Emplacement Mechanisms and Magma Driving Pressure of the Proterozoic Curecanti Pluton; the Black Canyon of the Gunnison, Colorado

Total Page:16

File Type:pdf, Size:1020Kb

Emplacement Mechanisms and Magma Driving Pressure of the Proterozoic Curecanti Pluton; the Black Canyon of the Gunnison, Colorado University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2013 EMPLACEMENT MECHANISMS AND MAGMA DRIVING PRESSURE OF THE PROTEROZOIC CURECANTI PLUTON; THE BLACK CANYON OF THE GUNNISON, COLORADO Gordon Leonard Hicks The University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Geology Commons, and the Tectonics and Structure Commons Recommended Citation Hicks, Gordon Leonard, "EMPLACEMENT MECHANISMS AND MAGMA DRIVING PRESSURE OF THE PROTEROZOIC CURECANTI PLUTON; THE BLACK CANYON OF THE GUNNISON, COLORADO. " Master's Thesis, University of Tennessee, 2013. https://trace.tennessee.edu/utk_gradthes/1626 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Gordon Leonard Hicks entitled "EMPLACEMENT MECHANISMS AND MAGMA DRIVING PRESSURE OF THE PROTEROZOIC CURECANTI PLUTON; THE BLACK CANYON OF THE GUNNISON, COLORADO." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Geology. Micah J. Jessup, Major Professor We have read this thesis and recommend its acceptance: Robert D. Hatcher Jr., Harry Y. McSween Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) EMPLACEMENT MECHANISMS AND MAGMA DRIVING PRESSURE OF THE PROTEROZOIC CURECANTI PLUTON; THE BLACK CANYON OF THE GUNNISON, COLORADO A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Gordon Leonard Hicks May 2013 Copyright © 2013 by Gordon “Donnie” Leonard Hicks All rights reserved. ii DEDICATION To Kali For all the spark; To Annie For finding me in the dark; To Jamey For the massive head start iii ACKNOWLEDGEMENTS The ideas presented in this paper have benefitted significantly from many discussions with James V. Jones III. Field assistance was provided by Remy Leger during summer 2010. Sources of funding for this research included the Geological Society of America, Four Corners Geological Society, Tobacco Root Geologic Society, and The University of Tennessee – Earth and Planetary Sciences Swingle Award, several graduate teaching assistantships, and a graduate research assistantship. I would like to thank my committee members, Dr. Robert D. Hatcher, Jr. and Dr. Harry Y. McSween, for providing critical feedback and revisions. I thank Dr. Micah J. Jessup for his patience, understanding, and insights regarding structural geology and life. Kyle White, Tim Diedesch, and Remy Leger provided edits, clarifications, and ideas regarding the structural models presented in this thesis. Ken Stahlnecker was instrumental in providing access to the Black Canyon of the Gunnison National Park and the Curecanti National Recreation Area for field work. Sue Newman of Sister Kenny provided belief and encouragement in the spaces between, and Liz Lee provided PBR and R&R on the other side of the country. There are obviously far too many individuals and groups to properly acknowledge, but please know that your thoughts, efforts, and love is recognized and appreciated. iv ABSTRACT There is significant obliquity between the margins of the Curecanti pluton, an internal foliation, a coeval swarm of ~400 pegmatite dikes just west of the pluton, and the host rock foliation. This pluton is a 5 km-long, 3 km-wide, and 0.4 km-thick sheet of monzogranite exposed in the Black Canyon of the Gunnison, CO. The pluton is discordant along most of its length, but has a >100-m-thick root at its western margin subparallel to the foliation in the host rock gneisses. A cordierite + anthophyllite + staurolite + garnet schist from the Vernal Mesa pluton aureole was previously dated (1.4 Ga) and indicates emplacement occurred at 600*C [degrees C] ± [plus or minus] 50*C and 300 ± 100 MPa. We present evidence that indicates emplacement of the Curecanti pluton, 25 kilometers-southeast of the Vernal Mesa pluton, may have occurred during similar conditions. The Vernal Mesa pluton was intruded subparallel to, and contemporaneous with movement on the NE-striking, subvertical Black Canyon shear zone. In contrast, Curecanti monzogranite was emplaced as a tongue-shaped sheet that tapers out in the hinge zone of the kilometer-scale F2 Curecanti antiform. The discordance between the pluton margins, an internal foliation, and the host rock foliation is contrary to observations of many other tabular granitoids worldwide that are emplaced parallel to host rock foliation and display a margin-parallel foliation. Three transects through the Curecanti pluton display evidence for solid-state foliation development localized in the pluton floor and in correlative dikes just beneath the pluton. Evidence for submagmatic flow is preserved near the roof of the pluton. Strain accumulated in the pluton at least 75 m above the floor, but did not result in the development of a foliation. The decoupling of wall-rock fabric and Curecanti pluton foliations, along with the presence of high-temperature quartz deformation mechanisms in the pluton, indicate high-temperature subsolidus deformation. In addition, Curecanti pluton geochemistry and magma driving pressure are evaluated to show that a combination of neutral buoyancy, depth to the magma source region, and a rheological impediment are necessary conditions to form this partly discordant peraluminous pluton. v TABLE OF CONTENTS CHAPTER PAGE CHAPTER 1 INTRODUCTION ....................................................................................... 