A Novel and Effective Scoring Scheme for Structure Classification And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Meeting Review: Bioinformatics and Medicine – from Molecules To
Comparative and Functional Genomics Comp Funct Genom 2002; 3: 270–276. Published online 9 May 2002 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cfg.178 Feature Meeting Review: Bioinformatics And Medicine – From molecules to humans, virtual and real Hinxton Hall Conference Centre, Genome Campus, Hinxton, Cambridge, UK – April 5th–7th Roslin Russell* MRC UK HGMP Resource Centre, Genome Campus, Hinxton, Cambridge CB10 1SB, UK *Correspondence to: Abstract MRC UK HGMP Resource Centre, Genome Campus, The Industrialization Workshop Series aims to promote and discuss integration, automa- Hinxton, Cambridge CB10 1SB, tion, simulation, quality, availability and standards in the high-throughput life sciences. UK. The main issues addressed being the transformation of bioinformatics and bioinformatics- based drug design into a robust discipline in industry, the government, research institutes and academia. The latest workshop emphasized the influence of the post-genomic era on medicine and healthcare with reference to advanced biological systems modeling and simulation, protein structure research, protein-protein interactions, metabolism and physiology. Speakers included Michael Ashburner, Kenneth Buetow, Francois Cambien, Cyrus Chothia, Jean Garnier, Francois Iris, Matthias Mann, Maya Natarajan, Peter Murray-Rust, Richard Mushlin, Barry Robson, David Rubin, Kosta Steliou, John Todd, Janet Thornton, Pim van der Eijk, Michael Vieth and Richard Ward. Copyright # 2002 John Wiley & Sons, Ltd. Received: 22 April 2002 Keywords: bioinformatics; -
Multi-Class Protein Classification Using Adaptive Codes
Journal of Machine Learning Research 8 (2007) 1557-1581 Submitted 8/06; Revised 4/07; Published 7/07 Multi-class Protein Classification Using Adaptive Codes Iain Melvin∗ [email protected] NEC Laboratories of America Princeton, NJ 08540, USA Eugene Ie∗ [email protected] Department of Computer Science and Engineering University of California San Diego, CA 92093-0404, USA Jason Weston [email protected] NEC Laboratories of America Princeton, NJ 08540, USA William Stafford Noble [email protected] Department of Genome Sciences Department of Computer Science and Engineering University of Washington Seattle, WA 98195, USA Christina Leslie [email protected] Center for Computational Learning Systems Columbia University New York, NY 10115, USA Editor: Nello Cristianini Abstract Predicting a protein’s structural class from its amino acid sequence is a fundamental problem in computational biology. Recent machine learning work in this domain has focused on develop- ing new input space representations for protein sequences, that is, string kernels, some of which give state-of-the-art performance for the binary prediction task of discriminating between one class and all the others. However, the underlying protein classification problem is in fact a huge multi- class problem, with over 1000 protein folds and even more structural subcategories organized into a hierarchy. To handle this challenging many-class problem while taking advantage of progress on the binary problem, we introduce an adaptive code approach in the output space of one-vs- the-rest prediction scores. Specifically, we use a ranking perceptron algorithm to learn a weight- ing of binary classifiers that improves multi-class prediction with respect to a fixed set of out- put codes. -
Establishing Incentives and Changing Cultures to Support Data Access
EXPERT ADVISORY GROUP ON DATA ACCESS ESTABLISHING INCENTIVES AND CHANGING CULTURES TO SUPPORT DATA ACCESS May 2014 ACKNOWLEDGEMENT This is a report of the Expert Advisory Group on Data Access (EAGDA). EAGDA was established by the MRC, ESRC, Cancer Research UK and the Wellcome Trust in 2012 to provide strategic advice on emerging scientific, ethical and legal issues in relation to data access for cohort and longitudinal studies. The report is based on work undertaken by the EAGDA secretariat at the Group’s request. The contributions of David Carr, Natalie Banner, Grace Gottlieb, Joanna Scott and Katherine Littler at the Wellcome Trust are gratefully