Regulation of Alkaloid Biosynthesis in Plants

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Alkaloid Biosynthesis in Plants CONTRIBUTORS Numbers in parentheses indicate the pages on which the authors’ contributions begin. JAUME BASTIDA (87), Departament de Productes Naturals, Facultat de Farma` cia, Universitat de Barcelona, 08028 Barcelona, Spain YEUN-MUN CHOO (181), Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia PETER J. FACCHINI (1), Department of Biological Sciences, University of Calgary, Calgary, AB, Canada TOH-SEOK KAM (181), Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia RODOLFO LAVILLA (87), Parc Cientı´fic de Barcelona, Universitat de Barcelona, 08028 Barcelona, Spain DANIEL G. PANACCIONE (45), Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506-6108, USA CHRISTOPHER L. SCHARDL (45), Department of Plant Pathology, University of Kentucky, Lexington, KY 40546-0312, USA PAUL TUDZYNSKI (45), Institut fu¨r Botanik, Westfa¨lische Wilhelms Universita¨tMu¨nster, Mu¨nster D-48149, Germany FRANCESC VILADOMAT (87), Departament de Productes Naturals, Facultat de Farma` cia, Universitat de Barcelona, 08028 Barcelona, Spain vii PREFACE This volume of The Alkaloids: Chemistry and Biology is comprised of four very different chapters; a reflection of the diverse facets that comprise the study of alkaloids today. As awareness of the global need for natural products which can be made available as drugs on a sustainable basis increases, so it has become increas- ingly important that there is a full understanding of how key metabolic pathways can be optimized. At the same time, it remains important to find new biologically active alkaloids and to elucidate the mechanisms of action of those that do show potentially useful or novel biological effects. Facchini, in Chapter 1, reviews the significant studies that have been conducted with respect to how the formation of alkaloids in their various diverse sources are regulated at the molecular level. The history of the ergot alkaloids and their biological effects is a very rich and fascinating one. In Chapter 2, advances in the biosynthetic pathway of these alkaloids are discussed, the genes involved are reviewed, and their biological and clinical significance are presented by Schardl, Panaccione, and Tudzynski. In Chapter 3, Bastida, Lavilla, and Viladomat provide a classical review of the isolation, structure elucidation, biosynthesis, synthesis, and biology of the Narcissus alkaloids. This group of alkaloids is receiving a great deal of attention at the present time because of the significant biological activities observed for some of these metabolites. It has been over 25 years since the broad area of the bisindole alkaloids was reviewed in this series. In the concluding chapter, Kam and Choo have taken on this formidable task and provide a very comprehensive summation of tremendous advances in the structural, synthetic, and biological aspects of more than 30 basic alkaloid types represented. Geoffrey A. Cordell University of Illinois at Chicago ix —CHAPTER 1— REGULATION OF ALKALOID BIOSYNTHESIS IN PLANTS PETER J. FACCHINI Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada I. Introduction II. Alkaloid Biosynthetic Pathways III. Regulation of Alkaloid Biosynthesis IV. Applications of Genomics to the Study of Alkaloid Biosynthesis V. Metabolic Engineering of Alkaloid Pathways VI. Future Prospects Acknowledgments References I. Introduction Several key technical breakthroughs over the last half-century have contrib- uted to an impressive advancement in our understanding of alkaloid biosynthesis in plants. The use of radiolabeled precursors in the 1950s allowed the elucidation of several biogenic pathways. The widespread application of plant cell cultures during the 1970s provided a rich source of biosynthetic enzymes and encouraged work on the elucidation of signal transduction mechanisms that activate alkaloid pathways. The introduction of molecular techniques in the 1990s prompted the isolation of numerous molecular clones involved in alkaloid biosynthesis (1), which have been used to de- termine the tissue-specific localization of alkaloid biosynthetic enzymes and gene transcripts, and functionally analyze the corresponding promoters. Recent applica- tions of genomics-based technologies, such as expressed sequence tag (EST) databas- es, DNA microarrays, and proteome analysis, have shown the potential to accelerate the discovery of new components and mechanisms involved in the assembly and function of plant alkaloids. Our emerging ability to investigate alkaloid metabolism from a combined biochemical, molecular, cellular, and physiological perspective has greatly improved our appreciation for the complex regulation of diverse biosynthetic pathways. Unlike other types of secondary