Biosynthesis by in Situ Hybridization (ISH)

Total Page:16

File Type:pdf, Size:1020Kb

Biosynthesis by in Situ Hybridization (ISH) Localization of monoterpenoid indole alkaloid (MIA) biosynthesis by in situ hybridization (ISH) By Elizabeth Edmunds, Hons. B.Sc. A Thesis Submitted to the Department of Biotechnology In partial fulfillment of the requirements For the degree of Masters of Science August, 2012 Brock University St. Catha rines, Ontario ©Elizabeth Edmunds, 2012 ii Acknowledgments First and foremost I would like to thank Dr. Vincenzo Deluca for the opportunity to work in his laboratory under his mentorship. I have appreciated the helpful insight that has guided me through the course of this project. I have gained a valuable experience being able to learn from such an established and knowledgeable researcher. Secondly, I would like to thank my committee members Dr. Jeffrey Atkinson and Dr. Heather Gordon for their support and advice and their time to serve on my advisory committee. Thirdly, I would like to thank my colleagues and co-workers for their patience and helpful advice throughout my project. Particular mention must be given to Dr. Carlone's lab for their assistance and insight into in situ hybridization techniques. Finally, I would like to express my sincerest gratitude and appreciation towards my family and friends for their support. I would not be where I am today without the support and love from my mother and father, as well as Craig Easton. iii Abstract Monoterpenoid indole alkaloids (MIA) are among the largest and most complex group of nitrogen containing secondary metabolites that are characteristic of the Apocynaceae plant family including the most notable Catharanthus roseus. These compounds have demonstrated activity as successful drugs for treating various cancers, neurological disorders and cardiovascular conditions. Due to the low yields of these compounds and high pharmacological value, their biosynthesis is a major topic of study. Previous work highlighting the leaf epidermis and leaf surface as a highly active area in MIA biosynthesis and MIA accumulation has made the epidermis a major focus of this thesis. This thesis provides an in-depth analysis of the valuable technique of RNA in situ hybridization (ISH) and demonstrates the application of the technique to analyze the location of the biosynthetic steps involved in the production of MIAs. The work presented in this thesis demonstrates that most of the MIAs of Eurasian Vinca minor, African Tabernaemontana e/egans and five Amsonia species, including North American Amsonia hubrichitii and Mediterranean A. orienta/is, accumulate in leaf wax exudates, while the rest of the leaf is almost devoid of alkaloids. Biochemical studies on Vinca minor displayed high tryptophan decarboxylase (TOe) enzyme activity and protein expression in the leaf epidermis compared to whole leaves. ISH studies aimed at localizing TOe and strictosidine synthase suggest the upper and lower epidermis of V. minor and T. e/egans as probable significant production sites for MIAs that will accumulate on the leaf surface, however the results don't eliminate the possibility of the involvement of other cell types. The monoterpenoid precursor to all MIAs, secologanin, is produced through the MEP pathway occurring in two cell types, the IPAP cells (Gl0H) and epidermal cells (LAMT and SLS). iv The work presented in this thesis, localizes a novel enzymatic step, UDPG-7-deoxyloganetic acid glucosyltransferase (UGT8) to the IPAP cells of Catharanthus longifolius. These results enable the suggestion that all steps from Gl0H up to and including UGT8 occur in the IPAP cells of the leaf, making the IPAP cells the main site for the majority of secologanin biosynthesis. It