Transformer Neural Networks for Protein Prediction Tasks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proquest Dissertations
Automated learning of protein involvement in pathogenesis using integrated queries Eithon Cadag A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2009 Program Authorized to Offer Degree: Department of Medical Education and Biomedical Informatics UMI Number: 3394276 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI 3394276 Copyright 2010 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. uest ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 University of Washington Graduate School This is to certify that I have examined this copy of a doctoral dissertation by Eithon Cadag and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Chair of the Supervisory Committee: Reading Committee: (SjLt KJ. £U*t~ Peter Tgffczy-Hornoch In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this dissertation is allowable only for scholarly purposes, consistent with "fair use" as prescribed in the U.S. -
Meeting Review: Bioinformatics and Medicine – from Molecules To
Comparative and Functional Genomics Comp Funct Genom 2002; 3: 270–276. Published online 9 May 2002 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cfg.178 Feature Meeting Review: Bioinformatics And Medicine – From molecules to humans, virtual and real Hinxton Hall Conference Centre, Genome Campus, Hinxton, Cambridge, UK – April 5th–7th Roslin Russell* MRC UK HGMP Resource Centre, Genome Campus, Hinxton, Cambridge CB10 1SB, UK *Correspondence to: Abstract MRC UK HGMP Resource Centre, Genome Campus, The Industrialization Workshop Series aims to promote and discuss integration, automa- Hinxton, Cambridge CB10 1SB, tion, simulation, quality, availability and standards in the high-throughput life sciences. UK. The main issues addressed being the transformation of bioinformatics and bioinformatics- based drug design into a robust discipline in industry, the government, research institutes and academia. The latest workshop emphasized the influence of the post-genomic era on medicine and healthcare with reference to advanced biological systems modeling and simulation, protein structure research, protein-protein interactions, metabolism and physiology. Speakers included Michael Ashburner, Kenneth Buetow, Francois Cambien, Cyrus Chothia, Jean Garnier, Francois Iris, Matthias Mann, Maya Natarajan, Peter Murray-Rust, Richard Mushlin, Barry Robson, David Rubin, Kosta Steliou, John Todd, Janet Thornton, Pim van der Eijk, Michael Vieth and Richard Ward. Copyright # 2002 John Wiley & Sons, Ltd. Received: 22 April 2002 Keywords: bioinformatics; -
ISMB 2008 Toronto
ISMB 2008 Toronto The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Linial, Michal, Jill P. Mesirov, B. J. Morrison McKay, and Burkhard Rost. 2008. ISMB 2008 Toronto. PLoS Computational Biology 4(6): e1000094. Published Version doi:10.1371/journal.pcbi.1000094 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11213310 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Message from ISCB ISMB 2008 Toronto Michal Linial1,2, Jill P. Mesirov1,3, BJ Morrison McKay1*, Burkhard Rost1,4 1 International Society for Computational Biology (ISCB), University of California San Diego, La Jolla, California, United States of America, 2 Sudarsky Center, The Hebrew University of Jerusalem, Jerusalem, Israel, 3 Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America, 4 Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America the integration of students, and for the of ISMB. One meeting in South Asia support of young leaders in the field. (InCoB; http://incob.binfo.org.tw/) has ISMB has also become a forum for already been sponsored by ISCB, and reviewing the state of the art in the many another one in North Asia is going to fields of this growing discipline, for follow. ISMB itself has also been held in introducing new directions, and for an- Australia (2003) and Brazil (2006). -