metabolites, the different structural cat- egories of alkaloids have unique biosynthetic origins. This review will focus on recent advances in our understanding of the metabolic regulation involved in the biosyn- thesis of six groups of alkaloids – benzylisoquinoline, monoterpenoid indole, tropane, purine, pyrrolizidine, and quinolizidine alkaloids – for which biosynthetic and reg- ulatory genes have been reported and characterized. THE ALKALOIDS, Vol. 63 Copyright r 2006 Elsevier Inc. 1 ISSN: 1099-4831 All rights reserved DOI: 10.1016/S1099-4831(06)63001-0 2 FACCHINI II. Alkaloid Biosynthetic Pathways A. BENZYLISOQUINOLINE ALKALOIDS Many benzylisoquinoline alkaloids (BAs) are used as pharmaceuticals due to their potent pharmacological activity, which is often an indication of their biological function. For example, the effectiveness of morphine as an analgesic, colchicine as a microtubule disrupter, and (+)-tubocurarine as a neuromuscular blocker suggests that these alkaloids function as herbivore deterrents. The antimicrobial properties of sanguinarine and berberine suggest that they confer protection against pathogens (2). BAs occur mainly in basal angiosperms, including the members of Ran- unculaceae, Papaveraceae, Berberidaceae, Menispermaceae, and Magnoliaceae. BA biosynthesis begins with the conversion of tyrosine into both dopamine and 4–hydroxyphenylacetaldehyde by a lattice of decarboxylations, ortho-hydro- xylations, and deaminations (3). The aromatic amino acid decarboxylase (TYDC) that converts tyrosine and dopa into their corresponding amines has been purified, and several cDNAs have been cloned (Scheme 1) (4–6). A family of 15 genes, which can be divided into two subgroups based on sequence identity, encodes TYDC in opium poppy (Papaver somniferum) (5). The catalytic properties of the various protein isoforms are similar despite the differential developmental and inducible expression of the TYDC gene family (5,7–9). Dopa- mine and 4–hydroxyphenylacetaldehyde are condensed by norcoclaurine synthase (NCS) to yield (S)-norcoclaurine (Scheme 1), the central precursor to all BAs in plants (10,11). Owing to the inability of NCS to discriminate between 4–hydroxy- phenylacetaldehyde and 3,4–dihydroxyphenylacetaldehyde, and the nonspecificity of the subsequent methyltransferase reactions, it was originally thought that the tetrahydroxyBA (S)-norlaudanosoline was the precursor (12). However, only nor- coclaurine has been found to occur in plants. NCS has been purified (13,14) and corresponding molecular clones have been isolated from Thalictrum flavum (15) and P. somniferum (16). NCS is ancestrally related to the pathogenesis-related (PR) 10 and Bet v 1 protein families, which include the enzyme (HYP1) from St. John’s wort (Hypericum perforatum) responsible for the biosynthesis of the bioactive naphthodianthrone hypericin (17). The novel catalytic functions of NCS and HYP1 define a new class of plant secondary metabolic enzymes. (S)-Norcoclaurine is converted into (S)-reticuline by a 6–O-methyltransferase (6OMT), an N-methyltransferase (CNMT), a P450 hydroxylase (CYP80B1), and a 40-O-methyltransferase (40OMT) (Scheme 1) (18–21). 6OMT and 4’OMT were purified (18), and corresponding cDNAs isolated and characterized from Coptis japonica (22), T. flavum (23),andP. somniferum (24–26). Each enzyme exhibits unique substrate specificity and a different reaction mechanism despite extensive homology. A previ- ously reported family of catechol O-methyltransferases that accepts (S)-norcoclaurine as a substrate is probably not involved in alkaloid biosynthesis (27). CNMT has also been purified (28), and the corresponding cDNA isolated from C. japonica (29), T. flavum (23),andP. somniferum (24). The aromatic ring hydroxylation involved in the conversion of (S)-norcoclaurine into (S)-reticuline was once thought to proceed via a nonspecific phenol oxidase (30). However, a P450-dependent monooxygenase (CYP80B1) was shown to have a lower Km for (S)-N-methylcoclaurine than the REGULATION OF ALKALOID BIOSYNTHESIS 3 Scheme 1. Biosynthesis of the benzylisoquinoline alkaloids berberine, morphine, and sang- uinarine. Enzymes for which corresponding molecular clones have been isolated are shown in bold. Abbreviations: 40OMT, 30-hydroxy-N-methylcoclaurine 40-O-methyltransferase; 6OMT, norcoclaurine 6-O-methyltransferase; 7OMT, reticuline 7-O-methyltransferase; BBE, berberine bridge enzyme; CFS, cheilanthifoline synthase; CNMT, coclaurine N-methyltransf- erase; COR, codeinone reductase; CYP719A1, canadine synthase; CYP80A1, berbamunine synthase; CYP80B1, N-methylcoclaurine 30-hydroxylase; DBOX, dihydrobenzophenanthri- dine oxidase; DRR, 1,2-dehydroreticuline reductase; DRS, 1,2-dehydroreticuline synthase; MSH, N-methylstylopine 14-hydroxylase;
Recommended publications