also makes the IPAP cells a likely cell type to begin searching for the gene of the uncharacterized steps between Gl0H and UGT8. It also narrows the compound to be transported from the IPAP cells to either 7-deoxyloganic acid or loganic acid, which aids in the identification of the transportation mechanism. v Table of Contents Page Acknowledgements ii Abstract iii Table of Contents v List of Figures ix Chapter 1. Literature Review 1.1 In situ hybridization 1.1.1 The power of localization 2 1.1.2 Localization with the technique of in situ hybridization 4 1.1.3 Applications of in situ hybridization 5 1.1.4 Isotopic and non-isotopic systems for performing ISH 6 1.1.5 Detection of the DIG label 8 1.1.6 Probe choice and synthesis 9 1.1.7 Tissue and slide preparation 13 1.2 Alkaloid producing Apocynaceae family 1.2.1 Secondary metabolism 17 1.2.2 Catharanthus raseus and Catharanthus longifolius taxonomy 18 and origin 1.2.3 Vinca minor taxonomy and origin 19 1.2.4 Tabernaemontana elegans taxonomy and origin 21 1.2.5 Pharmacological value of monoterpenoid indole alkaloids 22 1.3 Previous work on Catharanthus raseus 1.3.1 DNA in situ hybridization on Catharanthus roseus 25 vi Table of Contents Page 1.3.2 Monoterpenoid indole alkaloid biosynthetic pathway 27 1.3.3 Shikimate pathway 31 1.3.4 2-C-methyl-D-erythritoI4-phosphate (MEP) pathway 36 1.4 Concluding remarks 41 Chapter 2. Epidermome enriched biosynthesis of monoterpenoid indole alkaloids and secretion to the plant surface may be common in the Aocynaceae family of plants. 2.1 Abstract 44 2.2 Introduction 45 2.3 Materials and Methods 2.3.1 Plant material and alkaloid extraction 49 2.3.2 Alkaloid analysis 50 2.3.3 Isolation and Identification of vincadifformine from 51 Amsonia hubrichtii 2.3.4 Crude protein preparation and enzyme assays 52 2.3.5 Construction and sequence analysis of cDNA libraries 52 2.3.6 Real-time quantitative PCR 53 2.3.7 Molecular cloning and functional characterization 54 2.3.8 Tissue fixation and embedding 55 2.3.9 In situ hybridization 55 2.4 Results 2.4.1 Five Amsonia species accumulate their MIAs exclusively 56 in their leaf surface. vii Table of Contents Page 2.4.2 Vinca minor accumulates plumeran- and eburnan- type 58 MIAs on the leaf and stem surfaces. 2.4.3 MIA biosynthetic enzymes are preferentially expressed 60 in young developing leaves in V. minor. 2.4.4 Tabernaemontana elegans accumulates the majority of 62 MIAs on the leaf surfaces. 2.4.S MIA biosynthesis is regulated differently in 63 Tabernaemontana elegans compared to Vinca minor or Catharanthus rase us. 2.4.6 Biochemical and in situ hybridization localizes TOC and 65 STR gene expression close to the upper and lower leaf epidermis of T. elegans and V. minor 2.S Discussion 68 2.6 Acknowledgements 72 Chapter 3. UDPG-7-deoxyloganetic acid glycosyltransferase 3.1 Abstract 74 3.2 Introduction 75 3.3 Materials and Methods 3.3.1 In situ hybridization 80 3.3.2 Whole leaf and Epidermal Protein Extraction 81 3.3.3 Tryptophan decarboxylase activity assay 82 3.3.4 Western Immunoblots 83 viii Table of Contents Page 3.4 Results 3.4.1 Preferential expression of CrUGT8 in plant organs and 87 leaf cells 3.4.2 ISH to detect CrUGT8 in young leaves of Catharanthus 89 roseus 3.4.3 The cell-specific organization of MIA biosynthesis in 91 Catharanthus roseus and in Catharonthus longifolius. 3.4.4 ISH to detect CrUGT8 in young leaves of Catharonthus 92 longifolius 3.5 Discussion 92 3.6 Acknowl edgement 97 References 98 Appendix I : Chapter 2 Supplemental Figures 106 ix List of Figures Figures Title Page Chapter 1 1.1 Model of NBT/BCIP immunological detection of 10 digoxigenin (DIG) labeled ssRNA probes. 1.2 Monoterpenoid indole alkaloid producing plants. 20 1.3 Pharmacologically valuable indole-indoline dimeric alkaloids. 