Structural-Metamorphic Chronology in a Roof Pendant Near Oakhurst, California: Implications for the Tectonics of the Western Sierra Nevada

Total Page:16

File Type:pdf, Size:1020Kb

Structural-Metamorphic Chronology in a Roof Pendant Near Oakhurst, California: Implications for the Tectonics of the Western Sierra Nevada Structural-metamorphic chronology in a roof pendant near Oakhurst, California: Implications for the tectonics of the western Sierra Nevada Department of Geosciences, Texas Tech University, Lubbock, Texas 79409 ABSTRACT ceous (Strand, 1967) — here considered to Despite the presence of these shear zones, compose the Oakhurst roof pendant — crop probably the most conspicuous structural Foliation, broken bedding, and two out a short distance west of Oakhurst, Cali- feature of the western metamorphic belt is a "shear zones" in pre-Cretaceous clastic fornia (Fig. 1). The pendant, surrounded by strongly penetrative, northwestward-strik- metasedimentary rocks in a roof pendant exposures of the Sierra Nevada batholith, is ing cleavage which developed during the west of Oakhurst, California, are on trend on trend with the southernmost continuous classical (Late Jurassic) Nevadan orogeny. with the western Sierra Nevada metamor- exposures of the western metamorphic belt However, evidence of earlier (pre-Nevadan) phic belt to the northwest. In the pendant, and the contained Melones fault zone, both deformation is present in rocks of the foliations define a westward-verging, up- of which terminate against or within Calaveras—Shoo Fly assemblage (Chandra, ward-diverging fan, and lineations have batholithic rocks approximately 24 km to 1953, 1961; Baird, 1962; Hassan, 1968; orientations that plot along a great circle, or the north near Mariposa (Fig. 1). Stuart-Alexander, 1967; and others). Re- a small circle of large diameter, with a The southern part of the western meta- gional metamorphism in the belt is chiefly maximum at the intersection of the circle morphic belt was divided by Clark (1960, of greenschist grade and is associated with and the synoptic foliation. Rock microtex- 1964) into eastern, central, and western the Nevadan orogeny, but metamorphism tures are characterized by porphyroblast structural "blocks," separated, respectively, of the almandine amphibolite facies in clasts, especially of hornblende, in a matrix by the Melones and Bear Mountains fault Calaveras rocks of the southern part of the of aligned cataclastic fragments and some zones, the major members of the Foothills western metamorphic belt is reported by superimposed static mineral growth. fault system. The eastern block consists Baird (1962) from the Columbia area. Three major events are interpreted. The mainly of Paleozoic chert, slate, and Recently, the western Sierra region has first, Mi, is characterized by probable syn- metasiltstone, with subordinate amounts of been interpreted in terms of plate tectonic kinematic metamorphism of the epidote- marble and metavolcanic rocks, all of the models. In general, such interpretations amphibolite facies. The second, here corre- Calaveras "formation"; the Shoo Fly for- consider the central and southern portion of lated with the classical Nevadan orogeny, mation also may be present. The central the western Sierra Nevada metamorphic involved the cataclastic development of the and western blocks contain abundant belt to represent a Mesozoic island-arc prominent, penetrative, northwest-striking Mesozoic clastic metasedimentary rocks complex (western "block" of Clark, 1964) foliation surface, Si, and the incomplete but are dominated by andesitic to basaltic sutured, or partially sutured, to the Pa- transposition of Mi hornblende lineations metavolcanic rocks of both flow and pyro- leozoic continental margin (eastern "block" (a kinematic axis: N50°E, 64°NE). During clastic origin (Clark, 1964). Farther north, of Clark, 1964) during the closure or near this event, bodies of ultramafic and gran- these structural-lithologic divisions are less closure of a rear-arc basin associated with odioritic rocks were emplaced and de- applicable. the Nevadan orogeny (Hamilton, 1969; formed along the "shear zones." Finally, Within the Melones and Bear Mountains Moores, 1972; Schweikert and Cowan, contact metamorphism, M2, chiefly of the fault zones, lithologies are chiefly of ser- 1974). In this model, the