investigators • Help disseminate cutting-edge technologies to industry • Coordinate biological data provision throughout Europe Services Data and tools for molecular life science www.ebi.ac.uk/services Browse our services 9 What services do we provide? Labs around the -
Comparative Analysis of Multiple Sequence Alignment Tools
I.J. Information Technology and Computer Science, 2018, 8, 24-30 Published Online August 2018 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijitcs.2018.08.04 Comparative Analysis of Multiple Sequence Alignment Tools Eman M. Mohamed Faculty of Computers and Information, Menoufia University, Egypt E-mail: [email protected]. Hamdy M. Mousa, Arabi E. keshk Faculty of Computers and Information, Menoufia University, Egypt E-mail: [email protected], [email protected]. Received: 24 April 2018; Accepted: 07 July 2018; Published: 08 August 2018 Abstract—The perfect alignment between three or more global alignment algorithm built-in dynamic sequences of Protein, RNA or DNA is a very difficult programming technique [1]. This algorithm maximizes task in bioinformatics. There are many techniques for the number of amino acid matches and minimizes the alignment multiple sequences. Many techniques number of required gaps to finds globally optimal maximize speed and do not concern with the accuracy of alignment. Local alignments are more useful for aligning the resulting alignment. Likewise, many techniques sub-regions of the sequences, whereas local alignment maximize accuracy and do not concern with the speed. maximizes sub-regions similarity alignment. One of the Reducing memory and execution time requirements and most known of Local alignment is Smith-Waterman increasing the accuracy of multiple sequence alignment algorithm [2]. on large-scale datasets are the vital goal of any technique. The paper introduces the comparative analysis of the Table 1. Pairwise vs. multiple sequence alignment most well-known programs (CLUSTAL-OMEGA, PSA MSA MAFFT, BROBCONS, KALIGN, RETALIGN, and Compare two biological Compare more than two MUSCLE). -
Chapter 6: Multiple Sequence Alignment Learning Objectives
Chapter 6: Multiple Sequence Alignment Learning objectives • Explain the three main stages by which ClustalW performs multiple sequence alignment (MSA); • Describe several alternative programs for MSA (such as MUSCLE, ProbCons, and TCoffee); • Explain how they work, and contrast them with ClustalW; • Explain the significance of performing benchmarking studies and describe several of their basic conclusions for MSA; • Explain the issues surrounding MSA of genomic regions Outline: multiple sequence alignment (MSA) Introduction; definition of MSA; typical uses Five main approaches to multiple sequence alignment Exact approaches Progressive sequence alignment Iterative approaches Consistency-based approaches Structure-based methods Benchmarking studies: approaches, findings, challenges Databases of Multiple Sequence Alignments Pfam: Protein Family Database of Profile HMMs SMART Conserved Domain Database Integrated multiple sequence alignment resources MSA database curation: manual versus automated Multiple sequence alignments of genomic regions UCSC, Galaxy, Ensembl, alignathon Perspective Multiple sequence alignment: definition • a collection of three or more protein (or nucleic acid) sequences that are partially or completely aligned • homologous residues are aligned in columns across the length of the sequences • residues are homologous in an evolutionary sense • residues are homologous in a structural sense Example: 5 alignments of 5 globins Let’s look at a multiple sequence alignment (MSA) of five globins proteins. We’ll use five prominent MSA programs: ClustalW, Praline, MUSCLE (used at HomoloGene), ProbCons, and TCoffee. Each program offers unique strengths. We’ll focus on a histidine (H) residue that has a critical role in binding oxygen in globins, and should be aligned. But often it’s not aligned, and all five programs give different answers. -