  • Title Total Biosynthesis of Opiates by Stepwise Fermentation Using
    Total biosynthesis of opiates by stepwise fermentation using Title engineered Escherichia coli. Nakagawa, Akira; Matsumura, Eitaro; Koyanagi, Takashi; Katayama, Takane; Kawano, Noriaki; Yoshimatsu, Kayo; Author(s) Yamamoto, Kenji; Kumagai, Hidehiko; Sato, Fumihiko; Minami, Hiromichi Citation Nature communications (2016), 7 Issue Date 2016-02-05 URL http://hdl.handle.net/2433/204378 This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; Right if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ Type Journal Article Textversion publisher Kyoto University ARTICLE Received 30 Oct 2015 | Accepted 7 Dec 2015 | Published 5 Feb 2016 DOI: 10.1038/ncomms10390 OPEN Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli Akira Nakagawa1, Eitaro Matsumura1, Takashi Koyanagi1, Takane Katayama2, Noriaki Kawano3, Kayo Yoshimatsu3, Kenji Yamamoto1, Hidehiko Kumagai1, Fumihiko Sato4 & Hiromichi Minami1 Opiates such as morphine and codeine are mainly obtained by extraction from opium poppies. Fermentative opiate production in microbes has also been investigated, and complete biosynthesis of opiates from a simple carbon source has recently been accom- plished in yeast. Here we demonstrate that Escherichia coli serves as an efficient, robust and flexible platform for total opiate synthesis. Thebaine, the most important raw material in opioid preparations, is produced by stepwise culture of four engineered strains at yields of 2.1 mg l À 1 from glycerol, corresponding to a 300-fold increase from recently developed yeast systems.
    [Show full text]
  • National Resource Material Green and Black Poison Frog (Dendrobates Auratus)
    Indicative 10 Project National Resource Material Green and Black Poison frog (Dendrobates auratus) Michelle T. Christy and Win Kirkpatrick 2017 Department of Primary Industries and Regional Development 3 Baron-Hay Court, South Perth, WA 6151 An Invasive Animals CRC Project Contents Summary ............................................................................. 2 Key Messages ................................................................... 2 Classification ................................................................... 2 Common names ................................................................ 3 Biology and Ecology ................................................................ 3 Identification ................................................................... 3 Behaviours and Traits ......................................................... 4 Food and Foraging ............................................................. 4 Reproduction and Lifecycle ................................................. 5 Habitat ......................................................................... 5 Global Range ........................................................................ 5 Potential for Introduction ........................................................ 6 Potential for Eradication.......................................................... 7 Impacts ............................................................................... 7 Economic ........................................................................ 7 Environmental
    [Show full text]
  • “Biosynthesis of Morphine in Mammals”
    “Biosynthesis of Morphine in Mammals” D i s s e r t a t i o n zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Frau Nadja Grobe geb. am 21.08.1981 in Querfurt Gutachter /in 1. 2. 3. Halle (Saale), Table of Contents I INTRODUCTION ........................................................................................................1 II MATERIAL & METHODS ........................................................................................ 10 1 Animal Tissue ....................................................................................................... 10 2 Chemicals and Enzymes ....................................................................................... 10 3 Bacteria and Vectors ............................................................................................ 10 4 Instruments ........................................................................................................... 11 5 Synthesis ................................................................................................................ 12 5.1 Preparation of DOPAL from Epinephrine (according to DUNCAN 1975) ................. 12 5.2 Synthesis of (R)-Norlaudanosoline*HBr ................................................................. 12 5.3 Synthesis of [7D]-Salutaridinol and [7D]-epi-Salutaridinol ..................................... 13 6 Application Experiments .....................................................................................