24 1.4 Application of DNA ISH for the cytogenetic analyses of C. roseus 26 on mitotic spreads prepared from root tip cells. 1.5 Biosynthesis of monoterpenoid indole alkaloids. 28 1.6 Examples ofthe typical biosynthetic MIAs of biosynthesis of 30 V. minor, A. hubrichtii, C. roseus and T. elegans from the central strictosidine pathway. 1.7 Previous RNA ISH work on longitudinal sections to localize the 32 MIA biosynthetic steps of tdc, strl, d4h and dat mRNA in developing leaves. 1.8 Spatial separation of the distribution of catharanthine and 35 vindoline on the surface of and within the third leaf of Catharonthus species. 1.9 Summary of previous work on the localization of gene 38 expression of the biosynthetic pathway for monoterpenoid indole alkaloids in C.roseus aerial organs. 1.10 The biosynthetic steps in the production of the iridoid 39 secologanin from geraniol. Chapter 2 2.1 The biosynthetic of typical V. minor, A. hubrichtii, 46 C. roseus and T. elegans MIAs from the central strictosidine pathway. x List of Figures Figures Title Page 2.2 Amsonia hubrichtii secretes vincadifformine into 57 leaf surface. 2.3 Vinca minor secretes most MIAs into leaf surface. 59 2.4 Tabernaemontana elegans secretes MIAs into leaf 61 surface except for some dimers. 2.5 Functional verification of Vinca minor and Tabernaemontana 64 elegans recombinant TDCs and STRs expressed in E. coli. 2.6 Biochemical and in situ localization of tdc and str mRNA 66 in young developing leaves of Tabernanamonta elegans and Vinca minor. 2.7 Model for the biosynthesis and secretion of MIAs in leaves 69 of the Apocynaceae. Chapter 3 3.1 Preferential expression of CrUGT8 in Catharanthus roseus 84 leaves with highest activity in first leaf pair. 3.2 CrUGT8 mRNA not detectable in young developing leaves of 86 Catharanthus roseus 3.3 Catharanthus longifolius demonstrates similar cellular 88 organization of the MIA biosynthetic steps, TDC and D4H, as Catharanthus roseus. 3.4 Localization of ugt8 mRNA in young developing leaves of 90 Catharanthus longifolius to the IPAP cells. 3.5 Spatial model of iridoid biosynthesis and translocation in 93 Catharanthus leaves.
Recommended publications
  • Rhazya Stricta S
    IENCE SC • VTT VTT S CIENCE • T S E Alkaloids of in vitro cultures of N C O H I N Rhazya stricta S O I V Dis s e r ta tion L • O S 93 G Rhazya stricta Decne. (Apocynaceae) is a traditional medicinal T Y H • R plant in Middle East and South Asia. It contains a large number of G I E L S H 93 E G terpenoid indole alkaloids (TIAs), some of which possess A I R H C interesting pharmacological properties. This study was focused on H biotechnological production tools of R. stricta, namely undifferentiated cell cultures, and an Agrobacterium rhizogenes- mediated transformation method to obtain hairy roots expressing heterologous genes from the early TIA pathway. Rha zya alkaloids comprise a wide range of structures and polarities, therefore, many A analytical methods were developed to investigate the alkaloid l k contents in in vitro cultures. Targeted and non-targeted analyses a l o were carried out using gas chromatography-mass spectrometry i d (GC-MS), high performance liquid chromatography (HPLC), ultra s o performance liquid chromatography-mass spectrometry (UPLC- f i MS) and nuclear magnetic resonance (NMR) spectroscopy. n Calli derived from stems contained elevated levels of v i t r strictosidine lactam compared to other in vitro cultures. It o was revealed that only leaves were susceptible to Agrobacterium c u infection and subsequent root induction. The transformation l t u efficiency varied from 22% to 83% depending on the gene. A total r e of 17 TIAs were identified from hairy root extracts by UPLC-MS.