acknowledged. EAGDA would also like to thank the representatives of the MRC, ESRC and Cancer Research UK for their support and input throughout the project. Most importantly, EAGDA owes a considerable debt of gratitude to the many individuals from the research community who contributed to this study through feeding in their expert views via surveys, interviews and focus groups. The Expert Advisory Group on Data Access Martin Bobrow (Chair) Bartha Maria Knoppers James Banks Mark McCarthy Paul Burton Andrew Morris George Davey Smith Onora O'Neill Rosalind Eeles Nigel Shadbolt Paul Flicek Chris Skinner Mark Guyer Melanie Wright Tim Hubbard 1 EXECUTIVE SUMMARY This project was developed as a key component of the workplan of the Expert Advisory Group on Data Access (EAGDA). EAGDA wished to understand the factors that help and hinder individual researchers in making their data (both published and unpublished) available to other researchers, and to examine the potential need for new types of incentives to enable data access and sharing. -
Transformative Models to Promote Prescription Drug Innovation and Access: a Landscape Analysis
Yale Journal of Health Policy, Law, and Ethics Volume 19 Issue 2 Article 2 2020 Transformative Models to Promote Prescription Drug Innovation and Access: A Landscape Analysis Phebe Hong Harvard Law School Aaron S. Kesselheim Professor of medicine at Harvard Medical School/Brigham and Women’s Hospital. Ameet Sarpatwari Assistant professor of medicine at Harvard Medical School/Brigham and Women’s Hospital. Follow this and additional works at: https://digitalcommons.law.yale.edu/yjhple Part of the Health Law and Policy Commons, and the Legal Ethics and Professional Responsibility Commons Recommended Citation Phebe Hong, Aaron S. Kesselheim & Ameet Sarpatwari, Transformative Models to Promote Prescription Drug Innovation and Access: A Landscape Analysis, 19 YALE J. HEALTH POL'Y L. & ETHICS (2020). Available at: https://digitalcommons.law.yale.edu/yjhple/vol19/iss2/2 This Article is brought to you for free and open access by Yale Law School Legal Scholarship Repository. It has been accepted for inclusion in Yale Journal of Health Policy, Law, and Ethics by an authorized editor of Yale Law School Legal Scholarship Repository. For more information, please contact [email protected]. Hong et al.: Transformative Models to Promote Prescription Drug Innovation and Transformative Models to Promote Prescription Drug Innovation and Access: A Landscape Analysis Phebe Hong, Aaron S. Kesselheim & Ameet Sarpatwari* Abstract: The patent-based pharmaceutical innovation system in the US does not incentivize the development of drugs with the greatest impact on patient or public health. It has also led to drug prices that patients and health care systems cannot afford. Three alternate approaches to promoting pharmaceutical innovation have been proposed to address these shortcomings. -
A Database of Globular Protein Structural Domains: Clustering of Representative Family Members Into Similar Folds R Sowdhamini, Stephen D Rufino and Tom L Blundell
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Research Paper 209 A database of globular protein structural domains: clustering of representative family members into similar folds R Sowdhamini, Stephen D Rufino and Tom L Blundell Background: A database of globular domains, derived from a non-redundant set Address: Imperial Cancer Research Fund Unit of of proteins, is useful for the sequence analysis of aligned domains, for structural Structural Molecular Biology, Department of Crystallography, Birkbeck College, Malet Street, comparisons, for understanding domain stability and flexibility and for fold London WC1E 7HX, UK. recognition procedures. Domains are defined by the program DIAL and classified structurally using the procedure SEA. Correspondence: Tom L Blundell e-mail: [email protected] Results: The DIAL-derived domain database (DDBASE) consists of 436 protein Key words: clustering, comparison, chains involving 695 protein domains. Of these, 206 are ␣-class, 191 are - protein domains, protein folds, structural similarity, class and 294 ␣ and  class. The domains, 63% from multidomain proteins and superfamilies 73% less than 150 residues in length, were clustered