Melones and Bear albite-epidote-hornfels facies, resulted from pentinite and other ultramafic rocks, with Mountains fault zones, as well as the cen- the intrusion of batholithic rocks between associated chert and metavolcanic rocks tral block, represent the zone of suturing approximately 98 and 136 m.y. ago. —an assemblage of "ophiolitic" character. (Moores, 1972; Schweikert and Cowan, Regional implications include the follow- Sense of displacement along these faults is 1974). The northern portion of the western ing: (1) the shear zones may be southerly uncertain. Some studies suggest possi- metamorphic belt apparently is more com- remnants of the Foothills fault system, ble dominant strike-slip (Chandra, 1953; plex than that to the south. Moores (1970) probably the Melones fault zone; (2) Mj Clark, 1960; Baird, 1962; Cebull, 1972; proposed a model involving multiple arc could represent a moderately deep expres- Wetzel and Nokelberg, 1976), whereas collisions and subduction-zone "flips" be- sion of the Sonoma or Antler orogenies; others infer principally dip-slip displace- ginning in early Paleozoic time. Alternative- and (3) the kinematics of Si favor an in- ment (for example, Knopf, 1929; Russell ly, Burchfiel and Davis (1972, 1975) ex- terpretation of primarily vertical displace- and Cebull, 1974). It is possible that motion plained the development of the region as ment for the Nevadan deformation and, has been complex and that both senses of being related to the two-stage collision of a hence, lend possible support to most sub- displacement are recorded (Cebull, 1972). single Paleozoic arc with the continental duction models. If primarily or partly of dip-slip origin, the margin. The two stages are represented by faults may represent the root zone of west- the Antler and Sonoma orogenies, which INTRODUCTION erly directed, low-angle thrust sheets such were succeeded by the development of an as those exposed in the Klamath Mountains Andean continental margin in Mesozoic Metasedimentary rocks previously (Taliaferro, 1942; Clark, 1960; Davis, time. mapped as undifferentiated and pre-Creta- 1969). In a more recent discussion related to the Geological Society of America Bulletin, v. 88, p. 1530-1534, 3 figs., October 1977. Doc. no. 71016. 1530 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/88/10/1530/3433976/i0016-7606-88-10-1530.pdf by guest on 30 September 2021 INDEX MAP Figure 1. Geologic map, interpretive cross section, and index map. Attitudes shown on geologic map are representative and do not include all those measured. Cross section is based on dip isogons (not shown) through the central portion of the pendant, but is generalized and does not represent a specific line of section. On index map, numbers indicate (1) eastern, (2) central, and (3) western "blocks" of Clark (1960, 1964); cross hachures represent areas primarily of Mesozoic rocks; and nonhachured regions, Paleozoic rocks. Pendant west of Oakhurst is in black. Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/88/10/1530/3433976/i0016-7606-88-10-1530.pdf by guest on 30 September 2021 1532 RUSSELL AND CEBULL western metamorphic belt, Schweikert and Cowan (1975) explained the early Meso- zoic tectonic evolution of the western Sierra Nevada region in terms of the interaction of two partly coeval, subparallel volcanic arcs. Figure 2. Lower-hemisphere, The eastern arc developed in Late Triassic equal-area projection of 30 horn- time as a west-facing marginal arc, whereas blende lineations in central unit its western counterpart formed as an east- (contoured) and maxima for poles to foliations in (I) western (50 points), facing island-arc system beginning in late (H) central (43 points), and (HI) east- Middle Jurassic time. The two arc com- ern (35 points) units. Dashed line is a plexes collided during the Late Jurassic great circle defined by lineations (a Nevadan orogeny. The resulting suture is small circle of large diameter also fits represented by a highly sheared mélange this lineation dispersal); solid line rep- and ophiolite terrain, as well as by the faults resents the synoptic foliation plane for of the Foothills fault system. Schweikert the central unit. Contour interval for (1976) reported lawsonite blueschist rocks lineations is 5% per 1% area. Pole within a portion of this suture in the north- maxima are represented only