How to Generate a Publication-Quality Multiple Sequence Alignment (Thomas Weimbs, University of California Santa Barbara, 11/2012)
Tutorial: How to generate a publication-quality multiple sequence alignment (Thomas Weimbs, University of California Santa Barbara, 11/2012) 1) Get your sequences in FASTA format: • Go to the NCBI website; find your sequences and display them in FASTA format. Each sequence should look like this (http://www.ncbi.nlm.nih.gov/protein/6678177?report=fasta): >gi|6678177|ref|NP_033320.1| syntaxin-4 [Mus musculus] MRDRTHELRQGDNISDDEDEVRVALVVHSGAARLGSPDDEFFQKVQTIRQTMAKLESKVRELEKQQVTIL ATPLPEESMKQGLQNLREEIKQLGREVRAQLKAIEPQKEEADENYNSVNTRMKKTQHGVLSQQFVELINK CNSMQSEYREKNVERIRRQLKITNAGMVSDEELEQMLDSGQSEVFVSNILKDTQVTRQALNEISARHSEI QQLERSIRELHEIFTFLATEVEMQGEMINRIEKNILSSADYVERGQEHVKIALENQKKARKKKVMIAICV SVTVLILAVIIGITITVG 2) In a text editor, paste all your sequences together (in the order that you would like them to appear in the end). It should look like this: >gi|6678177|ref|NP_033320.1| syntaxin-4 [Mus musculus] MRDRTHELRQGDNISDDEDEVRVALVVHSGAARLGSPDDEFFQKVQTIRQTMAKLESKVRELEKQQVTIL ATPLPEESMKQGLQNLREEIKQLGREVRAQLKAIEPQKEEADENYNSVNTRMKKTQHGVLSQQFVELINK CNSMQSEYREKNVERIRRQLKITNAGMVSDEELEQMLDSGQSEVFVSNILKDTQVTRQALNEISARHSEI QQLERSIRELHEIFTFLATEVEMQGEMINRIEKNILSSADYVERGQEHVKIALENQKKARKKKVMIAICV SVTVLILAVIIGITITVG >gi|151554658|gb|AAI47965.1| STX3 protein [Bos taurus] MKDRLEQLKAKQLTQDDDTDEVEIAVDNTAFMDEFFSEIEETRVNIDKISEHVEEAKRLYSVILSAPIPE PKTKDDLEQLTTEIKKRANNVRNKLKSMERHIEEDEVQSSADLRIRKSQHSVLSRKFVEVMTKYNEAQVD FRERSKGRIQRQLEITGKKTTDEELEEMLESGNPAIFTSGIIDSQISKQALSEIEGRHKDIVRLESSIKE LHDMFMDIAMLVENQGEMLDNIELNVMHTVDHVEKAREETKRAVKYQGQARKKLVIIIVIVVVLLGILAL IIGLSVGLK -
"Phylogenetic Analysis of Protein Sequence Data Using The
Phylogenetic Analysis of Protein Sequence UNIT 19.11 Data Using the Randomized Axelerated Maximum Likelihood (RAXML) Program Antonis Rokas1 1Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee ABSTRACT Phylogenetic analysis is the study of evolutionary relationships among molecules, phenotypes, and organisms. In the context of protein sequence data, phylogenetic analysis is one of the cornerstones of comparative sequence analysis and has many applications in the study of protein evolution and function. This unit provides a brief review of the principles of phylogenetic analysis and describes several different standard phylogenetic analyses of protein sequence data using the RAXML (Randomized Axelerated Maximum Likelihood) Program. Curr. Protoc. Mol. Biol. 96:19.11.1-19.11.14. C 2011 by John Wiley & Sons, Inc. Keywords: molecular evolution r bootstrap r multiple sequence alignment r amino acid substitution matrix r evolutionary relationship r systematics INTRODUCTION the baboon-colobus monkey lineage almost Phylogenetic analysis is a standard and es- 25 million years ago, whereas baboons and sential tool in any molecular biologist’s bioin- colobus monkeys diverged less than 15 mil- formatics toolkit that, in the context of pro- lion years ago (Sterner et al., 2006). Clearly, tein sequence analysis, enables us to study degree of sequence similarity does not equate the evolutionary history and change of pro- with degree of evolutionary relationship. teins and their function. Such analysis is es- A typical phylogenetic analysis of protein sential to understanding major evolutionary sequence data involves five distinct steps: (a) questions, such as the origins and history of data collection, (b) inference of homology, (c) macromolecules, developmental mechanisms, sequence alignment, (d) alignment trimming, phenotypes, and life itself. -
Aligning Reads: Tools and Theory Genome Transcriptome Assembly Mapping Mapping