1 1.1 Granitoid emplacement controversy ......................................................................... 1 1.1.1 Granite versus granitoid ..................................................................................... 1 1.1.2 Diking ................................................................................................................ 2 1.1.3 Deformation ....................................................................................................... 2 1.1.4 The search for a unified model .......................................................................... 3 1.2 Mesoproterozoic thermal event & controversy ......................................................... 5 1.2.1 Introduction ........................................................................................................ 5 1.2.2 Mesoproterozoic: Orogeny or no orogeny? ....................................................... 7 CHAPTER 2 GEOLOGIC SETTING .............................................................................. 10 2.1 Regional setting: Laurentia in the Proterozoic........................................................ 10 2.2 Black Canyon geology ............................................................................................ 11 2.2.1 Introduction ...................................................................................................... 11 2.2.2 Deformational history recorded in the Black Canyon of the Gunnison........... 15 2.2.3 Correlating MJBC-43 to the Curecanti pluton ................................................. 17 CHAPTER 3 THE CURECANTI PLUTON .................................................................... 19 3.1 Introduction ............................................................................................................. 19 3.2 Three transects through a mid-crustal pluton .......................................................... 23 3.2.1 Nelson Gulch transect ...................................................................................... 27 3.2.2 Pioneer transect ................................................................................................ 29 3.2.3 Chipeta transect ................................................................................................ 31 Chapter 4 METHODS....................................................................................................... 33 4.1 Field work – mesoscale observations ..................................................................... 33 4.2 Petrography – microscale observations .................................................................. 33 4.3 Magma driving pressure ......................................................................................... 39 4.3.1 Hydrostatic pressure (Ph) ................................................................................. 40 4.3.2 Magma chamber overpressure (Po) .................................................................. 40 4.3.3 Viscous pressure drop (Pvis) ............................................................................. 40 4.3.4 Horizontal stress (Sh) ....................................................................................... 41 4.3.5 Example of a calculated magma driving pressure ........................................... 43 4.4 Stress field during emplacement ............................................................................. 45 4.4.1 Mohr circle construction .................................................................................. 45
Recommended publications
  • Strike and Dip Refer to the Orientation Or Attitude of a Geologic Feature. The
    Name__________________________________ 89.325 – Geology for Engineers Faults, Folds, Outcrop Patterns and Geologic Maps I. Properties of Earth Materials When rocks are subjected to differential stress the resulting build-up in strain can cause deformation. Depending on the material properties the result can either be elastic deformation which can ultimately lead to the breaking of the rock material (faults) or ductile deformation which can lead to the development of folds. In this exercise we will look at the various types of deformation and how geologists use geologic maps to understand this deformation. II. Strike and Dip Strike and dip refer to the orientation or attitude of a geologic feature. The strike line of a bed, fault, or other planar feature, is a line representing the intersection of that feature with a horizontal plane. On a geologic map, this is represented with a short straight line segment oriented parallel to the strike line. Strike (or strike angle) can be given as either a quadrant compass bearing of the strike line (N25°E for example) or in terms of east or west of true north or south, a single three digit number representing the azimuth, where the lower number is usually given (where the example of N25°E would simply be 025), or the azimuth number followed by the degree sign (example of N25°E would be 025°). The dip gives the steepest angle of descent of a tilted bed or feature relative to a horizontal plane, and is given by the number (0°-90°) as well as a letter (N, S, E, W) with rough direction in which the bed is dipping.