    [Show full text]
  • A Review on Tabernaemontana Spp.: Multipotential Medicinal Plant
    Online - 2455-3891 Vol 11, Issue 5, 2018 Print - 0974-2441 Review Article A REVIEW ON TABERNAEMONTANA SPP.: MULTIPOTENTIAL MEDICINAL PLANT ANAN ATHIPORNCHAI* Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Bangsaen, Chonburi 20131 Thailand. Email: [email protected] Received: 01 March 2016, Revised and Accepted: 29 January 2018 ABSTRACT Plants in the genus Tabernaemontana have been using in Thai and Chinese traditional medicine for the treatment several diseases. The great majority constituents of Tabernaemontana species have already been subjected to isolation and identification of monoterpene indole alkaloids present in their several parts. Many of monoterpene indole alkaloids exhibited a wide array of several activities. The biogenesis, classification, and biological activities of these alkaloids which found in Tabernaemontana plants were discussed in this review and its brings the research up-to-date on the bioactive compounds produced by Tabernaemontana species, directly or indirectly related to human health. Keywords: Tabernaemontana plants, Phytochemistry, Biogenesis, Terpene indole alkaloids, Biological activities. © 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i5.11478 INTRODUCTION alkaloids are investigated. All monoterpene indole alkaloids are derived from aromatic amino acid tryptophan and the iridoid terpene Several already drugs were discovered from the natural products. secologanin (Scheme 1). Tryptophan converts to tryptamine using Especially, the treatments of infectious diseases and oncology have tryptophan decarboxylase which is a pyridoxal-dependent enzyme. benefited from numerous drugs which were found in natural product The specific iridoid precursor was subsequently identified as sources.
    [Show full text]
  • Gastroprotective Effect of Tabernaemontana Divaricata (Linn.) R.Br
    British Journal of Pharmaceutical Research 1(3): 88-98, 2011 SCIENCEDOMAIN international www.sciencedomain.org Gastroprotective Effect of Tabernaemontana divaricata (Linn.) R.Br. Flower Methanolic Extract in Wistar Rats Mohammed Safwan Ali Khan1,2&3* 1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia. 2Department of Pharmacognosy, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad 500001, Andhra Pradesh, India. 3Department of Pharmaceutical Sciences, Nims University, Shobha Nagar, Delhi Highway, Jaipur - 303 121, Rajasthan, India. Received 24th April 2011 Accepted 2nd June 2011 Research Article Online Ready 6th June 2011 ABSTRACT Tabernaemontana divaricata (L.) R.Br belonging to Apocynaceae family is traditionally used by people in many parts of the world to treat various disorders. The present study was undertaken to investigate anti-ulcer property of Tabernaemontana divaricata flower methanolic extract (TDFME 500 mg/kg, p.o) by pyloric ligation induced gastric ulceration model using Omeprazole (8mg/kg, p.o) as a standard drug in wistar rats. Five parameters i.e., volume of gastric juice, pH, free & total acidities and ulcer index were assessed. The test extract significantly (p< 0.01) decreased volume of gastric juice, free & total acidities and ulcer index. Like standard, it also raised pH of gastric acid. The observed percentage protection for standard and test were 89.84% and 79.53%, respectively. Thus, TDFME 500 mg/kg had a positive effect on all the parameters under study and the results were similar to that of standard. From the above results, it can be concluded that TDFME exhibits remarkable gastroprotective effect.
    [Show full text]
  • J.C.S. Perkin I
    2308 J.C.S. Perkin I The Biosynthesis of Monoterpenoid lndole Alkaloids from Strictosidine By Naotaka Nagakura, (Mrs.) Martin8 Ruffer, and Meinhart H. Zenk," Lehrstuhl fur Pflanzenphysiologie, Ruhr-Universitat Bochum, D 4630 Bochum, W. Germany The differential incorporation of doubly labelled strictosidine and vincoside into several indole alkaloids belonging to the Corynanthe (3a and 3p series), Aspidosperma, and lboga types in three plant families has been studied, and it has been demonstrated that only strictosidine is incorporated while vincoside is metabolically inert in these plants with regard to alkaloid formation. During the conversion of strictosidine into the 3P-indole alkaloids, the hydrogen atom at the 3-position is lost, while it is retained during the