Ontology-Based Methods for Analyzing Life Science Data
Habilitation a` Diriger des Recherches pr´esent´ee par Olivier Dameron Ontology-based methods for analyzing life science data Soutenue publiquement le 11 janvier 2016 devant le jury compos´ede Anita Burgun Professeur, Universit´eRen´eDescartes Paris Examinatrice Marie-Dominique Devignes Charg´eede recherches CNRS, LORIA Nancy Examinatrice Michel Dumontier Associate professor, Stanford University USA Rapporteur Christine Froidevaux Professeur, Universit´eParis Sud Rapporteure Fabien Gandon Directeur de recherches, Inria Sophia-Antipolis Rapporteur Anne Siegel Directrice de recherches CNRS, IRISA Rennes Examinatrice Alexandre Termier Professeur, Universit´ede Rennes 1 Examinateur 2 Contents 1 Introduction 9 1.1 Context ......................................... 10 1.2 Challenges . 11 1.3 Summary of the contributions . 14 1.4 Organization of the manuscript . 18 2 Reasoning based on hierarchies 21 2.1 Principle......................................... 21 2.1.1 RDF for describing data . 21 2.1.2 RDFS for describing types . 24 2.1.3 RDFS entailments . 26 2.1.4 Typical uses of RDFS entailments in life science . 26 2.1.5 Synthesis . 30 2.2 Case study: integrating diseases and pathways . 31 2.2.1 Context . 31 2.2.2 Objective . 32 2.2.3 Linking pathways and diseases using GO, KO and SNOMED-CT . 32 2.2.4 Querying associated diseases and pathways . 33 2.3 Methodology: Web services composition . 39 2.3.1 Context . 39 2.3.2 Objective . 40 2.3.3 Semantic compatibility of services parameters . 40 2.3.4 Algorithm for pairing services parameters . 40 2.4 Application: ontology-based query expansion with GO2PUB . 43 2.4.1 Context . 43 2.4.2 Objective . -
From DNA Sequence to Chromatin Dynamics: Computational Analysis of Transcriptional Regulation
From DNA Sequence to Chromatin Dynamics: Computational Analysis of Transcriptional Regulation Thesis submitted for the degree of “Doctor of Philosophy” by Tommy Kaplan Submitted to the Senate of the Hebrew University May 2008 This work was carried out under the supervision of Prof. Nir Friedman and Prof. Hanah Margalit Abstract All cells of a living organism share the same DNA. Yet, they differ in structure, activities and interactions. These differences arise through a tight regulatory system which activates different genes and pathways to fit the cell’s specialization, condition, and requirements. Deciphering the regulatory mechanisms underlying a living cell is one of the fundamental challenges in biology. Such knowledge will allow us to better understand how cells work, how they respond to external stimuli, what goes wrong in diseases like cancer (which often involves disruption of gene regulation), and how it can be fought. In my PhD, I focus on regulation of gene expression from three perspectives. First, I present an innovative algorithm for identifying the target genes of novel transcription factors, based on their protein sequence (Chapter 1). Second, I consider how several transcription factors cooperate to process external stimuli and alter the behavior of the cell (Chapter 2). Finally, I study how the genomic position of nucleosomes and their covalent modifications modulate the accessibility of DNA to transcription factors, thus adding a fascinating dimension to transcriptional regulation (Chapters 3 and 4). To understand transcriptional regulation, one should first reconstruct the architecture of the cell’s regulatory map, thus identifying which genes are regulated by which transcription factors (TFs). -
Research Report 2006 Max Planck Institute for Molecular Genetics, Berlin Imprint | Research Report 2006