    [Show full text]
  • 45. Myrmekite Formed by Na- and Ca-Metasomatism of K- Feldspar
    1 ISSN 1526-5757 45. Myrmekite formed by Na- and Ca-metasomatism of K- feldspar Jiashu RONG Beijing Research Institute of Uranium Geology P.O. Box 9818, Beijing, 100029 Peoples Republic of China Email address: [email protected] September 23, 2002 Abstract Myrmekite, an intergrowth of plagioclase and quartz vermicules, often occurs in felsic-to-intermediate, calc-alkalic plutonic and gneissic rocks. Several hypotheses for myrmekite genesis are briefly reviewed and discussed. The proportional relationship between the volume of quartz vermicules and the An value of plagioclase is consistent with the hypothesis or replacement, solid state exsolution, and recrystallization of primary plagioclase. (1) Perthitic albite and K- feldspar relicts in myrmekite and (2) swapped myrmekite between two differently oriented K-feldspar crystals obviously indicate that myrmekite is formed by nibble replacement of K-feldspar by myrmekitic plagioclase because of modification by Ca-bearing sodic emanation or fluid. Myrmekite of different morphology and spatial distribution are of the same metasomatic origin. The myrmekite that was produced during deformation should be later than that formed prior to deformation. Characteristics of myrmekite Myrmekite was first described by Michel-Lévy (1874) and named by Sederholm (1897) as an intergrowth of plagioclase and quartz vermicules. Myrmekite is commonly observed in felsic-to-intermediate calc-alkalic granitic rocks (but not in alkalic-tending plutonic rocks) and in granitic gneisses of similar composition. 2 On the basis of the geologic environment, Phillips (1974) classified myrmekite in the following ways: 1. rim myrmekite, occurring at the contact of plagioclase with another differently oriented K-feldspar; 2. intergranular myrmekite, situated at the boundary between two differently oriented K-feldspars; 3.
    [Show full text]
  • GEOL360 Structural Geology Problem Set #3: Apparent Dip, Angles And
    GEOL360 Structural Geology Name______________________ Date_______________________ Problem Set #3: Apparent Dip, Angles and Orientations Part 1. Apparent dip 1. In a mine, a tabular dike has an apparent dip of 14°, 270° in one tunnel and 25°, 169° in another tunnel (here we use azimuth directions). Using a stereonet, what is the attitude (strike and dip) of the dike? _____________________ 1. Along a vertical railroad cut a bed has an apparent dip of 20°, N62°W. The bed strikes N67°E. What is the true dip? _____________________ 1. Suppose a fault strikes N10°E and its apparent dip trends S26°E and plunges 35°. Using a stereonet, determine the true dip of the fault. _____________________ Part II. Angle between two lines 1. What is the angle between the following two lines? a. 35°, S10°E a. 15°, N23°W _____________________ 1. What is the angle between the following two lines? a. 12°, N8°E a. 40°, S19°W _____________________ 1. What is the angle between the following two lines? a. 70°, S38°E a. 49°, N15°E _____________________ Part III. Angle between two planes 1. What is the angle between the following two planes? a. N27°E, 85°SE a. N89°W, 7°NE _____________________ 2. What is the angle between the following two planes? a. 315°, 20°NE a. 165°, 24°SW _____________________ 3. What is the angle between the following two planes? a. 014°, 10°SE a. N18°W, 37°NE _____________________ Part IV. Orientation of the intersection of two planes: 1. Determine the orientation of the intersection of the following two planes: a.
    [Show full text]
  • Structural Geology of the Upper Rock Creek Area, Inyo County, California, and Its Relation to the Regional Structure of the Sierra Nevada
    Structural geology of the upper Rock Creek area, Inyo County, California, and its relation to the regional structure of the Sierra Nevada Item Type text; Dissertation-Reproduction (electronic); maps Authors Trent, D. D. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 06:38:23 Link to Item http://hdl.handle.net/10150/565293 STRUCTURAL GEOLOGY OF THE UPPER ROCK CREEK AREA, INYO COUNTY, CALIFORNIA, AND ITS RELATION TO THE REGIONAL STRUCTURE OF THE SIERRA NEVADA by Dee Dexter Trent A Dissertation Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 3 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my direction by __________ Dee Dexter Trent______________________ entitled Structural Geology of the Upper Rock Creek Area . Tnvo County, California, and Its Relation to the Regional Structure of the Sierra Nevada ________________ be accepted as fulfilling the dissertation requirement of the degree of ____________Doctor of Philosophy_________ ___________ P). /in /'-/7. 3 Dissertation Director fJ Date After inspection of the final copy of the dissertation, the following members of the Final Examination Committee concur in its approval and recommend its acceptance:* f t M m /q 2 g ££2 3 This approval and acceptance is contingent on the candidate's adequate performance and defense of this dissertation at the final oral examination.
