Escherichia Coli
Total Page:16
File Type:pdf, Size:1020Kb
Kent Academic Repository Full text document (pdf) Citation for published version Malherbe, Gilles (2019) Evaluation of the Tat export pathway for the production of recombinant proteins in Escherichia coli. Doctor of Philosophy (PhD) thesis, University of Kent,. DOI Link to record in KAR https://kar.kent.ac.uk/81263/ Document Version UNSPECIFIED Copyright & reuse Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder. Versions of research The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record. Enquiries For any further enquiries regarding the licence status of this document, please contact: [email protected] If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html Evaluation of the Tat export pathway for the production of recombinant proteins in Escherichia coli Gilles Malherbe Thesis submitted to the University of Kent for the degree of Doctor of Philosophy in the Faculty of Microbiology 2019 ABSTRACT Recently, the twin-arginine translocation (Tat) pathway has raised interest due to reports of its unique proofreading ability to export correctly folded proteins. However, only a few recombinant proteins fused to an N-terminal Tat signal peptide have been reported to be exported via Tat. The hypothesis for this thesis was to evaluate whether the range of proteins of interest that can be exported by the Tat pathway can be extended by C-terminally fusing them to a natural Tat substrate (NTS). Thus, the NTS would act as a soluble carrier to improve cytoplasmic solubility and facilitate Tat export. Moreover, the CyDisCo technology enabling cytoplasmic formation of disulphide bonds was investigated to reach this goal. Initially, a robust fractionation method was developed to assess protein localisation with due diligence. A panel of NTS and reporter proteins were evaluated for the respective role of the soluble carrier and the protein of interest. None of the selected NTS and only PhoA and hGH of the tested reporter proteins were shown to export specifically via Tat. After the review of the fusion design to use the valid reporter proteins as the soluble carrier, three proteins of interest were expressed with and without the soluble carriers. This fusion strategy did not extend Tat acceptance. Overall, this project confirmed the difficulty to export a recombinant protein via the Tat pathway. Additionally, CyDisCo was demonstrated to improve expression of recombinant proteins but did not form native disulphide bonds. However, this project revealed unexpected export of sfGFP, hGH and FABP4 including the recombinant proteins fused to hGH without a signal peptide. This unidentified translocation mechanism(s) needs further characterisation which can lead to the discovery of a new export pathway(s) and may highlight a promising alternative way to target proteins of interest to the periplasm. I TABLE OF CONTENT ABSTRACT ............................................................................................ I TABLE OF CONTENT ............................................................................ II LIST OF FIGURES .............................................................................. VIII LIST OF TABLES ................................................................................... X LIST OF APPENDICES .......................................................................... XI DECLARATION ................................................................................... XII ABBREVIATIONS AND SYMBOLS ...................................................... XIII ACKNOWLEDGEMENTS ................................................................... XVI 1. INTRODUCTION .............................................................................. 1 1.1. General introduction ........................................................................ 1 1.2. The Escherichia coli K12 strain as a production host ....................... 3 1.3. Secretion systems in Escherichia coli ............................................... 5 1.3.1. The Sec pathway ...................................................................................... 5 1.3.1.1. Sec-specific signal peptides ............................................................. 5 1.3.1.2. The SecB pathway ........................................................................... 8 1.3.1.3. The SRP pathway ............................................................................. 9 1.3.1.4. Recombinant protein export via Sec ............................................. 10 1.3.2. The twin arginine translocation pathway ............................................ 10 1.3.2.1. The role of Tat through its substrates ........................................... 11 1.3.2.2. Tat-specific signal peptides ........................................................... 12 1.3.2.3. Components of Tat ........................................................................ 13 1.3.2.4. Tat export mechanism ................................................................... 15 1.3.2.5. The proofreading mechanism ....................................................... 18 1.3.2.6. The Tat systems beyond E. coli ...................................................... 19 1.3.3. The Type I to VI secretion pathways .................................................... 21 1.3.4. Unknown secretion pathway(s) ............................................................ 23 1.4. Engineering to improve E. coli as an expression host .................... 25 1.4.1. Disulphide bond formation ................................................................... 25 II 1.4.1.1. The naturally oxidising periplasmic space ..................................... 26 1.4.1.2. Disruption of the reducing pathways ............................................ 26 1.4.1.3. The CyDisCo technology ................................................................ 27 1.4.2. Glycosylation in E. coli ........................................................................... 28 1.4.3. Codon usage .......................................................................................... 29 1.4.4. Stabilization of the recombinant product ............................................ 29 1.4.4.1. Use of protease-deficient strains .................................................. 30 1.4.4.2. Co-expressing chaperones ............................................................ 30 1.4.4.3. Fusion of a soluble partner ............................................................ 31 1.4.4.4. Improving the process ................................................................... 31 1.4.5. Other engineered strains ...................................................................... 31 1.5. Aims and hypothesis ...................................................................... 32 2. MATERIALS AND METHODS ......................................................... 34 2.1. Strains ............................................................................................. 34 2.2. Molecular biology ........................................................................... 35 2.2.1. Transformation of chemically competent bacteria by heat shock ..... 35 2.2.2. Plasmid amplification ............................................................................ 35 2.2.3. Amplification by PCR ............................................................................. 35 2.2.4. PCR purification ..................................................................................... 36 2.2.5. DNA digestion with restriction enzymes .............................................. 36 2.2.6. Agarose gel electrophoresis.................................................................. 36 2.2.7. Agarose gel extraction .......................................................................... 36 2.2.8. Ligation ................................................................................................... 37 2.2.9. Directed mutagenesis ........................................................................... 37 2.2.10. Type IIS cloning strategy ..................................................................... 37 2.2.10.1. Design of backbone vector .......................................................... 37 2.2.10.2. Design of inserts .......................................................................... 38 2.2.10.3. Type IIS cloning reaction ............................................................. 38 2.2.11. Plasmid DNA sequencing .................................................................... 39 2.2.12. Genomic DNA extraction .................................................................... 42 2.2.13. Genomic DNA sequencing .................................................................. 43 2.2.14. Total RNA extraction ........................................................................... 43 III 2.2.15. Reverse transcription .......................................................................... 43 2.3. Protein expression .........................................................................