Design and Optimization of the Scavenging System of a Multi-Cylinder Two-Stroke Scotch-Yoke Engine
Total Page:16
File Type:pdf, Size:1020Kb
DESIGN AND OPTIMIZATION OF THE SCAVENGING SYSTEM OF A MULTI-CYLINDER TWO-STROKE SCOTCH-YOKE ENGINE NG TEE NENG UNIVERSITI TEKNOLOGI MALAYSIA DESIGN AND OPTIMIZATION OF THE SCAVENGING SYSTEM OF A MULTI-CYLINDER TWO-STROKE SCOTCH-YOKE ENGINE NG TEE NENG A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical) Faculty of Mechanical Engineering Universiti Teknologi Malaysia APRIL 2006 v ABSTRACT A two-stroke engine complete with a scavenging system, operating with external pumping mechanism is being developed. The engine comprises of two pair of combustion chambers and a pair of piston pumps that are integrated onto the Scotch-Yoke crank mechanism. The Schnurle type loop scavenging arrangement was selected for the scavenging arrangement for the engine port design. The pump was to be driven by the engine’s pistons linkages. The significant advantages of this opposed piston-driven pump concept is the double action of air pumping at every 180° interval of crankshaft revolution. In addition, extensive work using Computational Fluid Dynamic code simulation tools were applied throughout the project to ensure that the scavenging port geometry is optimized. Also developed was a scavenging test rig specifically to verify the simulation results. The unfired tracer gas sampling method was developed for the scavenging measurement purposes. The experimental testing was carried out successfully with the use of instrumentations such as Dewetron High Speed Data Acquisition and crank encoder. Both the simulation results and experimental results showed good scavenging characteristic, where the scavenging efficiency is closed to the perfect mixing scavenging model. The development of the scavenging system will allow for the reduction of the pollutant emission, and the overcome short-circuiting problem of the two-stroke engine. vi ABSTRAK Rekabentuk enjin dua lejang telah dibangunakan dengan sistem hapus-sisa lengkap, di mana ia beroperasi dengan pengepaman udara dari luar. Rekabentuk enjin ini adalah berpandukan mekanisme Scotch-Yoke yang beroperasi dengan dua pasang kebuk pembakaran dan sepasang pemampat piston. Susunan sistem hapus- sisa jenis “Schnurle” telah dipilih untuk mereka pembukaan udara dalam enjin. Pam ini dipandu secara terus oleh penyambungan omboh yang bersalingan. Kelebihan mekanisme yang ketara ialah ia dapat menghasilkan dua kali kerja pengepaman pada setiap 180° putaran aci engkol. Tambahan lagi, kajian yang mendalam pada bahagian penukaran udara telah dijalankan dengan kod program computer Computational Fluid Dynamic untuk memastikan rekabentuk pembukaan udara dalam keadaan yang memuaskan. Sementara itu, rangka uji-kaji sistem hapus-sisa telah dibangunkan untuk mengesahkan nilai keputusan daripada simulasi komputer. Teknik pengambilan jenis gas dalam keadaan tanpa bakar, telah dijalankan dengan kelengkapan alat pengukuran seperti Dewetron High Speed Data Acquisition dan pengecod engkol. Kedua-dua keputusan daripada simulasi komputer dan ujikaji telah menunjukkan kecekapan hapus-sisa dalam keadaan yang baik, di mana nilainya adalah menghampiri model hapus-sisa yang sempurna. Pembangunan sistem hapus- sisa ini telah menjamin keberkesanannya dalam mengurangkan hasil kotoran daripadan pembakaran dalam enjin dan juga menyelesaikan masalah short-circuiting rekabentuk enjin jenis dua lejang. vii TABLE OF CONTENT CHAPTER CONTENT PAGE ABSTRACT v ABSTRAK vi TABLE OF CONTENT vii LIST OF FIGURES xi LIST OF TABLES xv LIST OF APPENDICES xix 1 INTRODUCTION 1.1 Preface 1 1.2 Objectives 2 1.3 Statement of Problem 2 1.4 Hypotheses 2 1.5 Scopes 3 1.6 Methodology 4 1.6.1 Literature Review 5 1.6.2 Design Concept 5 1.6.3 Calculations and Analysis 5 1.6.4 CFD Simulations 6 1.6.5 Development of a Scavenging system Test Rig 6 1.7 The Gantt Chart 7 2 LITERATURE STUDY 2.1 Internal Combustion Engines 8 viii 2.2 Two Stroke Engine 10 2.3 The Scotch-Yoke Mechanism 12 2.3.1 The Differences between Scotch-Yoke Engine and Conventional Engine 13 2.3.2 Advantages of Scotch-Yoke Engine 15 2.3.2.1 Size Reduction 15 2.3.2.2 Engine Balance 17 2.3.2.3 Noise, Vibration and Harshness (NVH) 18 2.3.2.4 Emission 19 2.3.2.5 Efficiency 20 2.3.2.6 Cost 21 2.4 Scavenging Process 22 2.4.1 Cross-Scavenged 23 2.4.2 Loop-Scavenged 24 2.4.3 Uniflow-Scavenged 26 2.5 Scavenging Parametric 28 2.6 Scavenging Mathematical Models 31 2.7 Scavenging Measurement Methods 33 2.7.1 The Global Parameters Measurement Method 34 2.7.2 The Running Engine Parameter Measurement Method 35 2.7.3 The Computer Simulation Method 36 2.8 Supercharger 38 2.9 Future Challenges of Two-Stroke Gasoline engine 39 3 ENGINE DESIGN CONCEPT 3.1 Introduction 42 3.2 Scavenging System Design 43 3.2.1 