    [Show full text]
  • Historical Background Study, Curecanti Recreation Area, Colorado
    •••••a••• ••••a••••aa•a COLORADO Historical Background Study By BENJAMIN LEVY DIVISION OF HISTORY Office of Areheology and Historic Preservation October 15, 1968 National Park Service B&WScans U.S. Department of the Interior ..S·fb·~~ FOREIDRD The object of th.is study is to provide the historical data necessary :fOJ: the proper development of a Master Plan for Curecanti Rec:ceation Area, Colorado. This study, authorized by Resource Study Proposal (RSP) CURE-H-1, seeks to identi:fy historical resources and historic sites lo­ cated within or closely associated with the recreation area. Such an undertaking will enable master planning teams to consider the use o:f historical data in interpre­ tive and development programs and provide £or the protection 0£ historic sites and structures. Ideally, thE! background study ought to precede the master plan team's field investigation. The urgency 0£ the Curecanti plan r1equired this investigation to be undertaken immediately at the beginning of the current :fiscal year and compelled it to be done while the team was in the field. Hopefully, this report will have found its way into the team's hands prior to their completion report. This report does not pretend to be a detailed or de­ £ini tive study of the history 0£ the Curecanti area. The urgency of the c:all of this document and the limited time assigned for its preparation permit little more than the examination of secondary sources, although little i published mateI'ial exists on the history ox that stretch of the Gunnison River from Montrose to Gunnison city.
    [Show full text]
  • Frontispiece the 1864 Field Party of the California Geological Survey
    U.S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY GEOLOGIC ROAD GUIDE TO KINGS CANYON AND SEQUOIA NATIONAL PARKS, CENTRAL SIERRA NEVADA, CALIFORNIA By James G. Moore, Warren J. Nokleberg, and Thomas W. Sisson* Open-File Report 94-650 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. * Menlo Park, CA 94025 Frontispiece The 1864 field party of the California Geological Survey. From left to right: James T. Gardiner, Richard D. Cotter, William H. Brewer, and Clarence King. INTRODUCTION This field trip guide includes road logs for the three principal roadways on the west slope of the Sierra Nevada that are adjacent to, or pass through, parts of Sequoia and Kings Canyon National Parks (Figs. 1,2, 3). The roads include State Route 180 from Fresno to Cedar Grove in Kings Canyon Park (the Kings Canyon Highway), State Route 198 from Visalia to Sequoia Park ending near Grant Grove (the Generals Highway) and the Mineral King road (county route 375) from State Route 198 near Three Rivers to Mineral King. These roads provide a good overview of this part of the Sierra Nevada which lies in the middle of a 250 km span over which no roads completely cross the range. The Kings Canyon highway penetrates about three-quarters of the distance across the range and the State Route 198~Mineral King road traverses about one-half the distance (Figs.
    [Show full text]
  • Subduction Cycles Under Western North America During the Mesozoic and Cenozoic Eras
    .. Geological Society of America Special Paper 299 1995 Subduction cycles under western North America during the Mesozoic and Cenozoic eras Peter L. Ward U.S. Geological Survey, 345 Middlefield Road, MS 977, Menlo Park, California 94025 ABSTRACT An extensive review of geologic and tectonic features of western North America suggests that the interaction of oceanic plates with the continent follows a broad cycli- cal pattern. In a typical cycle, periods of rapid subduction (7-15 cdyr), andesitic vol- canism, and trench-normal contraction are followed by a shift to trench-normal extension, the onset of voluminous silicic volcanism, formation of large calderas, and the creation of major batholiths. Extension becomes pervasive in metamorphic core complexes, and there is a shift to fundamentally basaltic volcanism, formation of flood basalts, widespread rifting, rotation of terranes, and extensive circulation of flu- ids throughout the plate margin. Strike-slip faulting becomes widespread with the creation of new tectonostratigraphic terranes. A new subduction zone forms and the cycle repeats. Each cycle is 50-80 m.y. long; cycles since the Triassic have ended and begun at approximately 225, 152, 92, 44, and 15 Ma. The youngest two cycles are diachronous, one from Oregon to Alaska, the other from central Mexico to Califor- nia. The transitions from one cycle to the next cycle are characterized by rapid and pervasive changes termed, in this chapter, “major chaotic tectonic events.” These events appear to be related to the necking or breaking apart of the formerly sub- ducted slab at shallow depth, the resulting delamination of the plate margin, and the onset of a new subduction cycle.