automatically using both Received: 19 Jan 1996 single-link cluster analysis and hierarchical clustering to give a quantitative Revisions requested: 13 Feb 1996 estimate of similarity in the domain-fold space. Revisions received: 01 Mar 1996 Accepted: 01 Mar 1996 ␣  Conclusions: Highly populated and well described folds (doubly wound / , Published: 13 May 1996 singly wound ␣/ barrels, globins ␣, large Greek-key  and flavin-binding ␣/) Electronic identifier: 1359-0278-001-00209 are recognized at a SEA cut-off score of 0.55 in single-link clustering and at 0.65 Folding & Design 13 May 1996, 1:209–220 in hierarchical clustering, although functionally related families are usually clearly distinguished at more stringent values. -
Governance of Data Access
EXPERT ADVISORY GROUP ON DATA ACCESS GOVERNANCE OF DATA ACCESS June 2015 EAGDA Report: Governance of Data Access EXECUTIVE SUMMARY Whilst it is widely accepted that data should be shared for secondary research uses where these can be balanced with the maintenance of participant privacy, there has thus far been little oversight or coordination of policies, resources and infrastructure across research funders to ensure data access is efficient, effective and proportionate. Funders have different policies and processes for maximizing the value from the datasets generated by their researchers, and EAGDA wished to identify whether and how improvements to governance for data access and the dissemination of good practice across the funders could enhance this value. We identified several good practice exemplars for funders and the research community, but also evidence of significant variability between studies that, in practice, lead to inefficiencies in access to and use of data for secondary purposes. We suggest that an approach that is more transparent and coordinated among research funders would provide benefits, both in terms of increasing the efficiency of data access and in ensuring that good governance approaches can get on with the job of ensuring the right balance between protecting research participants’ interests and enabling access to data for further research. This report makes several recommendations to funders, many of which are interlinked. These focus on areas in which specific funder action could improve the governance of data access for human cohort studies: RECOMMENDATIONS 1. Research funders should require explicit data sharing and management plans as part of grant applications (even if these plans conclude that data sharing is not appropriate); and should ensure that these issues are adjudicated before funding for new studies, or renewal of existing studies, is agreed. -
HMMER User's Guide
HMMER User’s Guide Biological sequence analysis using profile hidden Markov models http://hmmer.wustl.edu/ Version 2.2; August 2001 Sean Eddy Howard Hughes Medical Institute and Dept. of Genetics Washington University School of Medicine 660 South Euclid Avenue, Box 8232 Saint Louis, Missouri 63110, USA [email protected] With contributions by Ewan Birney ([email protected]) Copyright (C) 1992-2001, Washington University in St. Louis. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are retained on all copies. The HMMER software package is a copyrighted work that may be freely distributed and modified under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Some versions of HMMER may have been obtained under specialized commercial licenses from Washington University; for details, see the files COPYING and LICENSE that came with your copy of the HMMER software. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Appendix for a copy of the full text of the GNU General Public License. 1 Contents 1 Tutorial 6 1.1 The programs in HMMER . 6 1.2 Files used in the tutorial . 7 1.3 Searching a sequence database with a single profile HMM . 7 HMM construction with hmmbuild ............................. 7 HMM calibration with hmmcalibrate ........................... 8 Sequence database search with hmmsearch ........................ -
Assessing Sequence Comparison Methods with Reliable Structurally Identified Distant Evolutionary Relationships