biosynthesis of the 32 alkaloids. The chemical synthesis of [7-3H]secologanin, an important intermediate for further work in the biosynthesis of monoterpenoid alkaloids, is also described. THEfundamental research of Battersby and Arigoni and (S)-3a stereochemistry, is indeed the key intermediate their associates during the past decade has established in the formation of the three classes of monoterpenoid the central role of loganin and secologanin (2) in the indole alkaloids (Asfiidosfierma, Iboga, and Corynanthe) biosynthesis of a multitude of monoterpenoid indole in Catharanthus roseus (syn. Vinca rosea) plants as well alkaloids. Secologanin (2) is the ultimate precursor for as a variety of other species in cell cultures by in vivo the C-9/C-10 non-tryptamine carbon skeleton
    [Show full text]
  • The Iboga Alkaloids
    The Iboga Alkaloids Catherine Lavaud and Georges Massiot Contents 1 Introduction ................................................................................. 90 2 Biosynthesis ................................................................................. 92 3 Structural Elucidation and Reactivity ...................................................... 93 4 New Molecules .............................................................................. 97 4.1 Monomers ............................................................................. 99 4.1.1 Ibogamine and Coronaridine Derivatives .................................... 99 4.1.2 3-Alkyl- or 3-Oxo-ibogamine/-coronaridine Derivatives . 102 4.1.3 5- and/or 6-Oxo-ibogamine/-coronaridine Derivatives ...................... 104 4.1.4 Rearranged Ibogamine/Coronaridine Alkaloids .. ........................... 105 4.1.5 Catharanthine and Pseudoeburnamonine Derivatives .. .. .. ... .. ... .. .. ... .. 106 4.1.6 Miscellaneous Representatives and Another Enigma . ..................... 107 4.2 Dimers ................................................................................. 108 4.2.1 Bisindoles with an Ibogamine Moiety ....................................... 110 4.2.2 Bisindoles with a Voacangine (10-Methoxy-coronaridine) Moiety ........ 111 4.2.3 Bisindoles with an Isovoacangine (11-Methoxy-coronaridine) Moiety . 111 4.2.4 Bisindoles with an Iboga-Indolenine or Rearranged Moiety ................ 116 4.2.5 Bisindoles with a Chippiine Moiety ... .....................................
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E.
    [Show full text]
  • Uses of Voaca Nga Species
    USES OF VOACA NGA SPECIES N.G.BISSET PharmacognosyResearch Laboratories, Department of Pharmacy, Chelsea College, Universityof London, Manresa Road, London SW36LX Received4-II-198 5 Dateo fPublicatio n 16-VIII-1985 INTRODUCTION None of the species of the genus has attained any widespread application and evenV. afriLa, the one with the greatest distribution range and the one to which most of the uses described apply, has rather tainted localu e..A few ofti e medicinalapplication s appear to reflect theactivxt.e so fth ealkaloid spre - luntoriEnte (cf. Phytochemistry,Sectio n 3).Th efollowin g paragraphsgiv e aSoutline ox the uses which have been reported in the literature and as annotations on specimenskep ti nth eherbari a listedo np .00 . 1. THE PLANTS 1.1. V.AFRICANA (ANGUSTIFOLIA ?,LUTESCENS, PUBERULA) West Africa: The latex is said to be a rubber adul^t^dU i^put into acariou s tooth (Dalziel, 1937).Th e plant xs reported tob euse dm treatin g scabies (Janot and Goutarel, 1955).Senegal :Th e^amnk a (or Serere^) eat the fruit; theytrea t woundswit hth elatex .Th eplan tx sals oco n^ *obea pan a cea - the leafy branches are put into baths morning and ev«J^d a ^. prepared from them is given to people affected ^r^^S^ss. tierx of the leaves isdrun k as a tonic and against fatigue due^ obr«h^n Inth eCasamanc ea decoctio n ofth eroot stake nthre etime sdad y« . ecomme ed for women to counteract the effects of premature and rapid birth it » a 19 giveninternall y for hernial pain (Kerharo and Adam, ^' ^^hoca; Theleave shav esevera luses :A decoctio ni sapplie da sa wash •aganistduur t , it is put into baths against generalized oedema; it xs, utxhzea a fnction in a drink in the treatment of leprosy; a lotion is ^^^^ (possibly in children; and the juice is placed in the nostrlis oca^.^ Zernal v0 through confusion with other Apocynaceae- *«"* ™""£ °ossibly used -—^(Bouquetand^^ l for adulterating rubber (F.
