View=TSA&Search=Halisarca Adapter Index Sequence Before Sequences Were Uploaded to Their Server
Marine Genomics 37 (2018) 135–147 Contents lists available at ScienceDirect Marine Genomics journal homepage: www.elsevier.com/locate/margen Towards the identification of ancestrally shared regenerative mechanisms T across the Metazoa: A Transcriptomic case study in the Demosponge Halisarca caerulea Nathan J. Kennya,1, Jasper M. de Goeijb,1, Didier M. de Bakkerb, Casey G. Whalenb, ⁎ Eugene Berezikovc, Ana Riesgoa, a Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, UK b Department of Freshwater and Marine Science, University of Amsterdam, Postbus 94240, 1090 GE, Amsterdam, The Netherlands c European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ARTICLE INFO ABSTRACT Keywords: Regeneration is an essential process for all multicellular organisms, allowing them to recover effectively from Regeneration internal and external injury. This process has been studied extensively in a medical context in vertebrates, with Transcriptome pathways often investigated mechanistically, both to derive increased understanding and as potential drug Halisarca caerulea, Porifera, ancestral cassette targets for therapy. Several species from other parts of the metazoan tree of life, including Hydra, planarians and echinoderms, noted for their regenerative capabilities, have previously been targeted for study. Less well- documented for their regenerative abilities are sponges. This is surprising, as they are both one of the earliest- branching extant metazoan phyla on Earth, and are rapidly able to respond to injury. Their sessile lifestyle, lack of an external protective layer, inability to respond to predation and filter-feeding strategy all mean that re- generation is often required. In particular the demosponge genus Halisarca has been noted for its fast cell turnover and ability to quickly adjust its cell kinetic properties to repair damage through regeneration.
[Show full text]