Proc. Natl. Acad. Sci. USA Vol. 95, pp. 6073–6078, May 1998 Biochemistry Assessing sequence comparison methods with reliable structurally identified distant evolutionary relationships STEVEN E. BRENNER*†‡,CYRUS CHOTHIA*, AND TIM J. P. HUBBARD§ *MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom; and §Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, United Kingdom Communicated by David R. Davies, National Institute of Diabetes, Bethesda, MD, March 16, 1998 (received for review November 12, 1997) ABSTRACT Pairwise sequence comparison methods have Sequence comparison methodologies have evolved rapidly, been assessed using proteins whose relationships are known so no previously published tests has evaluated modern versions reliably from their structures and functions, as described in of programs commonly used. For example, parameters in the SCOP database [Murzin, A. G., Brenner, S. E., Hubbard, T. BLAST (1) have changed, and WU-BLAST2 (2)—which produces & Chothia C. (1995) J. Mol. Biol. 247, 536–540]. The evalua- gapped alignments—has become available. The latest version tion tested the programs BLAST [Altschul, S. F., Gish, W., of FASTA (3) previously tested was 1.6, but the current release Miller, W., Myers, E. W. & Lipman, D. J. (1990). J. Mol. Biol. (version 3.0) provides fundamentally different results in the 215, 403–410], WU-BLAST2 [Altschul, S. F. & Gish, W. (1996) form of statistical scoring. Methods Enzymol. 266, 460–480], FASTA [Pearson, W. R. & The previous reports also have left gaps in our knowledge. Lipman, D. J. (1988) Proc. Natl. Acad. Sci. USA 85, 2444–2448], For example, there has been no published assessment of and SSEARCH [Smith, T. -
Genomic Anatomy of the Tyrp1 (Brown) Deletion Complex
Genomic anatomy of the Tyrp1 (brown) deletion complex Ian M. Smyth*, Laurens Wilming†, Angela W. Lee*, Martin S. Taylor*, Phillipe Gautier*, Karen Barlow†, Justine Wallis†, Sancha Martin†, Rebecca Glithero†, Ben Phillimore†, Sarah Pelan†, Rob Andrew†, Karen Holt†, Ruth Taylor†, Stuart McLaren†, John Burton†, Jonathon Bailey†, Sarah Sims†, Jan Squares†, Bob Plumb†, Ann Joy†, Richard Gibson†, James Gilbert†, Elizabeth Hart†, Gavin Laird†, Jane Loveland†, Jonathan Mudge†, Charlie Steward†, David Swarbreck†, Jennifer Harrow†, Philip North‡, Nicholas Leaves‡, John Greystrong‡, Maria Coppola‡, Shilpa Manjunath‡, Mark Campbell‡, Mark Smith‡, Gregory Strachan‡, Calli Tofts‡, Esther Boal‡, Victoria Cobley‡, Giselle Hunter‡, Christopher Kimberley‡, Daniel Thomas‡, Lee Cave-Berry‡, Paul Weston‡, Marc R. M. Botcherby‡, Sharon White*, Ruth Edgar*, Sally H. Cross*, Marjan Irvani¶, Holger Hummerich¶, Eleanor H. Simpson*, Dabney Johnson§, Patricia R. Hunsicker§, Peter F. R. Little¶, Tim Hubbard†, R. Duncan Campbell‡, Jane Rogers†, and Ian J. Jackson*ʈ *Medical Research Council Human Genetics Unit, Edinburgh EH4 2XU, United Kingdom; †Wellcome Trust Sanger Institute, and ‡Medical Research Council Rosalind Franklin Centre for Genome Research, Hinxton CB10 1SA, United Kingdom; §Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; and ¶Department of Biochemistry, Imperial College, London SW7 2AZ, United Kingdom Communicated by Liane B. Russell, Oak Ridge National Laboratory, Oak Ridge, TN, January 9, 2006 (received for review September 15, 2005) Chromosome deletions in the mouse have proven invaluable in the deletions also provided the means to produce physical maps of dissection of gene function. The brown deletion complex com- genetic markers. Studies of this kind have been published for prises >28 independent genome rearrangements, which have several loci, including albino (Tyr), piebald (Ednrb), pink-eyed been used to identify several functional loci on chromosome 4 dilution (p), and the brown deletion complex (2–6). -
Genomethics Study End of Project Report and Evidence of Impact and Reach, 2010-2016