by 20% and 24% contours per 1% area. ern Sierra Nevada. A different interpreta- tion for the western Sierra Nevada metamorphic belt is that of Wetzel and Nokleberg (1976). They suggested that the region represents a Late Jurassic oceanic ridge "telescoped" by folding and faulting actinolite (50%) and quartz (40%) with batholithic contacts where they are as- during the Nevadan orogeny. In their view, subordinate biotite (4%), diopside (3%), sociated with flow and boudinage struc- the Foothills fault system is not a suture and epidote (3%). Ultramafic and gran- tures, all apparently genetically related to zone but a "sympathetic movement zone" odioritic rocks, discussed below, crop out the emplacement of batholithic rocks rather developed in response to oblique subduc- along two discrete zones within these than to internal deformation within the tion farther west. lithologic units. The metamorphic rock suc- metamorphic rock succession. However, The purpose of this paper is to describe cession is surrounded and locally intruded lineations are highly developed in the inte- the structural and
Recommended publications
  • Frontispiece the 1864 Field Party of the California Geological Survey
    U.S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY GEOLOGIC ROAD GUIDE TO KINGS CANYON AND SEQUOIA NATIONAL PARKS, CENTRAL SIERRA NEVADA, CALIFORNIA By James G. Moore, Warren J. Nokleberg, and Thomas W. Sisson* Open-File Report 94-650 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. * Menlo Park, CA 94025 Frontispiece The 1864 field party of the California Geological Survey. From left to right: James T. Gardiner, Richard D. Cotter, William H. Brewer, and Clarence King. INTRODUCTION This field trip guide includes road logs for the three principal roadways on the west slope of the Sierra Nevada that are adjacent to, or pass through, parts of Sequoia and Kings Canyon National Parks (Figs. 1,2, 3). The roads include State Route 180 from Fresno to Cedar Grove in Kings Canyon Park (the Kings Canyon Highway), State Route 198 from Visalia to Sequoia Park ending near Grant Grove (the Generals Highway) and the Mineral King road (county route 375) from State Route 198 near Three Rivers to Mineral King. These roads provide a good overview of this part of the Sierra Nevada which lies in the middle of a 250 km span over which no roads completely cross the range. The Kings Canyon highway penetrates about three-quarters of the distance across the range and the State Route 198~Mineral King road traverses about one-half the distance (Figs.
    [Show full text]
  • Subduction Cycles Under Western North America During the Mesozoic and Cenozoic Eras
    .. Geological Society of America Special Paper 299 1995 Subduction cycles under western North America during the Mesozoic and Cenozoic eras Peter L. Ward U.S. Geological Survey, 345 Middlefield Road, MS 977, Menlo Park, California 94025 ABSTRACT An extensive review of geologic and tectonic features of western North America suggests that the interaction of oceanic plates with the continent follows a broad cycli- cal pattern. In a typical cycle, periods of rapid subduction (7-15 cdyr), andesitic vol- canism, and trench-normal contraction are followed by a shift to trench-normal extension, the onset of voluminous silicic volcanism, formation of large calderas, and the creation of major batholiths. Extension becomes pervasive in metamorphic core complexes, and there is a shift to fundamentally basaltic volcanism, formation of flood basalts, widespread rifting, rotation of terranes, and extensive circulation of flu- ids throughout the plate margin. Strike-slip faulting becomes widespread with the creation of new tectonostratigraphic terranes. A new subduction zone forms and the cycle repeats. Each cycle is 50-80 m.y. long; cycles since the Triassic have ended and begun at approximately 225, 152, 92, 44, and 15 Ma. The youngest two cycles are diachronous, one from Oregon to Alaska, the other from central Mexico to Califor- nia. The transitions from one cycle to the next cycle are characterized by rapid and pervasive changes termed, in this chapter, “major chaotic tectonic events.” These events appear to be related to the necking or breaking apart of the formerly sub- ducted slab at shallow depth, the resulting delamination of the plate margin, and the onset of a new subduction cycle.