    [Show full text]
  • A Review on Tabernaemontana Spp.: Multipotential Medicinal Plant
    Online - 2455-3891 Vol 11, Issue 5, 2018 Print - 0974-2441 Review Article A REVIEW ON TABERNAEMONTANA SPP.: MULTIPOTENTIAL MEDICINAL PLANT ANAN ATHIPORNCHAI* Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Bangsaen, Chonburi 20131 Thailand. Email: [email protected] Received: 01 March 2016, Revised and Accepted: 29 January 2018 ABSTRACT Plants in the genus Tabernaemontana have been using in Thai and Chinese traditional medicine for the treatment several diseases. The great majority constituents of Tabernaemontana species have already been subjected to isolation and identification of monoterpene indole alkaloids present in their several parts. Many of monoterpene indole alkaloids exhibited a wide array of several activities. The biogenesis, classification, and biological activities of these alkaloids which found in Tabernaemontana plants were discussed in this review and its brings the research up-to-date on the bioactive compounds produced by Tabernaemontana species, directly or indirectly related to human health. Keywords: Tabernaemontana plants, Phytochemistry, Biogenesis, Terpene indole alkaloids, Biological activities. © 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i5.11478 INTRODUCTION alkaloids are investigated. All monoterpene indole alkaloids are derived from aromatic amino acid tryptophan and the iridoid terpene Several already drugs were discovered from the natural products. secologanin (Scheme 1). Tryptophan converts to tryptamine using Especially, the treatments of infectious diseases and oncology have tryptophan decarboxylase which is a pyridoxal-dependent enzyme. benefited from numerous drugs which were found in natural product The specific iridoid precursor was subsequently identified as sources.
    [Show full text]
  • Gastroprotective Effect of Tabernaemontana Divaricata (Linn.) R.Br
    British Journal of Pharmaceutical Research 1(3): 88-98, 2011 SCIENCEDOMAIN international www.sciencedomain.org Gastroprotective Effect of Tabernaemontana divaricata (Linn.) R.Br. Flower Methanolic Extract in Wistar Rats Mohammed Safwan Ali Khan1,2&3* 1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia. 2Department of Pharmacognosy, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad 500001, Andhra Pradesh, India. 3Department of Pharmaceutical Sciences, Nims University, Shobha Nagar, Delhi Highway, Jaipur - 303 121, Rajasthan, India. Received 24th April 2011 Accepted 2nd June 2011 Research Article Online Ready 6th June 2011 ABSTRACT Tabernaemontana divaricata (L.) R.Br belonging to Apocynaceae family is traditionally used by people in many parts of the world to treat various disorders. The present study was undertaken to investigate anti-ulcer property of Tabernaemontana divaricata flower methanolic extract (TDFME 500 mg/kg, p.o) by pyloric ligation induced gastric ulceration model using Omeprazole (8mg/kg, p.o) as a standard drug in wistar rats. Five parameters i.e., volume of gastric juice, pH, free & total acidities and ulcer index were assessed. The test extract significantly (p< 0.01) decreased volume of gastric juice, free & total acidities and ulcer index. Like standard, it also raised pH of gastric acid. The observed percentage protection for standard and test were 89.84% and 79.53%, respectively. Thus, TDFME 500 mg/kg had a positive effect on all the parameters under study and the results were similar to that of standard. From the above results, it can be concluded that TDFME exhibits remarkable gastroprotective effect.
