Plants: the Potential for Extracting Protein, Medicines, and Other Useful Chemicals

Total Page:16

File Type:pdf, Size:1020Kb

Plants: the Potential for Extracting Protein, Medicines, and Other Useful Chemicals Plants: The Potential for Extracting Protein, Medicines, and Other Useful Chemicals September 1983 NTIS order #PB84-114743 Recommended Citation: Plants: The Potentials for Extracting Protein, Medicines, and Other Useful Chemicals–Workshop Proceedings (Washington, D. C.: U.S. Congress, Office of Tech- nology Assessment, OTA-BP-F-23, September 1983). Library of Congress Catalog Card Number 83-600588 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Preface The Workshop Proceeding, Plants: The Potentials for Extracting Protein, Med- icines, and Other Useful Chemicals, was prepared in response to a request from the Senate Committee on Agriculture, Nutrition, and Forestry that OTA examine technological opportunities for commercially developing plant extracts. The pro- ceeding describes some opportunities and constraints of commercially develop- ing plant extracts, examples of some work being done in this field, and workshop participants’ conclusions and recommendations concerning the Government’s role in the area. Ten technical papers and four overview papers are included in the proceeding. Developing new crops or plant products offers a wide range of potential benefits to the United States and developing countries. Crop diversification and new prod- uct development in the United States may substitute domestically produced goods for petroleum and other imports (including strategic and essential industrial materials); provide useful new consumer products; increase productive use of land resources, especially in marginal farming areas; generate employment in areas of underemployment or unemployment; and provide plant-derived biocides that cause little long-term ecological damage as alternatives to certain synthetic pesticides. In developing countries, new crops or new plant-derived products may help stim- ulate cottage industries, increase local and national self-sufficiency, and perhaps provide new export industries. This proceeding addresses these opportunities as well as constraints to and possible impacts of their development. In regard to protein extraction from tobacco, the proceeding states that the risk involved in investment in this technology is perceived to be high, and a con- siderable concern exists that products would have limited marketability because of: ● the health concerns that some attach to tobacco, and ● the changed character of cigarettes and chewing tobacco made from protein- extracted tobacco may not satisfy consumers. OTA wishes to thank the authors of the workshop papers for their efforts before, during, and after the workshop, and the following people who reviewed workshop papers: Alan Atchley, Marvin Bagby, Jack Beal, W. Hugh Bollinger, D.H. Bruhn, Ernest Bueding, Robert Carney, Geoffrey Cordell, Donald De Jong, Carl Djerassi, Raymond Doskotch, Richard Edwards, Donald Heynemon, H. T. Huang, Robert Jacobs, Quentin Jones, Isao Kubo, James Kutney, Julia Morton, David McClintock, Koji Nakanishi, Guillean Prance, L.H. Princen, Paul Scheuer, Francis Schmitz, David Seigler, Yuzuru Shimizu, Sarah Sprague, Allan Stoner, and Heber Youngken. Ill Workshop Participants Robert Adams Pachuab Kwanyuen Manager, Phytochemical Products Leaf Protein International, Inc. Native Plants, Inc. Raleigh, N.C. Salt Lake City, Utah Aklilu Lemma John Becker Senior Scientific Affairs Officer General Manager United Nations Center for Science and Leaf Protein International, Inc. Technology for Development Raleigh, N.C. New York, N.Y. Frederick H. Buttel Frederick L. Mann Department of Rural Sociology College of Agriculture Cornell University University of Missouri Ithaca, N.Y. Columbia, Mo. James A. Duke Ara der Marderosian Chief, Economic Botany Laboratory Philadelphia Colege of Pharmacy and Science U.S. Department of Agriculture Philadelphia, Pa. Beltsville, Md. Gordon