Exploring the Bzip Regulatory Network in the Sponge Amphimedon Queenslandica: Insights Into the Ancestral Animal Regulatory Genome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
California Marine Life Protection Act (MLPA) Initiative
California Marine Life Protection Act (MLPA) Initiative Evaluation of Existing Central Coast Marine Protected Areas DRAFT, v. 2.0 November 4, 2005 CONTENTS EXECUTIVE SUMMARY ..........................................................................................................................4 1.0 INTRODUCTION ................................................................................................................................8 2.0 EVALUATION OF EXISTING MPAs .................................................................................................11 2.1 Año Nuevo Special Closure...........................................................................................................11 2.2 Elkhorn Slough State Marine Reserve ...........................................................................................12 2.3 Hopkins State Marine Reserve......................................................................................................15 2.4 Pacific Grove State Marine Conservation Area.............................................................................16 2.5: Carmel Bay State Marine Conservation Area ..............................................................................17 2.6 Point Lobos State Marine Reserve................................................................................................19 2.7 Julia Pfeiffer Burns State Marine Conservation Area.....................................................................20 2.8 Big Creek State Marine Reserve....................................................................................................22 -
The EWS/ATF1 Fusion Protein Contains a Dispersed Activation Domain That Functions Directly
Oncogene (1998) 16, 1625 ± 1631 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 The EWS/ATF1 fusion protein contains a dispersed activation domain that functions directly Shu Pan, Koh Yee Ming, Theresa A Dunn, Kim KC Li and Kevin AW Lee Department of Biology, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, P.R.C. Naturally occurring chromosomal fusion of the Ewings 1994). For all of the above malignancies, the EWS Sarcoma Oncogene (EWS) to distinct cellular transcrip- fusion proteins function as potent transcriptional tion factors, produces aberrant transcriptional activators activators (May et al., 1993b; Ohno et al., 1993; that function as dominant oncogenes. In Malignant Bailly et al., 1994; Brown et al., 1995; Lessnick et al., Melanoma of Soft Parts the N-terminal region of 1995; Fujimura et al., 1996) in a manner that is EWS is fused to C-terminal region of the cAMP- dependent on the EWS N-terminal region, hereafter inducible transcription factor ATF1. The EWS/ATF1 referred to as the EWS Activation Domain (EAD). It is fusion protein binds to ATF sites present in cAMP- envisioned that distinct tumors arise via de-regulation responsive promoters via the ATF1 bZIP domain and of dierent genes, depending on the fusion partner for activates transcription constitutively in a manner that is EWS. In cases where it has been examined, agents that dependent on an activation domain (EAD) present in antagonise EWS-fusion proteins also inhibit cellular EWS. To further de®ne the requirements for trans- proliferation (Ouchida et al., 1995; Kovar et al., 1996; activation we have performed mutational analysis of Yi et al., 1997; Tanaka et al., 1997), indicating that EWS/ATF1 in mammalian cells and report several new EWS fusions can play a role in both tumor formation ®ndings. -
Ereskovsky Et 2017 Oscarella S