    [Show full text]
  • Dike Orientations, Faultblock Rotations, and the Construction of Slow
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL 103, NO. B1, PAGES 663-676, JANUARY 10, 1998 Dike orientations, fault-block rotations, and the constructionof slow spreading oceaniccrust at 22 ø40'N on the Mid-Atlantic Ridge R6isfn M. Lawrence and Jeffrey A. Karson Divisionof Earthand Ocean Sciences, Duke University,Durham, North Carolina StephenD. Hurst DepartmentofGeology, The University ofIllinois, Urbana, Illinois Abstract. The firstpalcomagnetic results from oriented dike samples collected on the Mid- AtlanticRidge shed new light on thecomplex interplay between magmatic accretion and mechanicalextension at a slowspreading ridge segment. An uppercrustal section about 1.5 km thickis exposed along a west-dippingnormal fault zone that defines the eastern median valley wall of thesouthern segment of theMid-Atlantic Ridge south of theKane fracture zone (MARK area). Twodistinct groups of dikesare differentiated onthe basis of orientationand palcomagnetic characteristics.One group, on the basis of thepalcomagnetic data, appears to bein itsoriginal intrusionorientation. This group includes both ridge-parallel, vertical dikes as well as dikes in otherorientations, calling into question assumptions about uniform dike orientations at oceanic spreadingcenters. The second group consists ofdikes that have palcomagnetic directions that are distinctfrom the predicted dipole direction, and we interpret them to have been tectonically rotated. Thesealso occur in manyorientations. The spatial relations between rotated and nonrotated dikes indicatethat intrusion, faulting, and block rotation were contemporaneous beneath the median valleyfloor. Nonrotated dikes exposed onthe eastern median valley wall indicate that there has beenno net rotation of thisupper crustal assemblage since magmatic construction ceased. Hence slipand associated uplift probably occurred inthe fault zones' present orientation. These results providethe basis for a generalmodel of mechanical extension anddike intrusion forthis segment ofthe Mid-Atlantic Ridge.
    [Show full text]
  • A Framework for Wayshowing
    A Framework for Wayshowing West Elk Loop Scenic and Historic Byway Pitkin, Garfield, Gunnison, Delta, and Montrose Counties Colorado July 2016 1 Acknowledgments This plan would not have been possible without the contributions of the Steering Committee of the West Elk Loop Scenic & Historic Byway: John Hoffmann, Chair, Dave Roberts, Member at Large and Vice‐Chair, Dorothea Farris, Member at Large and Treasurer, and Martha Moran, Secretary. Thanks to who participated in the exit interview: John Hoffmann, Dave Roberts, Dorothea Farris, Kelli Hepler, Susan Hansen, Gloria Crank, Gloria Cunningham, and Beth White Appreciation is also extended to the participants of the Wayfinding Assessment Team, who donated their time to spend a day behind the wheel. Thanks to Front Seaters: Vince Matthews (Geologist), Bill Kight (Museum and Public Lands), Robin Waters (Visitor Center), and Cherlyn Crawford (Musician) first time visitor to the West Elk Loop Scenic & Historic Byway. Back Seaters: Lisa Langer (Tourism Professional), Vicky Nash (Tourism Professional), Ken Brubaker (Transportation Engineer), and Bill Crawford (Transportation Engineer). Special thanks to Lenore Bates, Scenic Byways Program Manager, Colorado Department of Transportation for her guidance throughout the project. This project was designed using concepts based on the work of David Dahlquist and the America’s Byways Resource Center. Document Produced By: Walden Mills Group Judy Walden, President Jon Schler, Consultant July 2016 Cover photo: Paonia Reservoir, looking east from Highway
    [Show full text]
  • Magma Genesis and Arc Evolution at the Indochina Terrane Subduction
    feart-08-00271 July 13, 2020 Time: 10:29 # 1 ORIGINAL RESEARCH published: 14 July 2020 doi: 10.3389/feart.2020.00271 Magma Genesis and Arc Evolution at the Indochina Terrane Subduction: Petrological and Geochemical Constraints From the Volcanic Rocks in Wang Nam Khiao Area, Nakhon Ratchasima, Thailand Vanachawan Hunyek, Chakkaphan Sutthirat and Alongkot Fanka* Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand Volcanic rocks and associated dikes have been exposed in Wang Nam Khiao area, Nakhon Ratchasima Province, northeastern Thailand where complex tectonic setting was reported. These volcanic rocks are classified as rhyolite, dacite, and andesite whereas dikes are also characterized by andesitic composition. These dikes clearly Edited by: cut into the volcanic rocks and Late Permian hornblende granite in the adjacent area. Basilios Tsikouras, Universiti Brunei Darussalam, Brunei Rhyolite and dacite are composed of abundant plagioclase and quartz whereas andesite Reviewed by: and andesitic dike contain mainly plagioclase and hornblende with minor quartz. The Toshiaki Tsunogae, volcanic rocks typically show plagioclase and hornblende phenocrysts embedded in University of Tsukuba, Japan fine-grained quartz and glass groundmass whereas dike rocks contain less glass matrix Gianluca Vignaroli, University of Bologna, Italy with more albitic laths. P–T conditions of crystallization are estimated, on the basis of Al- *Correspondence: in-hornblende geobarometry and hornblende geothermometry, at about 4.5–5.5 kbar, Alongkot Fanka 861–927◦C and 4.8–5.5 kbar, 873–890◦C for the magma intrusions that fed volcanic [email protected]; [email protected] rocks and andesitic dikes, respectively. Whole-rock geochemistry indicates that these rock suites are related to calc-alkaline hydrous magma.