MAX PLANCK INSTITUTE FOR MOLECULAR GENETICS Research Report 2006 Max Planck Institute for Molecular Genetics, Berlin Imprint | Research Report 2006 Published by the Max Planck Institute for Molecular Genetics (MPIMG), Berlin, Germany, August 2006 Editorial Board Bernhard Herrmann, Hans Lehrach, H.-Hilger Ropers, Martin Vingron Coordination Claudia Falter, Ingrid Stark Design & Production UNICOM Werbeagentur GmbH, Berlin Number of copies: 1,500 Photos Katrin Ullrich, MPIMG; David Ausserhofer Contact Max Planck Institute for Molecular Genetics Ihnestr. 63–73 14195 Berlin, Germany Phone: +49 (0)30-8413 - 0 Fax: +49 (0)30-8413 - 1207 Email: [email protected] For further information about the MPIMG please see our website: www.molgen.mpg.de MPI for Molecular Genetics Research Report 2006 Table of Contents The Max Planck Institute for Molecular Genetics . 4 • Organisational Structure. 4 • MPIMG – Mission, Development of the Institute, Research Concept. .5 Department of Developmental Genetics (Bernhard Herrmann) . 7 • Transmission ratio distortion (Hermann Bauer) . .11 • Signal Transduction in Embryogenesis and Tumor Progression (Markus Morkel). 14 • Development of Endodermal Organs (Heiner Schrewe) . 16 • Gene Expression and 3D-Reconstruction (Ralf Spörle). 18 • Somitogenesis (Lars Wittler). 21 Department of Vertebrate Genomics (Hans Lehrach) . 25 • Molecular Embryology and Aging (James Adjaye). .31 • Protein Expression and Protein Structure (Konrad Büssow). .34 • Mass Spectrometry (Johan Gobom). 37 • Bioinformatics (Ralf Herwig). .40 • Comparative and Functional Genomics (Heinz Himmelbauer). 44 • Genetic Variation (Margret Hoehe). 48 • Cell Arrays/Oligofingerprinting (Michal Janitz). .52 • Kinetic Modeling (Edda Klipp) . .56 • In Vitro Ligand Screening (Zoltán Konthur). .60 • Neurodegenerative Disorders (Sylvia Krobitsch). .64 • Protein Complexes & Cell Organelle Assembly/ USN (Bodo Lange/Thorsten Mielke). .67 • Automation & Technology Development (Hans Lehrach). -
Next Generation Machine Learning Prediction of Protein Cellular Sorting
TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Bioinformatik Next Generation Machine Learning Prediction of Protein Cellular Sorting Tatyana Goldberg Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Daniel Cremers Prüfer der Dissertation: 1. Univ.-Prof. Dr. Burkhard Rost 2. Prof. Dr. Yana Bromberg, The State University of New Jersey/USA 3. Univ.-Prof. Dr. Iris Antes Die Dissertation wurde am 15.12.2015 bei der Technischen Universität München eingereicht und durch die Fakultät für Informatik am 22.03.2016 angenommen. ii Table of Contents Abstract ............................................................................................................................................. v Zusammenfassung ........................................................................................................................... vii Acknowledgments ............................................................................................................................ ix List of publications ........................................................................................................................... xi List of Figures and Tables ............................................................................................................... xiii 1. Introduction ............................................................................................................................... -
A Hidden Markov Model Framewrok for Studying Regulation from Chromatin Through RNA
Submitted in part fulfilment of the requirements for the degree of Master of Science in Computer Science and Computational Biology A Hidden Markov Model Framewrok For Studying Regulation From Chromatin Through RNA Eran Rosenthal Supervisor: Dr. Tommy Kaplan October 2017 Hebrew University of Jerusalem Faculty of Science - Computer Science and Engineering Acknowledgments I would like to deeply thank Tommy, for being a great supervisor, giving very useful advices and scientific tutoring. Tommy has great ability to express complex concepts in simple, illustrative stories, and he introduced me to different kinds of experimental data and computational approaches. I would like also to thank for the members of the lab, for the interesting ideas and discussions. I would like to thank for all the people