H. Svoboda Norman R. Farnsworth Indianapolis, Ind. College of Pharmacy Howard Tankersley University of Illinois Soil Conservation Service Chicago, III. U.S. Department of Agriculture William Fenical Washington, D.C. Institute of Marine Resources Lehel Telek Scripps Institution of Oceanography Science and Education University of California Agricultural Research Service San Diego, Calif. U.S. Department of Agriculture Cornelia Butler Flora Tropical Agricultural Research Station Department of Sociology, Anthropology, Mayaguez, Puerto Rico and Social Work E. Richard Wheaton Kansas State University Science and Education Manhattan, Kans. U.S. Department of Agriculture Richard R. Harwood Washington, D.C. Rodale Research Center Samuel Wildman Kutztown, Pa. Leaf Protein International, Inc. (retired) Martin Jacobson Raleigh, N.C. Biologically Active Natural Products Laboratory U.S. Department of Agriculture Beltsville, Md. iv OTA Workshop Staff on Plants: The Potentials for Extracting Protein, Medicines, and Other Useful Chemicals H. David Banta, Assistant Director, OTA Health and Life Sciences Division Walter E. Parham, Food and Renewable Resources Program Manager Susan Braatz, Workshop Director Phyllis Balan, Administrative Assistant Nellie Hammond, Secretary Carolyn Swarm, Secretary OTA Publishing Staff John C. Holmes, Publishing Officer John Bergling Kathie S. Boss Debra M. Datcher Joe Henson Glenda Lawing Linda A. Leahy Cheryl Manning v Contents Chapter Page I. Overview of Subject/Issue . 3 II. Abstracts of Workshop Papers . 7 Tobacco Leaf Protein . 7 Endodin Combating Schistosomiasis . 8 Milkweed: A Potential New Crop for the Western United States . 8 Insect Repellents, Attractants, and Toxicants From Arid/Semiarid Land Plants . 9 Commercial Products From Marine Plants . 9 Anticancer Drugs From the Madagascar Periwinkle . 10 Strategic and Essential Industrial Materials From Plants . 10 Information Useful to Plant-Derived Drug Programs . 11 USDA’s Data Base on Minor Economic Plants . 11 111. Summary and Discussion of Each Workshop Paper . 15 Tobacco Leaf Protein . 15 Crystalline Fraction l Protein . 15 Fraction 2 Protein . 15 Green Sludge . 15 Green Residue . 15 Pigments and Other Bio-Organic Compounds . 15 Low-Molecular Weight Compounds . 16 Protein From Tropical Plants . 18 Endod in Combating Schistosomiasis . 21 Milkweed: A Potential New Crop For the Western United States . 24 Insect Repellents, Attractants, and Toxicants from Arid/Semiarid Land Plants . 28 Calamus . 28 Big Sagebrush . 29 Need . 29 Heliopsis Longipes . 30 Mamey . 30 Basil. 30 Mexican Marigold . 30 Commercial Products From Marine Marine Plants . 31 Biomass Conversion . 32 Pharmaceutical Development . 32 Agricultural Chemicals.. 33 Food and Food Products . 33 Enzymes, . 33 Industrial Chemical Feedstocks . 33 Needs for Developing Marine Algal Resources . 33 Anticancer Drugs From the Madagascar Periwinkle . 34 Strategic and Essential Industrial Materials From Plants . 36 Information Useful to Plant-Derived Drug Programs . 40 USDA’s Data Base on Minor Economic Plants . 43 Data ase Files . 43 Prototype Databases . 44 IV. Findings and Discussion . 49 Opportunities . .. .. ....... .. .. .. ... .... ... ..... 49 Constraints to New Crop Development . 52 vii Contents-continued Page Research . 53 Crop Production . 56 Industrial Processing . .. .. .. .. .. ... ... ......O . 56 Marketing . 57 Areas for Possible Congressional Action . 58 Tables Table No. Page I. Potential Domestic Crops and Uses . 37 2. Information to Reincluded in a ata Base for Drug Development From Plants ....41 3. Data Bases Pertinent to Drug Development . 42 Appendix: Technical Papers An Alternate Use for Tobacco Agriculture: Proteins for Food Plus a Safer Smoking Material (Samuel Wildman) . 63 Leaf Protein Extraction From Tropical Plants (Lehel Telek) . 78 Chemicals From Arid/Semiarid Land Plants: Whole Plant Use of Milkweeds (Robert P. Adams). 126 Insecticides, Insect Repellents, and Attractants From Arid/Semiarid- Land Plants . ..
