216196482.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

216196482.Pdf TECTONICS, VOL. 5, NO. 1, PAGES 65-94, FEBRUARY1986 STRUCTURAL HISTORY OF CONTINENTAL VOLCANIC ARC ROCKS, EASTERN SIERRA NEVADA, CALIFORNIA: A CASE FOR EXTENSIONAL TECTONICS Othmar T. Tobisch Earth Science Department, Applied Science Building, University of California Santa Cruz Jason B. Saleeby Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena Richard S. Fiske National Museum of Natural History Smithsonian Institution Washington, D.C. Abstract. Mesozoic metavolcanic rocks and greater constrictional component than forming part of the continental volcanic the Ritter Range for rocks of comparable arc along the eastern Sierra Nevada near age. Calculations based on the strain data Mt. Goddard and in the Ritter Range show a suggest tile Mt. Goddard section has been complex history related to extensional thinned by about 50% norma] to bedding, tectonics. The rocks comprise a thick sec- much as that documentedpreviously for tion of tuffs, breccias, lava flows, rocks in the Ritter Range. Deformation sills, and ash-flow tuffs deposited in a within this part of the continental arc subaerial to subaqueous environment, with was originally thought to have formed by some subvolcanic sill-like plutons. Pb/U regional compression during the late Jur- ages of the rocks in the Mt. Goddard area assic (Nevadan) orogeny. However, our range from ca. 130-160 Ma, while rocks in study indicates that (1) parts of the the Ritter Range have a somewhat wider age deformed volcanic section are younger than range as reported previously. Repetition late 0urassic, (2) Nevadan-age breaks in of the section occurs by faulting, and deposition are not present, (3) large-scale with the exception of parts of the mid- folds expected during a regional compres- Cretaceous Minarets Caldera, all the vol- sion event are not common, and (4) the beds canic rocks show a regional slaty cleavage were tilted to a high dip prior to internal which was subsequently crenulated and/or deformation. An extensional model is pro- folded locally. The first cleavage has posed in which beds were rotated to high well-developed stretching lineations, and tilts early in the deformation as a result does not appear to have been associated of listric normal faulting. This normal with significant folding. Finite strain faulting is thought to have occurred above measurements show considerable variation a regional tumescence related to voluminous both in magnitude and symmetry. The Mt. magmatism at depth, with preservation of Goddard rocks, however, tend to show the steeply tilted Goddard and Ritter sec- slightly higher overall strain magnitude tions being facilitated by their downward transport along the margins of rising plu- Copyright 1986 tons. Flattening and steeply plunging con- by the American Geophysical Union. strictional fabrics superimposed on the tilted sections are related to strain in- Paper number 5T0776 duced by high-level inflation of magma 0278-7 407 / 86 / 005T-0776 $10.00 chambers and downward return flow of the 66 Tobisch et al.' Continental Volcanic Arc, Sierra Nevada 38 ø Modoc Plateau Sierra Nevada Batholith Ritter Range SanFrancisco •?&••MapArea ave Desert Mt. Goddard • • kilometers 119 ø 118 ø Fig. 1. Location map of the study area, which contains a 120 km long section of the continental volcanic are in the eastern S•erra Nevada, California. Shaded pattern indicates predominantly Mesozoic age metavolcanic rocks; ig- neous pattern indicates predominantly Mesozoic plutonit rocks; clear pattern indicates area of predominantly Itclocene age rocks. keellike pendants. The main tectonic fabric dynamic evolution of magmatic arcs, or (3) shown by the continental volcanic arc rocks some combination of both. The ultimate in the eastern Sierra Nevada is largely of answer to such questions may be long in Cretaceous age, rather than Jurassic coming, but our present data allows us to (Nevadan) as originally supposed. In ad- analyze the nature of deformation from dition, the deformation, both rotation of parts of this arc and discuss certain as- beds and subsequent tectonite fabric, pects of its structural genesis. appears to be genetically related to the dynamic evolution of the magmatic arc, and Previous Work not the result of an externally imposed tectonic event. Much mapping has been carried out in the Mesozoic continental arc rocks of the east- INTRODUCTI ON ern Sierra Nevada, largely in connection with quadrangle mapping by the U.S. Geolog- General ical Survey [e.g., Moore, 1963; Rinehart and Ross, 1964; Huber and Rinehart, 1965; Mesozoic continental volcanic arc rocks Bateman, 1965; Bateman and Moore, 1965]. of the eastern Sierra Nevada extend for at This work has served as a firm basis for least 500 km from the Modoc Plateau of subsequent topical studies [e.g., Kistler, northern California to