    [Show full text]
  • The Iboga Alkaloids
    The Iboga Alkaloids Catherine Lavaud and Georges Massiot Contents 1 Introduction ................................................................................. 90 2 Biosynthesis ................................................................................. 92 3 Structural Elucidation and Reactivity ...................................................... 93 4 New Molecules .............................................................................. 97 4.1 Monomers ............................................................................. 99 4.1.1 Ibogamine and Coronaridine Derivatives .................................... 99 4.1.2 3-Alkyl- or 3-Oxo-ibogamine/-coronaridine Derivatives . 102 4.1.3 5- and/or 6-Oxo-ibogamine/-coronaridine Derivatives ...................... 104 4.1.4 Rearranged Ibogamine/Coronaridine Alkaloids .. ........................... 105 4.1.5 Catharanthine and Pseudoeburnamonine Derivatives .. .. .. ... .. ... .. .. ... .. 106 4.1.6 Miscellaneous Representatives and Another Enigma . ..................... 107 4.2 Dimers ................................................................................. 108 4.2.1 Bisindoles with an Ibogamine Moiety ....................................... 110 4.2.2 Bisindoles with a Voacangine (10-Methoxy-coronaridine) Moiety ........ 111 4.2.3 Bisindoles with an Isovoacangine (11-Methoxy-coronaridine) Moiety . 111 4.2.4 Bisindoles with an Iboga-Indolenine or Rearranged Moiety ................ 116 4.2.5 Bisindoles with a Chippiine Moiety ... .....................................
    [Show full text]
  • 615.9Barref.Pdf
    INDEX Abortifacient, abortifacients bees, wasps, and ants ginkgo, 492 aconite, 737 epinephrine, 963 ginseng, 500 barbados nut, 829 blister beetles goldenseal blister beetles, 972 cantharidin, 974 berberine, 506 blue cohosh, 395 buckeye hawthorn, 512 camphor, 407, 408 ~-escin, 884 hypericum extract, 602-603 cantharides, 974 calamus inky cap and coprine toxicity cantharidin, 974 ~-asarone, 405 coprine, 295 colocynth, 443 camphor, 409-411 ethanol, 296 common oleander, 847, 850 cascara, 416-417 isoxazole-containing mushrooms dogbane, 849-850 catechols, 682 and pantherina syndrome, mistletoe, 794 castor bean 298-302 nutmeg, 67 ricin, 719, 721 jequirity bean and abrin, oduvan, 755 colchicine, 694-896, 698 730-731 pennyroyal, 563-565 clostridium perfringens, 115 jellyfish, 1088 pine thistle, 515 comfrey and other pyrrolizidine­ Jimsonweed and other belladonna rue, 579 containing plants alkaloids, 779, 781 slangkop, Burke's, red, Transvaal, pyrrolizidine alkaloids, 453 jin bu huan and 857 cyanogenic foods tetrahydropalmatine, 519 tansy, 614 amygdalin, 48 kaffir lily turpentine, 667 cyanogenic glycosides, 45 lycorine,711 yarrow, 624-625 prunasin, 48 kava, 528 yellow bird-of-paradise, 749 daffodils and other emetic bulbs Laetrile", 763 yellow oleander, 854 galanthamine, 704 lavender, 534 yew, 899 dogbane family and cardenolides licorice Abrin,729-731 common oleander, 849 glycyrrhetinic acid, 540 camphor yellow oleander, 855-856 limonene, 639 cinnamomin, 409 domoic acid, 214 rna huang ricin, 409, 723, 730 ephedra alkaloids, 547 ephedra alkaloids, 548 Absorption, xvii erythrosine, 29 ephedrine, 547, 549 aloe vera, 380 garlic mayapple amatoxin-containing mushrooms S-allyl cysteine, 473 podophyllotoxin, 789 amatoxin poisoning, 273-275, gastrointestinal viruses milk thistle 279 viral gastroenteritis, 205 silibinin, 555 aspartame, 24 ginger, 485 mistletoe, 793 Medical Toxicology ofNatural Substances, by Donald G.