Recommended publications
  • Modifications on the Basic Skeletons of Vinblastine and Vincristine
    Molecules 2012, 17, 5893-5914; doi:10.3390/molecules17055893 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Modifications on the Basic Skeletons of Vinblastine and Vincristine Péter Keglevich, László Hazai, György Kalaus and Csaba Szántay * Department of Organic Chemistry and Technology, University of Technology and Economics, H-1111 Budapest, Szt. Gellért tér 4, Hungary * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel: +36-1-463-1195; Fax: +36-1-463-3297. Received: 30 March 2012; in revised form: 9 May 2012 / Accepted: 10 May 2012 / Published: 18 May 2012 Abstract: The synthetic investigation of biologically active natural compounds serves two main purposes: (i) the total synthesis of alkaloids and their analogues; (ii) modification of the structures for producing more selective, more effective, or less toxic derivatives. In the chemistry of dimeric Vinca alkaloids enormous efforts have been directed towards synthesizing new derivatives of the antitumor agents vinblastine and vincristine so as to obtain novel compounds with improved therapeutic properties. Keywords: antitumor therapy; vinblastine; vincristine; derivatives 1. Introduction Vinblastine (1) and vincristine (2) are dimeric alkaloids (Figure 1) isolated from the Madagaskar periwinkle plant (Catharantus roseus), exhibit significant cytotoxic activity and are used in the antitumor therapy as antineoplastic agents. In the course of cell proliferation they act as inhibitors during the metaphase of the cell cycle and by binding to the microtubules inhibit the development of the mitotic spindle. In tumor cells these agents inhibit the DNA repair and the RNA synthesis mechanisms, blocking the DNA-dependent RNA polymerase. Molecules 2012, 17 5894 Figure 1.
    [Show full text]
  • Toxic Effects of Root Extract of Calotropis Gigantea Linn
    Journal of Pharmaceutical Research And Opinion 1:3 (2011) 92 – 93 Contents lists available at www.innovativejournal.in JOURNAL OF PHARMACEUTICAL RESEARCH AND OPINION Journal homepage: http://www.innovativejournal.in/index.php/jpro RESEARCH EVALUATION OF ANTIFERTILITY POTENTIAL OF CALOTROPIS GIGANTEA LINN. IN FEMALE ALBINO RATS. M. Mishra 1, R. K Gautam2, R. Mathur3* 1School of Zoology and Anthropology, Opp. GDA, Gwalior. Madhya Pradesh, India. 2School of Life sciences, Khandari campus, Agra Univerisity, Agra, Uttar Pradesh. India. 3School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, India. ARTICLE INFO ABSTRACT Received 22 July 2011 The present study has been undertaken to evaluate antifertility and ovaro-uterotoxic Accepted 28 July 2011 activities of the extracts of Calotropis gigantea Linn. Animals studied were divided Corresponding Author: into various groups control and experimental groups. Crude and ethanolic extracts R.Mathur were prepared and 150 and 300 mg/kg body weight doses were selected. [email protected] Oestrogenicity/antioestrogenicity was tested by using bilaterally ovariectomized School of Studies in Zoology, immature rats. Biochemical parameters viz. uterine glycogen, total protein, acid and Jiwaji University, Gwalior, alkaline phosphatase were measured and compared with control and vehicle. The Madhya Pradesh, India. findings suggest that the extracts are strong antiestrogenic and antiprogestagenic. Sharp decline was found in uterine glycogen, total proteins and acid phosphatase level whereas the level of alkaline phosphatase was found to increase. Though the KeyWords: Antifertility, extracts are highly toxic at higher doses yet they exhibit potential to be elucidated as Calotropin, Endometrium, female antifertility agents with proper control of toxicity. Hyaluronic acid ©2011, JPRO, All Right Reserved.