I had worked in collaboration in my master: • Moshe Oren and Gilad Fuchs for the providing me their experimental data of nascent RNA with RNF20 knockdown for studying the role of monoubiquity- lation of H2B. • Michael Berger and Yuval Malka for the exciting project of studying post- transcriptional 3’UTR cleavage of mRNA transcripts, and for Hanah Margalit and Avital Shimony who helped us in the analysis of miRNA regulation in this project. i Abstract Information flows from DNA to RNA, through transcription, followed by trans- lation of the RNA transcript to protein. A viable cell must have proper regulation on genes expression. There are varieties of regulation mechanisms along the way, which include regulation on the DNA and expression level of genes, post-transcriptional regulation, and post-translation regulation. Most of the cells in our body share the same DNA, but they have different func- tions. -
First Analysis Steps
FirstFirst analysisanalysis stepssteps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome Analysis (A. Poustka) DKFZ Heidelberg Acknowledgements Anja von Heydebreck Günther Sawitzki Holger Sültmann, Klaus Steiner, Markus Vogt, Jörg Schneider, Frank Bergmann, Florian Haller, Katharina Finis, Stephanie Süß, Anke Schroth, Friederike Wilmer, Judith Boer, Martin Vingron, Annemarie Poustka Sandrine Dudoit, Robert Gentleman, Rafael Irizarry and Yee Hwa Yang: Bioconductor short course, summer 2002 and many others a microarray slide Slide: 25x75 mm Spot-to-spot: ca. 150-350 µm 4 x 4 or 8x4 sectors 17...38 rows and columns per sector ca. 4600…46000 probes/array sector: corresponds to one print-tip Terminology sample: RNA (cDNA) hybridized to the array, aka target, mobile substrate. probe: DNA spotted on the array, aka spot, immobile substrate. sector: rectangular matrix of spots printed using the same print-tip (or pin), aka print-tip-group plate: set of 384 (768) spots printed with DNA from the same microtitre plate of clones slide, array channel: data from one color (Cy3 = cyanine 3 = green, Cy5 = cyanine 5 = red). batch: collection of microarrays with the same probe layout. Raw data scanner signal resolution: 5 or 10 mm spatial, 16 bit (65536) dynamical per channel ca. 30-50 pixels per probe (60 µm spot size) 40 MB per array Raw data scanner signal resolution: 5 or 10 mm spatial, 16 bit (65536) dynamical per channel ca. 30-50 pixels per probe (60 µm spot size) 40 MB per array Image Analysis Raw data scanner signal resolution: 5 or 10 mm spatial, 16 bit (65536) dynamical per channel ca. -
EYAL AKIVA, Phd
Eyal Akiva CV, Nov. 2017 EYAL AKIVA, PhD Department of Bioengineering and Therapeutic Sciences Phone +1-650-504-9008 University of California at San Francisco Email [email protected] 1700 4th street, San Francisco, Web www.babbittlab.ucsf.edu/eakiva CA, USA EDUCATION 2012-2017 Post-doctoral fellowship at UCSF, Dept. Of Bioengineering and Therapeutic Sciences. Host: Prof. Patricia Babbitt. 2010-2012 Post-doctoral fellowship at UCSF, Dept. Of Bioengineering and Therapeutic Sciences. Host: Prof. Tanja Kortemme. 2004-2010 PhD at The Hebrew University of Jerusalem (Israel), bioinformatics. Host: Prof. Hanah Margalit. “Various Aspects of Modularity in Protein-Protein Interaction". 2001-2004 MSc at The Hebrew University of Jerusalem (Israel), bioinformatics and human genetics. Host: Prof. Muli Ben-Sasson. “Exploiting the Exploiters: Identification of Virus-Host Pep- tide Mimicry as a Source for Modules of Functional Significance”. MAGNA CUM LAUDE. 1997-2000 BSc at Bar-Ilan University (Israel), biology (major) and computer science (minor). Final project advisor: Prof. Ramit Mehr “Modeling the Evolution of the Immune System: a Sim- ulation of the Evolution of Genes that Encode the Variable Regions of Immunoglobulins”. MAGNA CUM LAUDE. 1996-1997 First year of "Industrial Engineering and Management" studies, Tel-Aviv University, Israel. OTHER WORK EXPERIENCE 2000-01 ‘Do-coop technologies’: Team leader and chemistry/microbiology researcher; development of biological applications and manufacture of proprietary nanoparticles (Or Yehuda, Israel and Tel-Aviv University (Prof. Eshel Ben-Jacob’s lab at the school of physics)). FUNDING, HONORS AND AWARDS 2017 Grant: Co-PI, “Utilizing metagenomic sequences for enzyme function prediction”, Joint Genome Institute (US Department of Energy) (http://jgi.doe.gov/doe-user-facilities-ficus- join-forces-to-tackle-biology-big-data/). -