Transcriptome sequencing and delimitation of sympatric Oscarella species (O. carmela and O. pearsei sp. nov) from California, USA Alexander Ereskovsky, Daniel Richter, Dennis Lavrov, Klaske Schippers, Scott Nichols To cite this version: Alexander Ereskovsky, Daniel Richter, Dennis Lavrov, Klaske Schippers, Scott Nichols. Transcriptome sequencing and delimitation of sympatric Oscarella species (O. carmela and O. pearsei sp. nov) from California, USA. PLoS ONE, Public Library of Science, 2017, 12 (9), pp.1-25/e0183002. 10.1371/jour- nal.pone.0183002. hal-01790581 HAL Id: hal-01790581 https://hal.archives-ouvertes.fr/hal-01790581 Submitted on 14 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License RESEARCH ARTICLE Transcriptome sequencing and delimitation of sympatric Oscarella species (O. carmela and O. pearsei sp. nov) from California, USA Alexander V. Ereskovsky1,2, Daniel J. Richter3,4, Dennis V. Lavrov5, Klaske J. Schippers6, Scott A. Nichols6* 1 Institut MeÂditerraneÂen de BiodiversiteÂet d'Ecologie Marine et Continentale (IMBE), CNRS, IRD, Aix Marseille UniversiteÂ, Avignon UniversiteÂ, Station Marine d'Endoume, Marseille, France, 2 Department of a1111111111 Embryology, Faculty of Biology, Saint-Petersburg State University, 7/9 Universitetskaya emb., St. -
Demospongiae) Asociadas a Comunidades Coralinas Del Pacífico Mexicano
INSTITUTO POLITÉCNICO NACIONAL CENTRO INTERDISCIPLINARIO DE CIENCIAS MARINAS COMPOSICIÓN Y AFINIDADES BIOGEOGRÁFICAS DE ESPONJAS (DEMOSPONGIAE) ASOCIADAS A COMUNIDADES CORALINAS DEL PACÍFICO MEXICANO T E S I S QUE PARA OBTENER EL GRADO DE DOCTORADO EN CIENCIAS MARINAS P R E S E N T A CRISTINA VEGA JUÁREZ LA PAZ, B. C. S. JUNIO DEL 2012 INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA DE INVESTIGACIÓN Y POSGRADO CARTA CESIÓN DE DERECHOS En la Ciudad de La Paz, B.C.S., el día 23 del mees Mayo del año 2012 el (la) que suscribe MC. CRISTINA VEGA JUÁREZ alumno(a) del Programa de DOCTORADO EN CIENCIAS MARINAS con número de registro B081062 adscrito al CENTRO INTERDISCIPLINARIO DE CIENCIAS MARINAS manifiesta que es autor (a) intelectual del presente trabajo de tesis, baajjo la dirección de: DRA. CLAUDIA JUDITH HERNÁNDEZ GUERRERO Y DR. JOSSÉ LUIS CARBALLO CENIZO y cede los derechos del trabajo titulado: “COMPOSICIÓN Y AFINIDADES BIOGEOGRÁFICAS DE ESPONJAS (DEMOSPONGIAE) ASOCIADAS A COMUNIDADES CORALINAS DEL PACÍFICO MEXICANO” al Instituto Politécnico Nacional, para su difusión con fines académicos y de investigación. Los usuarios de la información no deben reproducir el contenido textual, gráficas o datos del trabajo sin el permiso expreso del autor y/o director del trabajo. Éste, puede ser obtenido escribiendo a la Siguiente dirección: [email protected] - [email protected] [email protected] Si el permiso se otorga, el usuario deberá dar el agradecimiento correspondiente y citar la fuente del mismo. MC. CRISTINA VEGA JUÁREZ nombre y firmaa AGRADECIMIENTOS Al Instituto Politécnico Nacional a través del Centro Interdisciplinario de Ciencias Marinas, La Paz, B.C.S. -
(Homoscleromorpha) with Description of Two New Oscarella Species
Systematics and Molecular Phylogeny of the Family Oscarellidae (Homoscleromorpha) with Description of Two New Oscarella Species Eve Gazave, Dennis Lavrov, Jory Cabrol, Emmanuelle Renard, Caroline Rocher, Jean Vacelet, Maja Adamska, Carole Borchiellini, Alexander Ereskovsky To cite this version: Eve Gazave, Dennis Lavrov, Jory Cabrol, Emmanuelle Renard, Caroline Rocher, et al.. Systematics and Molecular Phylogeny of the Family Oscarellidae (Homoscleromorpha) with Description of Two New Oscarella Species. PLoS ONE, Public Library of Science, 2013, 160, pp.781 - 781. 10.1371/jour- nal.pone.0063976.s006. hal-01456636 HAL Id: hal-01456636 https://hal.archives-ouvertes.fr/hal-01456636 Submitted on 13 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Systematics and Molecular Phylogeny of the Family Oscarellidae (Homoscleromorpha) with Description of Two New Oscarella Species Eve Gazave1,2*, Dennis V. Lavrov3, Jory Cabrol2, Emmanuelle Renard2, Caroline Rocher2, Jean Vacelet2, Maja Adamska4, Carole Borchiellini2, Alexander V. Ereskovsky2,5 1 Institut -
UCLA Electronic Theses and Dissertations