    [Show full text]
  • The Utilization of Various Asclepias Species by Larvae of the Monarch Butterfly, Danaus Plexippus by James M
    THE UTILIZATION OF VARIOUS ASCLEPIAS SPECIES BY LARVAE OF THE MONARCH BUTTERFLY, DANAUS PLEXIPPUS BY JAMES M. ERICKSON* Dept. o Entomology, Cornell University Ithaca, New York, 485o INTRODUCTION Plants of the genus Asclepias are well known to. contain high concentrations o cardiac glycosides (cardenolides). It is generally surmised that such cardiac stimulants unctio,n to, protect plants containing th,em against insect and vertebrate herbivores (Euw et al. 967). In addition, some insects w,hich are adapted to. eed on Asclepias plants store cardiac glyco,sides apparently as a means o. protection against vertebrate predat.ors which ind he compounds distasteful (Brower and Brower 964, Brower 969). It was by means of such an herbivore-predato,r interaction, bluejays eeding on monarch butterflies, Danaus plexippus L. (Brower 969, Brower et al. 968), that a spectrum o.f palatability was detected among monarch butterflies reared on various species ,o milkw.eed. It is surmised that this spectrum of toxicity to a vertebrate predator reflects a spectrum of concentrations o cardiac glycosides in the different species o the insects' larval ood plants (Brower and Brower 964, Brower et al. 967, Brower 1969). However, quantitative and qualitative data ,or cardenolides in Asclepias leaves, are at best in- complete (Reynard and Morton 942, Kupchan et al. 964, Duffey 97o, Singh and Rastogi 97o, Feir and Suen 97, Duffey and Scudder 972, Scudder and Duffey 972, and Eggermann and Bongers 972). The following experiments were undertaken to determine whether a dierential response by D. plexippus larvae to their host plants could be detected by measuring their efficiency o ood utiliza- tion and whether such a response would support the concept o a spectrum o toxicity.
    [Show full text]
  • Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity
    toxins Article Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity Massimo Picardo 1 , Oscar Núñez 2,3 and Marinella Farré 1,* 1 Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain; [email protected] 2 Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08034 Barcelona, Spain; [email protected] 3 Serra Húnter Professor, Generalitat de Catalunya, 08034 Barcelona, Spain * Correspondence: [email protected] Received: 5 October 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: This study presents the application of a suspect screening approach to screen a wide range of natural toxins, including mycotoxins, bacterial toxins, and plant toxins, in surface waters. The method is based on a generic solid-phase extraction procedure, using three sorbent phases in two cartridges that are connected in series, hence covering a wide range of polarities, followed by liquid chromatography coupled to high-resolution mass spectrometry. The acquisition was performed in the full-scan and data-dependent modes while working under positive and negative ionisation conditions. This method was applied in order to assess the natural toxins in the Ter River water reservoirs, which are used to produce drinking water for Barcelona city (Spain). The study was carried out during a period of seven months, covering the expected prior, during, and post-peak blooming periods of the natural toxins. Fifty-three (53) compounds were tentatively identified, and nine of these were confirmed and quantified. Phytotoxins were identified as the most frequent group of natural toxins in the water, particularly the alkaloids group.