The GenomEthics Study End of Project Report and Evidence of Impact and Reach, 2010-2016 Dr Anna Middleton Principal Staff Scientist, Ethics Researcher for the DDD Study www.GenomEthics.org The GenomEthics Study Dr Anna Middleton Principal Staff Scientist, Ethics Researcher for the DDD Study End of Project Report and Evidence of Impact and Reach, 2010-2016 DDD Ethics Project Index GenomEthics Project Background 1 1. Design of the GenomEthics study 1 Creation of the study 1 Compliance with Data Protection Legislation 2 Creation of a Lone Worker Policy 2 REC approval 2 Design of the Online Survey 2 2. Year 1: 2011-2012 3 3. Year 2: 2012-2013 11 4. Year 3: 2013-2014 11 5. Year 4: 2014-2015 12 6. Year 5: 2015-2016 12 GenomEthics Impact and Reach of Work 16 Guide to Interpreting Altmetric Scores and Data 17 1. Peer Reviewed Journal Articles 19 2. Mentions of the GenomEthics Study in Selected Peer Reviewed Journals and Policy 28 3. Peer Reviewed Conference Presentations 31 4. Invited Presentations, Seminars, Book Chapters and Teaching that Includes Work on the GenomEthics Study 35 5. Video, Museum Exhibits and Teaching Materials Based on Outcomes of the GenomeEthics Study 46 6. News Coverage and Media Referring to the GenomEthics Study 52 7. Blog and Online Journal Articles Referring to the GenomEthics Study 58 8. Social Media 82 Appendices 90 1. Appendix A : Original Protocol for Ethics and Whole Genome Studies (written in 2011) 91 2. Appendix B: Data Protection Registration 111 3. Appendix C: Lone Worker Policy 120 4. -
Relative Orientation of Close-Packed ,8-Pleated Sheets in Proteins
Proc. Nati Acad. Sci. USA Vol. 78, No. 7, pp. 4146-4150, July 1981 Biochemistry Relative orientation of close-packed ,8-pleated sheets in proteins (twisted ,3sheets/protein secondary and tertiary structure) CYRUS CHOTHIA*t AND JOEL JANINt *William Ramsay, Ralph Foster and Christopher Ingold Laboratories, University College London, Gower Street, London WC1E 6BT, England; tMedical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England; and *Unit6 de Biochimie Cellulaire, Department de Biochimie et Gen~tique Moleculaire, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France Communicated by Max F. Perutz, March 30, 1981 ABSTRACT When (3-pleated sheets pack face to face in pro- curve from left to right, while those that point down curve from teins, the angle between the strand directions ofthe two (3-sheets right to left. is observed to be near -30°. We propose a simple model for f3- Fig. 2 b and c illustrates some of the effects of twisting two sheet-to-(-sheet packing in concanavalin A, plastocyanin, y-crys- ,(3pleated sheets that are packed together. We show, on the left tallin, superoxide dismutase, prealbumin, and the immunoglobin ofthe figures, two hypothetical untwisted (3-sheets packed with fragment VREI. This model shows how the observed relative ori- their rows of side chains aligned: those in the top (-sheet are entation of two packed (3-sheets is a consequence of (i) the rows parallel to those in the bottom. On the right of the figures we of side chains at the interface being approximately aligned and show what happens when these packed (3-sheets are twisted (ii) the (3-sheet having a right-handed twist. -
Transformer Neural Networks for Protein Prediction Tasks
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.15.153643; this version posted June 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. TRANSFORMING THE LANGUAGE OF LIFE:TRANSFORMER NEURAL NETWORKS FOR PROTEIN PREDICTION TASKS Ananthan Nambiar ∗ Maeve Heflin∗ Department of Bioengineering Department of Computer Science Carl R. Woese Inst. for Genomic Biol. Carl R. Woese Inst. for Genomic Biol. University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign Urbana, IL 61801 Urbana, IL 61801 [email protected] Simon Liu∗ Sergei Maslov Department of Computer Science Department Bioengineering Carl R. Woese Inst. for Genomic Biol. Department of Physics University of Illinois at Urbana-Champaign Carl R. Woese Inst. for Genomic Biol. Urbana, IL 61801 University of Illinois at Urbana-Champaign Urbana, IL 61801 Mark Hopkinsy Anna Ritzy Department of Computer Science Department of Biology Reed College Reed College Portland, OR 97202 Portland, OR 97202 June 16, 2020 ABSTRACT The scientific community is rapidly generating protein sequence information, but only a fraction of these proteins can be experimentally characterized. While promising deep learning approaches for protein prediction tasks have emerged, they have computational limitations or are designed to solve a specific task. We present a Transformer neural network that pre-trains task-agnostic sequence representations. This model is fine-tuned to solve two different protein prediction tasks: protein family classification and protein interaction prediction.