    [Show full text]
  • Biosynthesis by in Situ Hybridization (ISH)
    Localization of monoterpenoid indole alkaloid (MIA) biosynthesis by in situ hybridization (ISH) By Elizabeth Edmunds, Hons. B.Sc. A Thesis Submitted to the Department of Biotechnology In partial fulfillment of the requirements For the degree of Masters of Science August, 2012 Brock University St. Catha rines, Ontario ©Elizabeth Edmunds, 2012 ii Acknowledgments First and foremost I would like to thank Dr. Vincenzo Deluca for the opportunity to work in his laboratory under his mentorship. I have appreciated the helpful insight that has guided me through the course of this project. I have gained a valuable experience being able to learn from such an established and knowledgeable researcher. Secondly, I would like to thank my committee members Dr. Jeffrey Atkinson and Dr. Heather Gordon for their support and advice and their time to serve on my advisory committee. Thirdly, I would like to thank my colleagues and co-workers for their patience and helpful advice throughout my project. Particular mention must be given to Dr. Carlone's lab for their assistance and insight into in situ hybridization techniques. Finally, I would like to express my sincerest gratitude and appreciation towards my family and friends for their support. I would not be where I am today without the support and love from my mother and father, as well as Craig Easton. iii Abstract Monoterpenoid indole alkaloids (MIA) are among the largest and most complex group of nitrogen containing secondary metabolites that are characteristic of the Apocynaceae plant family including the most notable Catharanthus roseus. These compounds have demonstrated activity as successful drugs for treating various cancers, neurological disorders and cardiovascular conditions.
    [Show full text]
  • Ergot Alkaloid Biosynthesis in Aspergillus Fumigatus : Association with Sporulation and Clustered Genes Common Among Ergot Fungi
    Graduate Theses, Dissertations, and Problem Reports 2009 Ergot alkaloid biosynthesis in Aspergillus fumigatus : Association with sporulation and clustered genes common among ergot fungi Christine M. Coyle West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Coyle, Christine M., "Ergot alkaloid biosynthesis in Aspergillus fumigatus : Association with sporulation and clustered genes common among ergot fungi" (2009). Graduate Theses, Dissertations, and Problem Reports. 4453. https://researchrepository.wvu.edu/etd/4453 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Ergot alkaloid biosynthesis in Aspergillus fumigatus: Association with sporulation and clustered genes common among ergot fungi Christine M. Coyle Dissertation submitted to the Davis College of Agriculture, Forestry, and Consumer Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Genetics and Developmental Biology Daniel G. Panaccione, Ph.D., Chair Kenneth P. Blemings, Ph.D. Joseph B.
    [Show full text]
  • Risk Assessment of Argyreia Nervosa
    Risk assessment of Argyreia nervosa RIVM letter report 2019-0210 W. Chen | L. de Wit-Bos Risk assessment of Argyreia nervosa RIVM letter report 2019-0210 W. Chen | L. de Wit-Bos RIVM letter report 2019-0210 Colophon © RIVM 2020 Parts of this publication may be reproduced, provided acknowledgement is given to the: National Institute for Public Health and the Environment, and the title and year of publication are cited. DOI 10.21945/RIVM-2019-0210 W. Chen (author), RIVM L. de Wit-Bos (author), RIVM Contact: Lianne de Wit Department of Food Safety (VVH) [email protected] This investigation was performed by order of NVWA, within the framework of 9.4.46 Published by: National Institute for Public Health and the Environment, RIVM P.O. Box1 | 3720 BA Bilthoven The Netherlands www.rivm.nl/en Page 2 of 42 RIVM letter report 2019-0210 Synopsis Risk assessment of Argyreia nervosa In the Netherlands, seeds from the plant Hawaiian Baby Woodrose (Argyreia nervosa) are being sold as a so-called ‘legal high’ in smart shops and by internet retailers. The use of these seeds is unsafe. They can cause hallucinogenic effects, nausea, vomiting, elevated heart rate, elevated blood pressure, (severe) fatigue and lethargy. These health effects can occur even when the seeds are consumed at the recommended dose. This is the conclusion of a risk assessment performed by RIVM. Hawaiian Baby Woodrose seeds are sold as raw seeds or in capsules. The raw seeds can be eaten as such, or after being crushed and dissolved in liquid (generally hot water).