Aligning reads: tools and theory Genome Transcriptome Assembly Mapping Mapping Reads Reads Reads RSEM, STAR, Kallisto, Trinity, HISAT2 Sailfish, Scripture Salmon Splice-aware Transcript mapping Assembly into Genome mapping and quantification transcripts htseq-count, StringTie Trinotate featureCounts Transcript Novel transcript Gene discovery & annotation counting counting Homology-based BLAST2GO Novel transcript annotation Transcriptome Mapping Reads RSEM, Kallisto, Sailfish, Salmon Transcript mapping and quantification Transcriptome Biological samples/Library preparation Mapping Reads RSEM, Kallisto, Sequence reads Sailfish, Salmon FASTQ (+reference transcriptome index) Transcript mapping and quantification Quantify expression Salmon, Kallisto, Sailfish Pseudocounts DGE with R Functional Analysis with R Goal: Finding where in the genome these reads originated from 5 chrX:152139280 152139290 152139300 152139310 152139320 152139330 Reference --->CGCCGTCCCTCAGAATGGAAACCTCGCT TCTCTCTGCCCCACAATGCGCAAGTCAG CD133hi:LM-Mel-34pos Normal:HAH CD133lo:LM-Mel-34neg Normal:HAH CD133lo:LM-Mel-14neg Normal:HAH CD133hi:LM-Mel-34pos Normal:HAH CD133lo:LM-Mel-42neg Normal:HAH CD133hi:LM-Mel-42pos Normal:HAH CD133lo:LM-Mel-34neg Normal:HAH CD133hi:LM-Mel-34pos Normal:HAH CD133lo:LM-Mel-14neg Normal:HAH CD133hi:LM-Mel-14pos Normal:HAH CD133lo:LM-Mel-34neg Normal:HAH CD133hi:LM-Mel-34pos Normal:HAH CD133lo:LM-Mel-42neg DBTSS:human_MCF7 CD133hi:LM-Mel-42pos CD133lo:LM-Mel-14neg CD133lo:LM-Mel-34neg CD133hi:LM-Mel-34pos CD133lo:LM-Mel-42neg CD133hi:LM-Mel-42pos CD133hi:LM-Mel-42poschrX:152139280 -
Alignment of Next-Generation Sequencing Data
Gene Expression Analyses Alignment of Next‐Generation Sequencing Data Nadia Lanman HPC for Life Sciences 2019 What is sequence alignment? • A way of arranging sequences of DNA, RNA, or protein to identify regions of similarity • Similarity may be a consequence of functional, structural, or evolutionary relationships between sequences • In the case of NextGen sequencing, alignment identifies where fragments which were sequenced are derived from (e.g. which gene or transcript) • Two types of alignment: local and global http://www‐personal.umich.edu/~lpt/fgf/fgfrseq.htm Global vs Local Alignment • Global aligners try to align all provided sequence end to end • Local aligners try to find regions of similarity within each provided sequence (match your query with a substring of your subject/target) gap mismatch Alignment Example Raw sequences: A G A T G and G A T TG 2 matches, 0 4 matches, 1 4 matches, 1 3 matches, 2 gaps insertion insertion end gaps A G A T G A G A ‐ T G . A G A T ‐ G . A G A T G . G A T TG . G A T TG . G A T TG . G A T TG NGS read alignment • Allows us to determine where sequence fragments (“reads”) came from • Quantification allows us to address relevant questions • How do samples differ from the reference genome • Which genes or isoforms are differentially expressed Haas et al, 2010, Nature. Standard Differential Expression Analysis Differential Check data Unsupervised expression quality Clustering analysis Trim & filter Count reads GO enrichment reads, remove aligning to analysis adapters each gene Align reads to Check -
Errors in Multiple Sequence Alignment and Phylogenetic Reconstruction
Multiple Sequence Alignment Errors and Phylogenetic Reconstruction THESIS SUBMITTED FOR THE DEGREE “DOCTOR OF PHILOSOPHY” BY Giddy Landan SUBMITTED TO THE SENATE OF TEL-AVIV UNIVERSITY August 2005 This work was carried out under the supervision of Professor Dan Graur Acknowledgments I would like to thank Dan for more than a decade of guidance in the fields of molecular evolution and esoteric arts. This study would not have come to fruition without the help, encouragement and moral support of Tal Dagan and Ron Ophir. To them, my deepest gratitude. Time flies like an arrow Fruit flies like a banana - Groucho Marx Table of Contents Abstract ..........................................................................................................................1 Chapter 1: Introduction................................................................................................5 Sequence evolution...................................................................................................6 Alignment Reconstruction........................................................................................7 Errors in reconstructed MSAs ................................................................................10 Motivation and aims...............................................................................................13 Chapter 2: Methods.....................................................................................................17 Symbols and Acronyms..........................................................................................17 -