Scavenging Arrangement 45 3.2.2 External Pump Design 46 ix 4 CALCULATIONS AND ANALYSIS 4.1 Engine Component Design 50 4.1.1 Crankcase and Cylinder Block 51 4.1.2 Cylinder Liner s 53 4.1.3 Cylinder Head 56 4.1.4 Chamber 56 4.1.5 The Intake and Exhaust Manifold 58 4.1.6 Reed Valves 59 4.1.7 Piston Pump Design 60 4.2 The Scotch-Yoke Crank mechanism 62 4.2.1 Sliders 62 4.2.2 C-plates 65 4.2.3 Piston Heads 66 4.2.4 Crankshaft 67 5 FLOW SIMULATION AND ANALYSIS 5.1 Introduction 71 5.2 Flow Pattern Static Condition Analysis 73 5.2.1 The Main Port Design 75 5.2.1.1 The Simulation Results 78 5.2.1.2 Conclusion of the Main Port Design Simulation results 88 5.2.2 The Upsweep Design 88 5.2.2.1 The Simulation Results 90 5.2.2.2 Conclusion of the Upsweep Angle Design Simulation results 100 5.3 Analysis of the Simulated Scavenging Process 100 5.3.1 The Simulation Results 107 5.3.1.1. Velocity distribution 107 5.3.1.2. Species Transport Mass Fraction Distribution 112 5.3.2 Discussion on the Dynamic Simulation Results 117 x 6 FABRICATION OF A SCAVENGING SYSTEM TEST RIG 6.1 Introduction 121 6.2 The Test Rig Components 122 6.3 The Test Rig Set-Up 129 6.3.1 The Scavenging Measurement Results 134 6.4 The Pressure Inside Cylinder 140 6.4.1 Results of Pressure-In-Cylinder Analysis 141 6.5 Scavenging Performance Analysis 147 7 CONCLUSIONS & RECOMMENDATIONS FOR FURTHER WORK 7.1 Conclusions 149 7.2 Recommendation for Further Works 151 REFERENCES 152 APPENDICES 156 xi LIST OF FIGURES FIGURE NO. TITLE PAGE 1.0 Flow chart of project implementation 4 2.1 The different types of reciprocating engine 9 2.2 The two-stroke SI engine operating cycle with crankcase compression 11 2.3 The gas exchanges process of the crankcase compression Two Stroke Engine 11 2.4 The crank mechanism of a Scotch-Yoke engine 12 2.5 The application of the SYTech Engine 14 2.6 The comparison of the Scotch-Yoke engine with the conventional horizontal opposed cylinder engine 17 2.7 The 2 nd order noise level of the CMC 422 SYTech engine at WOT acceleration Cabin Noise 19 2.8 The results of SYTech Fuel consumption and NOx Emissions advantages compare to conventional engine 20 2.9 The comparison of mechanical losses of the CMC 422 Scotch-Yoke and the conventional boxer engine 21 2.10 The comparison percentage of total Engine costs between the CMC 422 SYTech and conventional engine 22 2.11 Scavenging arrangements 24 2.12 Various port plan layout of Schnurle type loop scavenging 26 2.13 Physical representation of isothermal scavenge model 28 2.14 a) Perfect displacements scavenging; b) Perfect mixing scavenging 31 xii 2.15 Benson-Brandham model of trapping characteristic 33 2.16 Schematic diagram of single-cycle scavenge rig with cylinder block for externally scavenged three cylinders engine in place 35 2.17 The PIV on the two-stroke engine 36 2.18 The 3D mesh with inlet and exhaust ducts 37 2.19 A supercharged and turbocharged fuel injected two-stroke engines 38 2.20 The Piston pumps 39 2.21 The future development of a two-stroke engine 40 3.1 Design of a Two-stroke Horizontal Opposed Scotch-Yoke Engine 44 3.2 The Schnurle loop scavenging 46 3.3 The Piston pump mechanism design 48 3.4 The scavenging process 49 4.1 The cylinders arrangement 52 4.2 The main cylinder block design 52 4.3 Cylinder liner design 53 4.4 Port openings timing 54 4.5 The height of the transfer ports and exhaust port 55 4.6 The cylinder head design 56 4.7 The detail of the hemi-spherical chamber design 57 4.8 The intake manifold design 58 4.9 The exhaust manifold design 59 4.10 The overview of the reed valve assembly 60 4.11 The two ways control by the reed valve design 60 4.12 The piston pump liner design 61 4.13 The volume A and B inside the piston pump 63 4.14 The rotational motion of the slider 64 4.15 The assembly of a pair of the slider and bearings 64 4.16 The C-plate design 65 4.17 The assembly of slider bearing with C-plate 66 4.18 The piston head for combustion process 67 4.19 The piston head for piston pump 67 xiii 4.20 The Crankshaft design 68 4.21 The analysis of the crankshaft balancing 69 5.1 Flowchart of the flow pattern static state analysis. 74 5.2 Schnurle type loop scavenging design 76 5.3 The simulation results of sample A 79 5.4 The simulation results of sample B 81 5.5 The simulation results of sample C 82 5.6 The simulation results of sample D 84 5.7 The simulation results of sample E 85 5.8 The simulation results of sample F 87 5.9 The sweep port design 89 5.10 The design of the upsweep degree of the port 89 5.11 The simulation results of the sample 1 91 5.12 The simulation results of the sample 2 93 5.13 The simulation results of the sample 3 94 5.14 The simulation results of the sample 4 96 5.15 The simulation results of the sample 5 97 5.16 The simulation results of the sample 6 99 5.17 Flow chart for flow simulation in