    [Show full text]
  • Construction and Emplacement of Cretaceous Plutons in the Crystal Range, Southwest of Lake Tahoe, California
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Summer 2017 Construction and Emplacement of Cretaceous Plutons in the Crystal Range, Southwest of Lake Tahoe, California Brad Buerer San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Buerer, Brad, "Construction and Emplacement of Cretaceous Plutons in the Crystal Range, Southwest of Lake Tahoe, California" (2017). Master's Theses. 4837. DOI: https://doi.org/10.31979/etd.eyj9-3w7m https://scholarworks.sjsu.edu/etd_theses/4837 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. CONSTRUCTION AND EMPLACEMENT OF CRETACEOUS PLUTONS IN THE CRYSTAL RANGE, SOUTHWEST OF LAKE TAHOE, CALIFORNIA A Thesis Presented to The Faculty of the Department of Geology San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Brad Buerer August 2017 © 2017 Brad Buerer ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled CONSTRUCTION AND EMPLACEMENT OF CRETACEOUS PLUTONS IN THE CRYSTAL RANGE, SOUTHWEST OF LAKE TAHOE, CALIFORNIA by Brad Buerer APPROVED FOR THE DEPARTMENT OF GEOLOGY SAN JOSÉ STATE UNIVERSITY August 2017 Dr. Robert Miller Department of Geology Dr. Jonathan Miller Department of Geology Dr. Dave Andersen Department of Geology ABSTRACT CONSTRUCTION AND EMPLACEMENT OF CRETACEOUS PLUTONS IN THE CRYSTAL RANGE, SOUTHWEST OF LAKE TAHOE, CALIFORNIA by Brad Buerer Three Cretaceous plutons are investigated to determine their construction and emplacement histories, focusing on magmatic foliation patterns and contact relationships with each other and with the Jurassic metasedimentary host rocks of the Sailor Canyon Formation.
    [Show full text]
  • Birth of the Sierra Nevada Magmatic Arc: Early Mesozoic Plutonism and Volcanism in the East-Central Sierra Nevada of California
    Origin and Evolution of the Sierra Nevada and Walker Lane themed issue Birth of the Sierra Nevada magmatic arc: Early Mesozoic plutonism and volcanism in the east-central Sierra Nevada of California A.P. Barth1, J.D. Walker2, J.L. Wooden3, N.R. Riggs4, and R.A. Schweickert5 1Department of Earth Sciences, Indiana University–Purdue University, Indianapolis, 723 West Michigan Street, SL118, Indianapolis, Indiana 46202, USA 2Department of Geology, University of Kansas, 1475 Jayhawk Boulevard, Lawrence, Kansas 66045, USA 3Department of Geological and Environmental Sciences, Stanford University, 450 Serra Mall, Stanford, California 94305, USA 4School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Campus Box 4099, Flagstaff, Arizona 86011, USA 5Department of Geological Sciences, University of Nevada, Reno, Nevada 89557, USA ABSTRACT continued during emplacement of the 226– the older, northeast-trending margin (Schweick- 218 Ma Scheelite Intrusive Suite. Ash-fl ow ert and Lahren, 1987; Greene et al., 1997a; Ste- Granitic and volcanic rocks in the east- tuffs are hydrothermally altered but have vens et al., 1997; Stevens and Greene, 2000; central Sierra Nevada, western United high fi eld strength element abundances and Fig. 1), and the initiation of arc volcanism. This States, record the earliest stages of magma- Nd isotopic compositions, suggesting affi nity early Mesozoic volcanism and associated plu- tism in the eastern Sierra Nevada magmatic to the relatively felsic parts of the Wheeler ton emplacement are key constraints on tectonic arc, allowing us to examine magma sources Crest Granodiorite and the granite of Lee models for subduction initiation at the west- and connections between plutonic and volca- Vining Canyon.