    [Show full text]
  • Rhazya Stricta S
    IENCE SC • VTT VTT S CIENCE • T S E Alkaloids of in vitro cultures of N C O H I N Rhazya stricta S O I V Dis s e r ta tion L • O S 93 G Rhazya stricta Decne. (Apocynaceae) is a traditional medicinal T Y H • R plant in Middle East and South Asia. It contains a large number of G I E L S H 93 E G terpenoid indole alkaloids (TIAs), some of which possess A I R H C interesting pharmacological properties. This study was focused on H biotechnological production tools of R. stricta, namely undifferentiated cell cultures, and an Agrobacterium rhizogenes- mediated transformation method to obtain hairy roots expressing heterologous genes from the early TIA pathway. Rha zya alkaloids comprise a wide range of structures and polarities, therefore, many A analytical methods were developed to investigate the alkaloid l k contents in in vitro cultures. Targeted and non-targeted analyses a l o were carried out using gas chromatography-mass spectrometry i d (GC-MS), high performance liquid chromatography (HPLC), ultra s o performance liquid chromatography-mass spectrometry (UPLC- f i MS) and nuclear magnetic resonance (NMR) spectroscopy. n Calli derived from stems contained elevated levels of v i t r strictosidine lactam compared to other in vitro cultures. It o was revealed that only leaves were susceptible to Agrobacterium c u infection and subsequent root induction. The transformation l t u efficiency varied from 22% to 83% depending on the gene. A total r e of 17 TIAs were identified from hairy root extracts by UPLC-MS.
    [Show full text]
  • A Review on Tabernaemontana Spp.: Multipotential Medicinal Plant
    Online - 2455-3891 Vol 11, Issue 5, 2018 Print - 0974-2441 Review Article A REVIEW ON TABERNAEMONTANA SPP.: MULTIPOTENTIAL MEDICINAL PLANT ANAN ATHIPORNCHAI* Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Bangsaen, Chonburi 20131 Thailand. Email: [email protected] Received: 01 March 2016, Revised and Accepted: 29 January 2018 ABSTRACT Plants in the genus Tabernaemontana have been using in Thai and Chinese traditional medicine for the treatment several diseases. The great majority constituents of Tabernaemontana species have already been subjected to isolation and identification of monoterpene indole alkaloids present in their several parts. Many of monoterpene indole alkaloids exhibited a wide array of several activities. The biogenesis, classification, and biological activities of these alkaloids which found in Tabernaemontana plants were discussed in this review and its brings the research up-to-date on the bioactive compounds produced by Tabernaemontana species, directly or indirectly related to human health. Keywords: Tabernaemontana plants, Phytochemistry, Biogenesis, Terpene indole alkaloids, Biological activities. © 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i5.11478 INTRODUCTION alkaloids are investigated. All monoterpene indole alkaloids are derived from aromatic amino acid tryptophan and the iridoid terpene Several already drugs were discovered from the natural products. secologanin (Scheme 1). Tryptophan converts to tryptamine using Especially, the treatments of infectious diseases and oncology have tryptophan decarboxylase which is a pyridoxal-dependent enzyme. benefited from numerous drugs which were found in natural product The specific iridoid precursor was subsequently identified as sources.
    [Show full text]
  • Ethylene-Induced Vinblastine Accumulation Is Related to Activated Expression of Downstream TIA Pathway Genes in Catharanthus Roseus
    Hindawi Publishing Corporation BioMed Research International Volume 2016, Article ID 3708187, 8 pages http://dx.doi.org/10.1155/2016/3708187 Research Article Ethylene-Induced Vinblastine Accumulation Is Related to Activated Expression of Downstream TIA Pathway Genes in Catharanthus roseus Xi Wang,1 Ya-Jie Pan,1 Bo-Wen Chang,2 Yan-Bo Hu,2 Xiao-Rui Guo,1 and Zhong-Hua Tang1 1 Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China 2College of Life Science, Northeast Forestry University, Harbin 150040, China Correspondence should be addressed to Xiao-Rui Guo; [email protected] and Zhong-Hua Tang; [email protected] Received 13 December 2015; Revised 30 March 2016; Accepted 6 April 2016 Academic Editor: Sudhir Sopory Copyright © 2016 Xi Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We selected different concentrations of ethephon, to stress C. roseus.WeusedqRT-PCRandHPLCfollowedbyPCAtoobtain comprehensive profiling of the vinblastine biosynthesis in response to ethephon. Based on our findings, the results showed thatthe high concentration of ethephon had a positive effect at both transcriptional and metabolite level. Meanwhile, there was a remarkable decrease of hydrogen peroxide content and a promoted peroxidase activity in leaves. The loading plot combination with correlation analysis suggested that CrPrx1 could be regarded as a positive regulator and interacts with ethylene response factor (ERF)toplaya key role in vinblastine content and peroxidase (POD) activity. This study provides the foundation for a better understanding of the regulation and accumulation of vinblastine in response to ethephon.