UCLA UCLA Electronic Theses and Dissertations Title Comparative and developmental genomics in the moon jellyfish Aurelia species 1 Permalink https://escholarship.org/uc/item/92p1s9r5 Author Gold, David Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Comparative and developmental genomics in the moon jellyfish Aurelia species 1 A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biology by David Adler Gold 2014 © Copyright by David Adler Gold 2014 ABSTRACT OF THE DISSERTATION Comparative and developmental genomics in the moon jellyfish Aurelia species 1 by David Adler Gold Doctor of Philosophy in Biology University of California, Los Angeles, 2014 Professor David K. Jacobs, Chair This dissertation focuses on the transcriptome of the moon jellyfish (Aurelia sp.1). As the chapters progress, larger sets of genes are analyzed, and the work becomes decreasingly comparative in nature, and increasingly focused on Aurelia. In the first chapter, I analyze the POU-class genes. I begin by using comparative genomics and “gene fishing” to resolve the topology of the POU gene tree. I then use ancestral state reconstruction to map the most likely changes in amino acid evolution for the conserved protein domains. Four of the six POU families evolved before the last common ancestor of living animals—doubling previous estimates—and was followed by extensive clade-specific gene loss. POU families best understood for their generic roles in cell-type regulation and stem cell pluripotency (POU2, POU5) show the largest number of nonsynonymous mutations, suggestive of functional evolution, while those better known for specifying subsets of neural and hormone- producing cell types (POU1, POU3) appear more similar to the ancestral protein. -
A Membrane-Tethered Transcription Factor Defines a Branch of the Heat Stress Response in Arabidopsis Thaliana
A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana Hongbo Gao*, Federica Brandizzi*†, Christoph Benning‡, and Robert M. Larkin*‡§ *Michigan State University–Department of Energy Plant Research Laboratory, ‡Department of Biochemistry and Molecular Biology, and †Department of Plant Biology, Michigan State University, East Lansing, MI 48824 Communicated by Michael F. Thomashow, Michigan State University, East Lansing, MI, August 28, 2008 (received for review December 14, 2007) In plants, heat stress responses are controlled by heat stress defense responses (13, 14) was recently shown to be heat transcription factors that are conserved among all eukaryotes and inducible and to contribute to heat tolerance (15). These findings can be constitutively expressed or induced by heat. Heat-inducible give evidence of cross-talk between heat stress and other stress transcription factors that are distinct from the ‘‘classical’’ heat signaling pathways. stress transcription factors have also been reported to contribute Membrane-tethered transcription factors (MTTFs) are main- to heat tolerance. Here, we show that bZIP28, a gene encoding a tained in an inactive state by associating with membranes putative membrane-tethered transcription factor, is up-regulated through one or more transmembrane domains (TMDs). In in response to heat and that a bZIP28 null mutant has a striking response to specific signals, an MTTF fragment that contains the heat-sensitive phenotype. The heat-inducible expression of genes transcription factor domain but lacks a TMD, is released from that encode BiP2, an endoplasmic reticulum (ER) chaperone, and membranes by regulated intramembrane proteolysis (RIP), is HSP26.5-P, a small heat shock protein, is attenuated in the bZIP28 redistributed to the nucleus, and regulates the expression of null mutant. -