    [Show full text]
  • Wallrocks of the Central Sierra Nevada Batholith, California: a Collage of Accreted Tectono-Stratigraphic Terranes
    Wallrocks of the Central Sierra Nevada Batholith, California: A Collage of Accreted Tectono-Stratigraphic Terranes GEOLOGICAL SURVEY PROFESSIONAL PAPER 1255 Wallrocks of the Central Sierra Nevada Batholith, California: A Collage of Accreted Tectono-Stratigraphic Terranes By WARREN J. NOKLEBERG GEOLOGICAL SURVEY PROFESSIONAL PAPER 1255 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1983 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Nokleberg, Warren J. Wallrocks of the central Sierra Nevada batholith, California. (Geological Survey Professional Paper 1255) Bibliography: 28 p. Supt. of Doca. No.: I 19.16:1255 1. Batholiths Sierra Nevada Mountains (Calif, and Nev.) I. Title. II. Series. QE461.N64 552'.3 81-607153 AACR2 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Abstract .................................... 1 Cretaceous metavolcanic rocks ..................... 14 Introduction .................................. 1 Occurrence ............................... 14 Definitions ................................ 2 Stratigraphy and structure .................... 14 Acknowledgments ........................... 2 Kings terrane ................................ 14 Relation of multiple regional deformation to terrane Occurrence ............................... 14 accretion .................................. 2 Stratigraphy .............................. 15 Relation of terranes
    [Show full text]
  • 216196482.Pdf
    TECTONICS, VOL. 5, NO. 1, PAGES 65-94, FEBRUARY1986 STRUCTURAL HISTORY OF CONTINENTAL VOLCANIC ARC ROCKS, EASTERN SIERRA NEVADA, CALIFORNIA: A CASE FOR EXTENSIONAL TECTONICS Othmar T. Tobisch Earth Science Department, Applied Science Building, University of California Santa Cruz Jason B. Saleeby Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena Richard S. Fiske National Museum of Natural History Smithsonian Institution Washington, D.C. Abstract. Mesozoic metavolcanic rocks and greater constrictional component than forming part of the continental volcanic the Ritter Range for rocks of comparable arc along the eastern Sierra Nevada near age. Calculations based on the strain data Mt. Goddard and in the Ritter Range show a suggest tile Mt. Goddard section has been complex history related to extensional thinned by about 50% norma] to bedding, tectonics. The rocks comprise a thick sec- much as that documentedpreviously for tion of tuffs, breccias, lava flows, rocks in the Ritter Range. Deformation sills, and ash-flow tuffs deposited in a within this part of the continental arc subaerial to subaqueous environment, with was originally thought to have formed by some subvolcanic sill-like plutons. Pb/U regional compression during the late Jur- ages of the rocks in the Mt. Goddard area assic (Nevadan) orogeny. However, our range from ca. 130-160 Ma, while rocks in study indicates that (1) parts of the the Ritter Range have a somewhat wider age deformed volcanic section are younger than range as reported previously. Repetition late 0urassic, (2) Nevadan-age breaks in of the section occurs by faulting, and deposition are not present, (3) large-scale with the exception of parts of the mid- folds expected during a regional compres- Cretaceous Minarets Caldera, all the vol- sion event are not common, and (4) the beds canic rocks show a regional slaty cleavage were tilted to a high dip prior to internal which was subsequently crenulated and/or deformation.
    [Show full text]
  • The Structural and Metamorphic History of the Oakhurst Roof Pendant, Mariposa and Madera Counties, California
    UNLV Theses, Dissertations, Professional Papers, and Capstones 12-1972 The structural and metamorphic history of the Oakhurst roof pendant, Mariposa and Madera counties, California Lee R. Russell Texas Tech University Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Geology Commons, and the Tectonics and Structure Commons Repository Citation Russell, Lee R., "The structural and metamorphic history of the Oakhurst roof pendant, Mariposa and Madera counties, California" (1972). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1443. http://dx.doi.org/10.34917/3432680 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. THE STRUCTURAL AND METAMORPHIC HISTORY OF THE OAKHURST ROOF PENDANT, MARIPOSA AND MADERA COUNTIES, CALIFORNIA by LEE R. RUSSELL, B.A. A THESIS IN GEOLOOY Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of i. the Requ~rements for .the Degree of MASTER OF SCIENCE Director December, 1972 .. ,.,... --- ----------·~ AC: £tJ5' 13 !97Z (\)o.