    [Show full text]
  • The Iboga Alkaloids
    The Iboga Alkaloids Catherine Lavaud and Georges Massiot Contents 1 Introduction ................................................................................. 90 2 Biosynthesis ................................................................................. 92 3 Structural Elucidation and Reactivity ...................................................... 93 4 New Molecules .............................................................................. 97 4.1 Monomers ............................................................................. 99 4.1.1 Ibogamine and Coronaridine Derivatives .................................... 99 4.1.2 3-Alkyl- or 3-Oxo-ibogamine/-coronaridine Derivatives . 102 4.1.3 5- and/or 6-Oxo-ibogamine/-coronaridine Derivatives ...................... 104 4.1.4 Rearranged Ibogamine/Coronaridine Alkaloids .. ........................... 105 4.1.5 Catharanthine and Pseudoeburnamonine Derivatives .. .. .. ... .. ... .. .. ... .. 106 4.1.6 Miscellaneous Representatives and Another Enigma . ..................... 107 4.2 Dimers ................................................................................. 108 4.2.1 Bisindoles with an Ibogamine Moiety ....................................... 110 4.2.2 Bisindoles with a Voacangine (10-Methoxy-coronaridine) Moiety ........ 111 4.2.3 Bisindoles with an Isovoacangine (11-Methoxy-coronaridine) Moiety . 111 4.2.4 Bisindoles with an Iboga-Indolenine or Rearranged Moiety ................ 116 4.2.5 Bisindoles with a Chippiine Moiety ... .....................................
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • I PHASE-TRAFFICKING METHODS in NATURAL
    PHASE-TRAFFICKING METHODS IN NATURAL PRODUCTS, MODULATORS OF ORGANIC ANION TRANSPORTING POLYPEPTIDES FROM ROLLINIA EMARGINATA, AND PREGNANE AND CARDIAC GLYCOSIDES FROM ASCLEPIAS SPP. BY ©2012 JUAN JOSE ARAYA BARRANTES Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. ________________________________ Chair ________________________________ ________________________________ ________________________________ ________________________________ Committee members Date Defended: ________________________________ i The Dissertation Committee for Juan Jose Araya Barrantes certifies that this is the approved version of the following dissertation: PHASE-TRAFFICKING METHODS IN NATURAL PRODUCTS, MODULATORS OF ORGANIC ANION TRANSPORTING POLYPEPTIDES FROM ROLLINIA EMARGINATA, AND PREGNANE AND CARDIAC GLYCOSIDES FROM ASCLEPIAS SPP. ________________________________ Chair ________________________________ ________________________________ ________________________________ ________________________________ Committee members Date approved:_______________________ ii ABSTRACT Phase-Trafficking Methods in Natural Products, Modulators of Organic Anion Transporting Polypeptides from Rollinia emarginata, and Pregnane and Cardiac Glycosides from Asclepias spp. Juan J. Araya Barrantes, Ph. D. The University of Kansas, 2012 For decades, chemists and medicinal chemists have found in nature the source of inspiration for drug discovery
    [Show full text]
  • Nutritive Evaluation of Telfairia Occidentalis Leaf Protein Concentrate in Infant Foods