    [Show full text]
  • Tabernaemotana Divaricata
    Imperial Journal of Interdisciplinary Research (IJIR) Vol-2, Issue-10, 2016 ISSN: 2454-1362, http://www.onlinejournal.in Quantification of Phytochemicals and HPTLC Finger Printing of Stem and Leaf Extracts of Tabernaemotana divaricata. Dr. Anubha Arora, Dr. Yashwant Rai & Dr. Sunder Pal Department of Botany, V.M.K (P.G) College, Mangalore, Green Planet Welfare Association Meerut, Uttar Pradesh, Department of Chemistry, D.N. (P.G) College, Meerut Abstract: - HPTLC is an analytical technique used It is an evergreen glabrous and dichotomously for the qualitative and quantitative evalution of branched about 2-3 m high shrub and commonly polyherbal formulations. Tabernaemotana called Pinwheel flower, Crape jasmine , East India divaricata an important medicinal plant wide rose bay and Nero’s crown (Dasturet.al 1962). medicinal value is frequently used in a large no of Ethnobotanically have been known to possess traditional herbal preparations. For HPTLC antimicrobial , anthelmintic, antioxidant , curative statinory phase was silica gel 60 F254 plate. The properties against nervous disorders, skin mobile phase consisted of Toluene: Ethylacetate: problems, respiratory and eyeailments,veneral Formic acd (7:2:0.5). In the present study the diseases, diabetes , chronic bronchitis , snake bite Preliminary Phytochemical screening of and cardiotonic ailments.(Ignacimutu et.al 2006 Tabernaemotana divaricata stem and leaf and Sathishkumar et.al 2012). Rootsare extraction has been done to dentify the chemical emmenagogue aphrodisiac tonic ,puragative , constituents and HPTLC fingerprinting of astrigent to the bowels and tonic to the brains , Tabernaemotana divaricata stem and leaf tracts lever and spleen , and useful in paralysis. has been performed which may be used as marks for quality evaluation and standardization of the Rahmanet.al (2011) observed the antibacterial drug.
    [Show full text]
  • Isohtion of Alkaloids and Structural Identification of Two Dimers
    Indole Alkaloids from Ervatamia ouientaiis. I Isohtion of Alkaloids and Structural Identification of Two Dimers ., John R. Knox and Jacob Slobbe I 9 1;:’ ,di Department of Organic Chemistry, University of Western Australia, ,;,, ,A>.i I Nedlands, W.A. 6009. Abstract Ethanol extracts of Eruafamia orientalis have yielded the following known alkaloids: ibogaine, iboxygaine, voacristine, vobasine, dregamine, tabernaemontanine, apparicine, voacamine and 16-demethoxycarbonylvoacamine. In addition, two new dimeric alkaloids of the voacamine group and the novel 2-acylindoles ervatamine, 2O-epiervatamine and 19-dehydroervatamine have been isolated from the extracts. The two new dimeric compounds have been identified by physical and chemical methods as lddemethoxycarbonyldihydrovoacamine and 16-demethoxycarbonyl-20’-epi- dihydrovoacamine. Plants classified in the Tabernaemontaneaetribe (Apocynaceae) have proved to be a rich source of indole alkaloids. ’ The tribe is the sole plant source of the iboga type alkaloids (with one exception’), the related voacamine group of dimeric alkaloids and the vobtusine group of dimeric alkaloids; it is also an important source of the 2-acylindole class and has afforded miscellaneousother types of indole alkaloids.1*3r4 The second largest of the 20 genera in the tribe is Eruatamia’ but rela- tively few of the 92-95 species in the genus have been examined for alkaloids. Iboga- type alkaloids have been obtained from E. dichotoma (coronaridine,6 heyneanine,’ voacristine hydroxyindolenine’), E. coronaria (coronaridine, voacangine’) and E. pandacaqui (coronaridine”), 2-acylindoles from E. coronaria (dregamine, tabernae- montanine’), E. divaricata (tabernaemontanine”) and E. pandacaqui (tabernae- montanine”) and aspidospermine types from E. dichotoma (tabersonine”) and E. dioaricafa (lochnericine, voaphylline”). E. pandacaqui has also afforded 20-epilochneridine and three dimeric alkaloids (ervafoline, ervafolidine, isoerva- r Hegnauer, R., ‘Chemotaxonomie der Pflanzen’ Vol.