    [Show full text]
  • Construction and Emplacement of Cretaceous Plutons in the Crystal Range, Southwest of Lake Tahoe, California
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Summer 2017 Construction and Emplacement of Cretaceous Plutons in the Crystal Range, Southwest of Lake Tahoe, California Brad Buerer San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Buerer, Brad, "Construction and Emplacement of Cretaceous Plutons in the Crystal Range, Southwest of Lake Tahoe, California" (2017). Master's Theses. 4837. DOI: https://doi.org/10.31979/etd.eyj9-3w7m https://scholarworks.sjsu.edu/etd_theses/4837 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. CONSTRUCTION AND EMPLACEMENT OF CRETACEOUS PLUTONS IN THE CRYSTAL RANGE, SOUTHWEST OF LAKE TAHOE, CALIFORNIA A Thesis Presented to The Faculty of the Department of Geology San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Brad Buerer August 2017 © 2017 Brad Buerer ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled CONSTRUCTION AND EMPLACEMENT OF CRETACEOUS PLUTONS IN THE CRYSTAL RANGE, SOUTHWEST OF LAKE TAHOE, CALIFORNIA by Brad Buerer APPROVED FOR THE DEPARTMENT OF GEOLOGY SAN JOSÉ STATE UNIVERSITY August 2017 Dr. Robert Miller Department of Geology Dr. Jonathan Miller Department of Geology Dr. Dave Andersen Department of Geology ABSTRACT CONSTRUCTION AND EMPLACEMENT OF CRETACEOUS PLUTONS IN THE CRYSTAL RANGE, SOUTHWEST OF LAKE TAHOE, CALIFORNIA by Brad Buerer Three Cretaceous plutons are investigated to determine their construction and emplacement histories, focusing on magmatic foliation patterns and contact relationships with each other and with the Jurassic metasedimentary host rocks of the Sailor Canyon Formation.
    [Show full text]
  • Black Canyon of the Gunnison Curecanti Gunnison Gorge
    Black Canyon of the Gunnison 2007-2008 Curecanti Gunnison Gorge Sapinero Basin and the West Elk Arm of Blue Mesa Reservoir, Curecanti National Recreation Area The Power of Water Welcome Whether we need it for drinking, growing crops, boating, or simply for something at which to marvel, water is ever pres- Units of the National Park Service ent in our lives. Here at Black Canyon, Curecanti, and Gun- and of the Bureau of Land Man- nison Gorge, it is the power that unites and creates. agement belong to the American people, and by extension, to the These three areas, although united by the river, have very world. Protecting lands of unique different stories. They are managed by two separate agencies- character, scientific, scenic, Curecanti and Black Canyon by the National Park Service historic and recreational value and Gunnison Gorge by the Bureau of Land Management. has been described as “America’s Both agencies are charged with the protection of the water of Best Idea”. the Gunnison River in one way or another. We invite you to check out your The Gunnison River begins its journey where the East and public lands and see how we are Taylor Rivers meet in Almont, Colorado. It then meanders doing in keeping them for this through the Gunnison Valley watering farms and ranches. and future generations. Rangers at the visitor centers and in the West of the town of Gunnison the river broadens out into The depths of the Black Canyon are often best experienced from the canyon rims. backcountry will help you plan the deep reservoirs of Curecanti National Recreation Area.
    [Show full text]