The Evolution of the Mitochondrial Genomes of Calcareous Sponges and Cnidarians Ehsan Kayal Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 The evolution of the mitochondrial genomes of calcareous sponges and cnidarians Ehsan Kayal Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Evolution Commons, and the Molecular Biology Commons Recommended Citation Kayal, Ehsan, "The ve olution of the mitochondrial genomes of calcareous sponges and cnidarians" (2012). Graduate Theses and Dissertations. 12621. https://lib.dr.iastate.edu/etd/12621 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The evolution of the mitochondrial genomes of calcareous sponges and cnidarians by Ehsan Kayal A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Ecology and Evolutionary Biology Program of Study Committee Dennis V. Lavrov, Major Professor Anne Bronikowski John Downing Eric Henderson Stephan Q. Schneider Jeanne M. Serb Iowa State University Ames, Iowa 2012 Copyright 2012, Ehsan Kayal ii TABLE OF CONTENTS ABSTRACT .......................................................................................................................................... -
Chapter 1 Introduction: CREB Regulation of Eukaryotic Gene Expression
1 Chapter 1 Introduction: CREB Regulation of Eukaryotic Gene Expression The control of gene expression has evolved to respond to the environmental and intracellular cues that influence cell growth and survival. Key to this control is the ability of cells to affect the activity of transcription factors. Levels of control brought to bear on transcription factors include DNA-binding specificity, post-translational modifications, cis/trans DNA-binding elements and interaction with co-repressors, co-activators and other transcription factors (Fig. 1-1). These modes of regulation provide cells with the capacity to respond with exquisite speed and accuracy to differentiate between the myriad environmental, intercellular and intracellular cues in a context-dependent manner. In multicellular organisms, transactivation of the transcription factor CREB is required for cell survival in neurons and pancreatic -cells [1-5], the development of cell-type specific functions such as control of glucose and lipid metabolism in hepatic cells [6, 7] and the consolidation of long-term memory [1, 8, 9]. The diverse array of stimuli and accompanying kinase cascades that lead to CREB activation made it an ideal subject for investigation as a target for O-GlcNAc glycosylation, a unique form of intracellular and dynamic form of glycosylation. Given its placement at the epicenter of many signaling pathways, we posited it likely that additional layers of control, such as undiscovered post- translational modifications, might exist to regulate CREB activity. 2 ATF/CREB Family of bZIP Transcription Factors. Transcription factors of the basic leucine zipper (bZIP) super family are conserved from S. cerevisiae to mammals. A number of bZIP transcription factors are critical to cellular function, including c-Fos, c- Jun (which together are known as AP-1), C/EBP and CREB. -
Roles of the Bzip Gene Family in Rice
Mini Review Roles of the bZIP gene family in rice Z.G. E1, Y.P. Zhang1, J.H. Zhou3,4 and L. Wang1,2 1China National Rice Research Institute, Hangzhou, China 2State Key Laboratory of Rice Biology, Hangzhou, China 3iBioinfo Groups, Brookline, MA, USA 4Nantong University, Nantong, China Corresponding authors: L. Wang / J.H. Zhou E-mail: [email protected] / [email protected] Genet. Mol. Res. 13 (2): 3025-3036 (2014) Received November 22, 2013 Accepted March 18, 2014 Published April 16, 2014 DOI http://dx.doi.org/10.4238/2014.April.16.11 ABSTRACT. The basic leucine zipper (bZIP) genes encode transcription factors involved in the regulation of various biological processes. Similar to WRKY, basic helix-loop-helix, and several other groups of proteins, the bZIP proteins form a superfamily of transcription factors that mediate plant stress responses. In this review, we present the roles of bZIP proteins in multiple biological processes that include pathogen defense; responses to abiotic stresses; seed development and germination; senescence; and responses to salicylic, jasmonic, and abscisic acids in rice. We also examined the characteristics of the bZIP proteins and their genetic composition. To ascertain the evolutionary changes in and functions of this supergene family, we performed an exhaustive comparison among the 89 rice bZIP genes that were previously described and those more recently listed in the MSU Rice Genome Annotation Project Database using a Hidden Markov Model. We excluded 3 genes from the list, resulting in a total of 86 bZIP genes in japonica rice. Key words: bZIP; Oryza sativa; Rice; Transcription factor; Stress response Genetics and Molecular Research 13 (2): 3025-3036 (2014) ©FUNPEC-RP www.funpecrp.com.br Z.G. -