    [Show full text]
  • Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds
    Downloaded from orbit.dtu.dk on: Sep 28, 2021 Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds Bradley, Samuel Alan; Zhang, Jie; Jensen, Michael Krogh Published in: Frontiers in Bioengineering and Biotechnology Link to article, DOI: 10.3389/fbioe.2020.594126 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Bradley, S. A., Zhang, J., & Jensen, M. K. (2020). Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds. Frontiers in Bioengineering and Biotechnology, 8, [594126]. https://doi.org/10.3389/fbioe.2020.594126 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. fbioe-08-594126 October 19, 2020 Time: 19:15 # 1 REVIEW published: 23 October 2020 doi: 10.3389/fbioe.2020.594126 Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds Samuel A. Bradley, Jie Zhang and Michael K.
    [Show full text]
  • Unlocking the Diversity of Alkaloids in Catharanthus Roseus: Nuclear Localization Suggests Metabolic Channeling in Secondary Metabolism
    Brief Communication Unlocking the Diversity of Alkaloids in Catharanthus roseus: Nuclear Localization Suggests Metabolic Channeling in Secondary Metabolism Graphical Abstract Authors Anna Stavrinides, Evangelos C. Tatsis, ..., Vincent Courdavault, Sarah E. O’Connor Correspondence [email protected] (S.E.O.), [email protected] (V.C.) In Brief How plants transform the central biosynthetic intermediate strictosidine into thousands of divergent alkaloids has remained unresolved. Stavrinides et al. discover a nuclear-localized alcohol dehydrogenase homolog responsible for conversion of strictosidine aglycone to tetrahydroalstonine that appears to interact with an upstream pathway enzyme. Highlights d Tetrahydroalstonine synthase catalyzes the formation of a plant-derived alkaloid d Tetrahydroalstonine synthase is localized to the nucleus d Tetrahydroalstonine synthase and the preceding pathway enzyme interact d Discovery of a gene controlling structural diversity of monoterpene indole alkaloids Stavrinides et al., 2015, Chemistry & Biology 22, 336–341 March 19, 2015 ª2015 The Authors http://dx.doi.org/10.1016/j.chembiol.2015.02.006 Chemistry & Biology Brief Communication Unlocking the Diversity of Alkaloids in Catharanthus roseus: Nuclear Localization Suggests Metabolic Channeling in Secondary Metabolism Anna Stavrinides,1 Evangelos C. Tatsis,1 Emilien Foureau,2 Lorenzo Caputi,1 Franziska Kellner,1 Vincent Courdavault,2,* and Sarah E. O’Connor1,* 1Department of Biological Chemistry, The John Innes Centre, Colney, Norwich NR4 7UH, UK 2Universite´ Franc¸ ois Rabelais de Tours, EA2106 ‘‘Biomole´ cules et Biotechnologies Ve´ ge´ tales’’, 37200 Tours, France *Correspondence: [email protected] (S.E.O.), [email protected] (V.C.) http://dx.doi.org/10.1016/j.chembiol.2015.02.006 This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
    [Show full text]
  • Fifty Years of Alkaloid Biosynthesis in Phytochemistry Q ⇑ Geoffrey A
    Phytochemistry 91 (2013) 29–51 Contents lists available at SciVerse ScienceDirect Phytochemistry journal homepage: www.elsevier.com/locate/phytochem Review Fifty years of alkaloid biosynthesis in Phytochemistry q ⇑ Geoffrey A. Cordell Natural Products Inc., Evanston, IL, USA Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA article info abstract Article history: An overview is presented of the studies related to the biosynthesis of alkaloids published in Phytochem- Available online 20 June 2012 istry in the past 50 years. Ó 2012 Elsevier Ltd. All rights reserved. Keywords: Alkaloids Biosynthesis Overview Contents 1. Introduction . ....................................................................................................... 30 1.1. Ornithine-derived alkaloids . .......................................................................... 30 1.2. Nicotine . .......................................................................................... 31 1.3. Tropane alkaloids . .......................................................................................... 33 1.4. Calystegines . .......................................................................................... 34 1.5. Pyrrolizidine alkaloids. .......................................................................................... 34 1.6. Retronecine . .......................................................................................... 34 1.7. Lysine-derived alkaloids . .........................................................................................
    [Show full text]