Evolution and Function of Drososphila Melanogaster Cis-Regulatory Sequences
Evolution and Function of Drososphila melanogaster cis-regulatory Sequences By Aaron Hardin A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Michael Eisen, Chair Professor Doris Bachtrog Professor Gary Karpen Professor Lior Pachter Fall 2013 Evolution and Function of Drososphila melanogaster cis-regulatory Sequences This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License 2013 by Aaron Hardin 1 Abstract Evolution and Function of Drososphila melanogaster cis-regulatory Sequences by Aaron Hardin Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley Professor Michael Eisen, Chair In this work, I describe my doctoral work studying the regulation of transcription with both computational and experimental methods on the natural genetic variation in a population. This works integrates an investigation of the consequences of polymorphisms at three stages of gene regulation in the developing fly embryo: the diversity at cis-regulatory modules, the integration of transcription factor binding into changes in chromatin state and the effects of these inputs on the final phenotype of embryonic gene expression. i I dedicate this dissertation to Mela Hardin who has been here for me at all times, even when we were apart. ii Contents List of Figures iv List of Tables vi Acknowledgments vii 1 Introduction1 2 Within Species Diversity in cis-Regulatory Modules6 2.1 Introduction....................................6 2.2 Results.......................................8 2.2.1 Genome wide diversity in transcription factor binding sites......8 2.2.2 Genome wide purifying selection on cis-regulatory modules......9 2.3 Discussion.....................................9 2.4 Methods for finding polymorphisms...................... -
Developing and Implementing an Institute-Wide Data Sharing Policy Stephanie OM Dyke and Tim JP Hubbard*
Dyke and Hubbard Genome Medicine 2011, 3:60 http://genomemedicine.com/content/3/9/60 CORRESPONDENCE Developing and implementing an institute-wide data sharing policy Stephanie OM Dyke and Tim JP Hubbard* Abstract HapMap Project [7], also decided to follow HGP prac- tices and to share data publicly as a resource for the The Wellcome Trust Sanger Institute has a strong research community before academic publications des- reputation for prepublication data sharing as a result crib ing analyses of the data sets had been prepared of its policy of rapid release of genome sequence (referred to as prepublication data sharing). data and particularly through its contribution to the Following the success of the first phase of the HGP [8] Human Genome Project. The practicalities of broad and of these other projects, the principles of rapid data data sharing remain largely uncharted, especially to release were reaffirmed and endorsed more widely at a cover the wide range of data types currently produced meeting of genomics funders, scientists, public archives by genomic studies and to adequately address and publishers in Fort Lauderdale in 2003 [9]. Meanwhile, ethical issues. This paper describes the processes the Organisation for Economic Co-operation and and challenges involved in implementing a data Develop ment (OECD) Committee on Scientific and sharing policy on an institute-wide scale. This includes Tech nology Policy had established a working group on questions of governance, practical aspects of applying issues of access to research information [10,11], which principles to diverse experimental contexts, building led to a Declaration on access to research data from enabling systems and infrastructure, incentives and public funding [12], and later to a set of OECD guidelines collaborative issues.