    African Journal of Biotechnology Vol. 7 (15), pp. 2721-2727, 4 August, 2008 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2008 Academic Journals Full Length Research Paper Nutritive evaluation of Telfairia occidentalis leaf protein concentrate in infant foods Johnson Oluwasola Agbede*, Muyiwa Adegbenro, Gbenga Emmanuel Onibi, Christian Oboh and Valentine Ayobore Aletor Division of Nutritional Biochemistry, Department of Animal Production and Health, Federal University of Technology, P.M.B. 704, Akure, Nigeria. Accepted 11 April, 2008 Leaf meal (LM), leaf proteins concentrate (LPC) and LPC residues from Telfairia occidentalis were produced, chemically characterized and the protein quality of the LPC evaluated using rats. Five infant weaning foods were formulated using varying combinations of T. occidentalis LPC and soybean meal. These foods were compared with three coded commercial infant weaning foods (CFF, CFN and CFC) currently in trade in a 28-day performance study. Though fractionation increased crude protein in LPC by 34.8%, the amino acid values were in most cases lower than the FAO/WHO/UNU recommendation. Fractionation led to increase in the gross energy by 22.0% and decrease in the phytate and tannin contents by 60 and 81.3%, respectively in LPC. The LPC, when fed as sole protein source, led to weight loss in rats. The highest final weight was observed in rats fed 100% LPC + 0% soybean meal-based food (105.4 ± 16.4 g) and least in CFN (50.0 ± 4.2 g), a commercial food. The formulated foods had significant (P<0.05) effects on apparent N-digestibility, ‘operative’ protein efficiency ratio and haematological variables.
    [Show full text]
  • Collected Mass Spectrometry Data on Monoterpene Indole Alkaloids from Natural Product Chemistry Research
    www.nature.com/scientificdata OPEN Collected mass spectrometry data DATA DescrIPTOR on monoterpene indole alkaloids from natural product chemistry Received: 20 September 2018 Accepted: 25 February 2019 research Published: xx xx xxxx Alexander E. Fox Ramos 1, Pierre Le Pogam1, Charlotte Fox Alcover 1, Elvis Otogo N’Nang 1, Gaëla Cauchie 1, Hazrina Hazni1,2, Khalijah Awang2, Dimitri Bréard3, Antonio M. Echavarren4,5, Michel Frédérich6, Thomas Gaslonde7, Marion Girardot8, Raphaël Grougnet7, Mariia S. Kirillova4, Marina Kritsanida 7, Christelle Lémus7, Anne-Marie Le Ray3, Guy Lewin1, Marc Litaudon9, Lengo Mambu 10, Sylvie Michel7, Fedor M. Miloserdov4, Michael E. Muratore4, Pascal Richomme-Peniguel3, Fanny Roussi9, Laurent Evanno1, Erwan Poupon1, Pierre Champy1 & Mehdi A. Beniddir 1 This Data Descriptor announces the submission to public repositories of the monoterpene indole alkaloid database (MIADB), a cumulative collection of 172 tandem mass spectrometry (MS/MS) spectra from multiple research projects conducted in eight natural product chemistry laboratories since the 1960s. All data have been annotated and organized to promote reuse by the community. Being a unique collection of these complex natural products, these data can be used to guide the dereplication and targeting of new related monoterpene indole alkaloids within complex mixtures when applying computer-based approaches, such as molecular networking. Each spectrum has its own accession number from CCMSLIB00004679916 to CCMSLIB00004680087 on the GNPS. The MIADB is available for download from MetaboLights under the identifer: MTBLS142 (https://www.ebi.ac.uk/metabolights/ MTBLS142). Background & Summary Monoterpene indole alkaloids (MIAs) constitute a broad class of nitrogen-containing plant-derived natural products composed of more than 3000 members1.
    [Show full text]