    [Show full text]
  • Uses of Voaca Nga Species
    USES OF VOACA NGA SPECIES N.G.BISSET PharmacognosyResearch Laboratories, Department of Pharmacy, Chelsea College, Universityof London, Manresa Road, London SW36LX Received4-II-198 5 Dateo fPublicatio n 16-VIII-1985 INTRODUCTION None of the species of the genus has attained any widespread application and evenV. afriLa, the one with the greatest distribution range and the one to which most of the uses described apply, has rather tainted localu e..A few ofti e medicinalapplication s appear to reflect theactivxt.e so fth ealkaloid spre - luntoriEnte (cf. Phytochemistry,Sectio n 3).Th efollowin g paragraphsgiv e aSoutline ox the uses which have been reported in the literature and as annotations on specimenskep ti nth eherbari a listedo np .00 . 1. THE PLANTS 1.1. V.AFRICANA (ANGUSTIFOLIA ?,LUTESCENS, PUBERULA) West Africa: The latex is said to be a rubber adul^t^dU i^put into acariou s tooth (Dalziel, 1937).Th e plant xs reported tob euse dm treatin g scabies (Janot and Goutarel, 1955).Senegal :Th e^amnk a (or Serere^) eat the fruit; theytrea t woundswit hth elatex .Th eplan tx sals oco n^ *obea pan a cea - the leafy branches are put into baths morning and ev«J^d a ^. prepared from them is given to people affected ^r^^S^ss. tierx of the leaves isdrun k as a tonic and against fatigue due^ obr«h^n Inth eCasamanc ea decoctio n ofth eroot stake nthre etime sdad y« . ecomme ed for women to counteract the effects of premature and rapid birth it » a 19 giveninternall y for hernial pain (Kerharo and Adam, ^' ^^hoca; Theleave shav esevera luses :A decoctio ni sapplie da sa wash •aganistduur t , it is put into baths against generalized oedema; it xs, utxhzea a fnction in a drink in the treatment of leprosy; a lotion is ^^^^ (possibly in children; and the juice is placed in the nostrlis oca^.^ Zernal v0 through confusion with other Apocynaceae- *«"* ™""£ °ossibly used -—^(Bouquetand^^ l for adulterating rubber (F.
    [Show full text]
  • A Review of Chemical Defense in Poison Frogs (Dendrobatidae): Ecology, Pharmacokinetics, and Autoresistance
    Chapter 21 A Review of Chemical Defense in Poison Frogs (Dendrobatidae): Ecology, Pharmacokinetics, and Autoresistance Juan C. Santos , Rebecca D. Tarvin , and Lauren A. O’Connell 21.1 Introduction Chemical defense has evolved multiple times in nearly every major group of life, from snakes and insects to bacteria and plants (Mebs 2002 ). However, among land vertebrates, chemical defenses are restricted to a few monophyletic groups (i.e., clades). Most of these are amphibians and snakes, but a few rare origins (e.g., Pitohui birds) have stimulated research on acquired chemical defenses (Dumbacher et al. 1992 ). Selective pressures that lead to defense are usually associated with an organ- ism’s limited ability to escape predation or conspicuous behaviors and phenotypes that increase detectability by predators (e.g., diurnality or mating calls) (Speed and Ruxton 2005 ). Defended organisms frequently evolve warning signals to advertise their defense, a phenomenon known as aposematism (Mappes et al. 2005 ). Warning signals such as conspicuous coloration unambiguously inform predators that there will be a substantial cost if they proceed with attack or consumption of the defended prey (Mappes et al. 2005 ). However, aposematism is likely more complex than the simple pairing of signal and defense, encompassing a series of traits (i.e., the apose- matic syndrome) that alter morphology, physiology, and behavior (Mappes and J. C. Santos (*) Department of Zoology, Biodiversity Research Centre , University of British Columbia , #4200-6270 University Blvd , Vancouver , BC , Canada , V6T 1Z4 e-mail: [email protected] R. D. Tarvin University of Texas at Austin , 2415 Speedway Stop C0990 , Austin , TX 78712 , USA e-mail: [email protected] L.
    [Show full text]