Probabilistic Models for Gene Silencing Data
Probabilistic Models for Gene Silencing Data Florian Markowetz Dezember 2005 Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) am Fachbereich Mathematik und Informatik der Freien Universit¨atBerlin 1. Referent: Prof. Dr. Martin Vingron 2. Referent: Prof. Dr. Klaus-Robert M¨uller Tag der Promotion: 26. April 2006 Preface Acknowledgements This work was carried out in the Computational Diagnostics group of the Department of Computational Molecular Biology at the Max Planck Institute for Molecular Genetics in Berlin. I thank all past and present colleagues for the good working atmosphere and the scientific—and sometimes maybe not so scientific—discussions. Especially, I am grateful to my supervisor Rainer Spang for suggesting the topic, his scientific support, and the opportunity to write this thesis under his guidance. I thank Michael Boutros for providing the expression data and for introducing me to the world of RNAi when I visited his lab at the DKFZ in Heidelberg. I thank Anja von Heydebreck, J¨org Schultz, and Martin Vingron for their advice and counsel as members of my PhD commitee. During the time I worked on this thesis, I enjoyed fruitful discussions with many people. In particular, I gratefully acknowledge Jacques Bloch, Steffen Grossmann, Achim Tresch, and Chen-Hsiang Yeang for their contributions. Special thanks go to Viola Gesellchen, Britta Koch, Stefanie Scheid, Stefan Bentink, Stefan Haas, Dennis Kostka, and Stefan R¨opcke, who read drafts of this thesis and greatly improved it by their comments. Publications Parts of this thesis have been published before. Chapter 2 grew out of lectures I gave in 2005 at the Instiute for Theoretical Physics and Mathematics (IPM) in Tehran, Iran, and at the German Conference on Bioinformatics (GCB), Hamburg, Germany. -
Speakers Info
CAJAL Online Lecture Series Single Cell Transcriptomics November 2nd-6th, 2020 Keynote speakers Naomi HABIB, PhD | Edmond & Lily Safra Center for Brain Sciences (ELSC), Israel Naomi Habib is an assistant professor at the ELSC Brain Center at the Hebrew University of Jerusalem since July 2018. Habib's research focuses on understanding how complex interactions between diverse cell types in the brain and between the brain and other systems in the body, are mediating neurodegenerative diseases and other aging-related pathologies. Naomi combines in her work computational biology, genomics and genome-engineering, and is a pioneer in single nucleus RNA-sequencing technologies and their applications to study cellular diversity and molecular processes in the brain. Naomi did her postdoctoral at the Broad Institute of MIT/Harvard working with Dr. Feng Zhang and Dr. Aviv Regev, and earned her PhD in computational biology from the Hebrew University of Jerusalem in Israel, working with Prof. Nir Friedman and Prof. Hanah Margalit. Selected publications: - Habib N, McCabe C*, Medina S*, Varshavsky M*, Kitsberg D, Dvir R, Green G, Dionne D, Nguyen L, Marshall J.L, Chen F, Zhang F, Kaplan T, Regev A, Schwartz M. (2019) Unique disease-associated astrocytes in Alzheimer’s disease. Nature Neuroscience. In Press. - Habib N*, Basu A*, Avraham-Davidi I*, Burks T, Choudhury SR, Aguet F, Gelfand E, Ardlie K, Weitz DA, Rozenblatt-Rosen O, Zhang F, and Regev A. (2017). Deciphering cell types in human archived brain tissues by massively-parallel single nucleus RNA-seq. Nature Methods. Oct;14(10):955-958. - Habib N*, Li Y*, Heidenreich M, Sweich L, Avraham-Davidi I, Trombetta J, Hession C, Zhang F, Regev A.