    [Show full text]
  • Emplacement Mechanisms and Magma Driving Pressure of the Proterozoic Curecanti Pluton; the Black Canyon of the Gunnison, Colorado
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2013 EMPLACEMENT MECHANISMS AND MAGMA DRIVING PRESSURE OF THE PROTEROZOIC CURECANTI PLUTON; THE BLACK CANYON OF THE GUNNISON, COLORADO Gordon Leonard Hicks The University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Geology Commons, and the Tectonics and Structure Commons Recommended Citation Hicks, Gordon Leonard, "EMPLACEMENT MECHANISMS AND MAGMA DRIVING PRESSURE OF THE PROTEROZOIC CURECANTI PLUTON; THE BLACK CANYON OF THE GUNNISON, COLORADO. " Master's Thesis, University of Tennessee, 2013. https://trace.tennessee.edu/utk_gradthes/1626 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Gordon Leonard Hicks entitled "EMPLACEMENT MECHANISMS AND MAGMA DRIVING PRESSURE OF THE PROTEROZOIC CURECANTI PLUTON; THE BLACK CANYON OF THE GUNNISON, COLORADO." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Geology. Micah J. Jessup, Major Professor We have read
    [Show full text]
  • Plutonism in the Central Part of the Sierra Nevada Batholith, California
    Plutonism in the Central Part of the '5n«Sierra Nevada Batholith,* California *~r ._*» U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1483 Plutonism in the Central Part of the Sierra Nevada Batholith, California By PAUL C. BATEMAN U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1483 A study of the structure, composition, and pre-Tertiary history of the Sierra Nevada batholith in the Mariposa 1° by 2° quadrangle UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1992 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY DALLAS L. PECK, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Bateman, Paul Charles, 1910- Plutonism in the central part of the Sierra Nevada batholith, California / by Paul C. Bateman p. cm. (U.S. Geological Survey professional paper ; 1483) Includes bibliographical references. 1. Batholiths Sierra Nevada Mountains (Calif, and Nev.) 2. Geology Sierra Nevada Mountains (Calif, and Nev.) I. Title. II. Series: Geological Survey professional paper ; 1483. QE11.5.U6B36 1992 91-14788 552M dc20 CIP For sale by the Books and Open-File Report Sales, U.S. Geological Survey, Federal Center, Box 25286, Denver, CO 80225 CONTENTS Page Hierarchical organization of granitic units 24 Introduction Plutons 25 Stratigraphic and structural setting Lithodemes 25 Metamorphism Late Proterozoic and Paleozoic strata of the White and Roof pendants, septa, and inclusions
    [Show full text]
  • Paleotectonic and Paleogeographic Significance of the Calaveras Complex, Western Sierra Nevada, Californ I A
    PALEOTECTONIC AND PALEOGEOGRAPHIC SIGNIFICANCE OF THE CALAVERAS COMPLEX, WESTERN SIERRA NEVADA, CALIFORN I A Richard A. Schweicker t Lamont-Doherty Geological Observatory of Columbia Uni ver sit y, Palisades , N. Y. 10964 Jason B. Saleeby Department of Geo logy and Geophysics Univer sity of California, Berkeley, California 94720 Othmar T. Tobisch Unive r sit y of California, Santa Cruz, California Ea rth Science Board, Applied Science Building Sant a Cruz , California 95064 William H. Wr ight, III Depar tment of Geology , California State College Sonoma , Rohne rt Park, California 94928 ABSTRACT marginal basin i s consider ed to have been situated be tween the Co rdilleran miogeocline to the southeas t The Calave r as Complex of the western Sierra and a volcanic arc t errane to the northwest. The Nevada , as defined he re , cons ists of a 375 km l ong, late Paleozoic Havallah sequence of north-central 35 km wide belt of metasediment ary and me t avolcanic Nevada i s bel ieved to have accumulated in the same r ocks , bounded on the west by the Melones faul t zone marginal basin. and Kings- Kaweah suture , and on the east by the The Me lones fault zone and Kings- Kaweah s uture Sierr a Nevada bathol ith. The Calave ras Compl ex forms r epresent a zone of early Mesozoic t ectonic trunca­ a cont inuous northwest-trendi ng belt between t he tion a long which the Calaveras Complex is j uxtaposed Placerville ar ea and the Mer ced Rive r area . South of against upper Paleozoic ophiolitic r ocks and Jurassic t he Me r ced River the belt extends in numerous r oof volcan ic and epiclast ic r ocks.