Bzip Transcription Factors in Arabidopsis
106 Opinion TRENDS in Plant Science Vol.7 No.3 March 2002 We gave a generic name (AtbZIP1–AtbZIP75) to bZIP transcription each bZIP gene (Fig. 1), including those that had been named (sometimes twice) before. Our numbering system does not follow a distinct rationale factors in Arabidopsis but provides a unique identifier for each bZIP gene, as proposed for R2R3-MYB and WRKY TFs [2,3] and should help communication in the scientific The bZIP Research Group (Marc Jakoby et al.) community. Our results and the structured nomenclature were incorporated into the MAtDB database at MIPS (Munich Information Center for In plants, basic region/leucine zipper motif (bZIP) transcription factors Protein Sequences). regulate processes including pathogen defence, light and stress signalling, seed maturation and flower development. The Arabidopsis genome sequence Complexity of the bZIP family in Arabidopsis contains 75 distinct members of the bZIP family, of which ~50 are not Putative AtbZIP proteins were clustered according described in the literature. Using common domains, the AtbZIP family can be to sequence similarities of their basic region. subdivided into ten groups. Here, we review the available data on bZIP Subsequently, the MEME analysis tool functions in the context of subgroup membership and discuss the interacting (http://meme.sdsc.edu/meme/website/meme.html) proteins. This integration is essential for a complete functional characterization was used to search for domains shared by the AtbZIP of bZIP transcription factors in plants, and to identify functional redundancies proteins. This allowed us to define ten groups of bZIPs among AtbZIP factors. with a similar basic region and additional conserved motifs (Fig. -
Electronic Supplementary Material (ESI) for Metallomics
Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2018 Table S2. Families of transcription factors involved in stress response based on Matrix Family Library Version 11.0 from MatInspector program analyzed in this work. FAMILY FAMILY INFORMATION MATRIX NAME INFORMATION F$ASG1 Activator of stress genes F$ASG1 .01 Fungal zinc cluster transcription factor Asg1 F$CIN5.01 bZIP transcriptional factor of the yAP-1 family that mediates pleiotropic drug resistance and salt tolerance F$CST6.01 Chromosome stability, bZIP transcription factor of the ATF/CREB family (ACA2) F$HAC1.01 bZIP transcription factor (ATF/CREB1 homolog) that regulates the unfolded protein response F$BZIP Fungal basic leucine zipper family F$HAC1.02 bZIP transcription factor (ATF/CREB1 homolog) that regulates the unfolded protein response F$YAP1.01 Yeast activator protein of the basic leucine zipper (bZIP) family F$YAP1.02 Yeast activator protein of the basic leucine zipper (bZIP) family F$MREF Metal regulatory element factors F$CUSE.01 Copper-signaling element, AMT1/ACE1 recognition sequence F$SKN7 Skn7 response regulator of S. cerevisiae F$SKN7.01 SKN7, a transcription factor contributing to the oxidative stress response F$XBP1.01 S.cerevisae XhoI site-binding protein I, stressinduced expression F$SXBP S.cerevisiae, XhoI site-binding protein I F$XBP1.02 Stress-induced transcriptional repressor F$HSF.01 Heat shock factor (yeast) F$HSF1.01 Trimeric heat shock transcription factor F$YHSF Yeast heat shock factors F$HSF1.02 Trimeric heat shock transcription factor F$MGA1.01 Heat shock transcription factor Mga1 F$YNIT Asperg./Neurospora-activ.