    [Show full text]
  • Geology and Climatology of the Saddlebag Lake Region Near Tioga Pass, California
    Geology and Climatology of the Saddlebag Lake Region near Tioga Pass, California. Ryan J Hollister – Turlock High School – www.mrhollister.com Laura K Hollister – Pitman High School This field trip is designed around a five mile hiking tour into the stunningly beautiful eastern crest of the Sierra Nevada just north of Tioga Pass in the Twenty Lakes Basin of the Hoover Wilderness Area. The tour will explore the glacially-incised boundary zone between the Sierra Nevada Batholith and Saddlebag Lake Pendant which contains rocks from the earliest beginnings of the Sierra Nevada. A good chunk of time will also be given to the exploration of past and present climatology of the area including prehistoric glaciations and historic weather phenomena created by seasonal fluctuations of land and sea temperatures. 4 4 Figure 1 - Roadmap of stops on this trip. Hiking at Saddlebag Lake takes place at Stop 4. A detailed map of the hike route and topography can be found on Figure 2. 1 = Baker Station. 2 = Leavitt Falls, 3 = Saddlebag Lake Pullout. 4 = Saddlebag Lake Hike. 5 = Lateral Moraines. 6 = Wave Cut Terraces of Lake Russell. 7 = Mono Winds Discussion at Conway Summit. Moderate to strenuous hiking at elevations over 10,000’ is required. Also, an $11 dollar water taxi fee across Saddlebag Lake that will eliminate four extra miles of hiking. The roads up to Saddlebag Lake and Log Cabin Mine Road are rough gravel, but most high clearance 2WD vehicles should have no problem navigating them. NAGT Far West Region. Fall 2012 Conference - Ryan & Laura Hollister Our road log follows a very similar path to that of Garry Hayes’ (see A Teachers Guide to the Eastern Sierra Nevada between Sonora Pass and June Lake, California) who has done an exceptional job explaining details of roadside attractions all the way south to the June Lake Loop.
    [Show full text]
  • Stratigraphy and Structure of the Saddlebag Lake Roof Pendant, Sierra Nevada, California
    Stratigraphy and structure of the Saddlebag Lake roof pendant, Sierra Nevada, California CHARLES A. BROOK* Department of Geology, California State University, Fresno, Fresno, California 93740 ABSTRACT more apparent that an understanding of the structural and strati- graphic histories of the Sierran metamorphic rocks is essential to Geologic mapping of the southern part of the Saddlebag Lake understanding the Mesozoic and pre-Mesozoic tectonics of the roof pendant, east-central Sierra Nevada, California, reveals three western margin of North America. Concepts learned here will in rock sequences that have been multiply deformed. The oldest se- turn influence interpretations on the origin of the Sierra Nevada quence consists of the metamorphosed equivalents of marine batholith. With this in mind, I will describe and then attempt to sedimentary rocks of Silurian(?)-Ordovician(?) age. Metamor- correlate rocks and structures in the Saddlebag Lake roof pendant phosed volcanic and volcaniclastic rocks and basal conglomerate with those in other roof pendants of the central Sierra Nevada. As (possibly in part continental) of Permian age unconformably overlie such, this will enlarge upon data and ideas presented in an earlier the older sequence. Another metavolcanic and metasedimentary abstract (Brook, 1974). sequence of unknown age, here designated Permian(?)-Triassic(?), and of uncertain boundary relationships with the two older se- LOCATION quences crops out in the southern part of the pendant. Field observations of minor structures and structural analysis in- The Saddlebag Lake roof pendant is located in the east-central dicate that rocks of the Silurian(?)-Ordovician(?) sequence have Sierra Nevada, California, approximately 10 km west of Mono undergone three episodes of deformation, whereas the Permian and Lake (Fig.
    [Show full text]