the Mojave Desert in 1966; Brook, 1977; Nokleberg, 1981; Nokle- the south (insert, Figure 1). Over the past berg and Kistler, 1980; Kistler and Swan- several years, we have been studying the son, 1981; Tobisch and Fiske, 1982; structural genesis of these rocks in order Schweickert et al., 1984a]. In spite of to address whether deformation within the these numerous investigations, the nature arc was due largely to (1) its collision and timing of deformation along the length with exotic terranes accreted to the of the arc is still poorly known, and the continental margin, or (2) inherent in the quantification of cumulative strains and Tobisch et al.' Continental Volcanic Arc, Sierra Nevada how these may vary with age in different presence of accretionary lapilli, and an parts of the arc are only just beginning absence of limestone. In addition, unit 12 to be understood [Tobisch et al., 1977; shows a complex geometry between a coarse Tobisch and Fiske, 1982; this report]. breccia and ash flow tuff, highly reminis- The structural history and strains in cent of the caldera collapse unit described Mesozoic volcanic arc rocks of the Ritter from the Ritter Range [Fiske et al., 1977; Range (Figure 1) have been studied in de- Fiske and Tobisch, 1978]. From these and tail by various workers [Kistler, 1966; previously mentioned observations, we con- Tobisch et al., 1977; Fiske and Tobisch, clude that units 9-12 (Plate 1) have been 1978; Tobisch and Fiske, 1982]. Another deposited for the most part under subaerial large enclave of comparable rocks occurs conditions, and that unit 12 may represent some 85 km to the south in the Mt. Goddard massive wall-rock slumping associated with region (Figure 1). Since the initial map- ash flow eruption in a caldera environment. ping of these rocks by Bateman [1965] and Bateman and Moore [1965], some work has Stratigraphy been done [DuBray, 1977], but the struc- tural character of the rocks has not been As shown in Plate 1, the predominant dip studied in detail. The present work inves- of bedding in all units is to the west. tigates the structural history and strains Sedimentary structures such as current found in rocks of the Mt. Goddard region. bedding, graded bedding, ripple marks, We then compare these data to structures channeling, and rip-up clasts also indicate which occur in the Mt. Ritter area and that tops face to the west. Based on field consider the implications concerning the relationships and radiometric data, we have broader structural evolution of this part divided the volcanic section into three age of the arc. groups (Figure 2): an older section repre- sented by units 4-8 with an age of 160 Ma, GEOLOGIC SETTING an intermediate section represented by units 9-12 with an age of 143 Ma, and a Rock Types and Depositional Environment younger section represented by units 1-2 with an age of 130-135 Ma. As can be seen The volcanic section in the Mt. Goddard from Figure 2, the older section is sand- area is mostly volcaniclastic consisting wiched between the intermediate and younger largely of fine-grained tuffs, lithic and sections. The exact locations of the bound- rarely accretionary lapilli tuffs, tuff- aries between these three groups are in breccias, ash flow tuffs, mafic and felsic part tentative due to the lack of detailed lava flows, lime-rich tuffs, and rare lime- age control. The ages of units 1,6, and 8- stone. Thin Mn-rich zones bearing piemon- 12, however, are either precisely known or tite are present locally, and felsic sills can be tightly constrained by known ages of are commonin parts of the section (Plate intrusive bodies which have been dated 1; cf. also Bateman and Moore [1965]). In (Plate 1; Table 2). In the northern part of this paper, we refer to the rocks by their the area, units 2 and 4 are separated by a volcanic terminology, although they have laminated phyllitic schist. This schist been subject to regional metamorphism and (unit 3, northern sector) is an intensely penetrative deformation. deformed, commonly platy rock which has Units 1-8 (Plate 1) show depositional been subsequently subjected to kinking and features of both subaqueous(graded bed- locally intense secondary deformation, and ding, cross-bedding, limestone) and subaer- probably represents a bedding parallel ial conditions (basalt flows lack pillows, fault separating units 2 and 4. While the presence of red, hematite-bearing beds, strongly laminated nature of the deformed lack of doubly graded sequences of lapilli zone diminishes to the south, the high tuff and tuff [Fiske and Matsuda, 1964; strains which characterize most of the Fiske, 1969]. The environment of deposition rocks in this area make it extremely diffi- of this part of the section is interpreted cult to determine if the fault continues as being one in which the rate of deposi- bedding-parallel to the south, dies out, or tion was more or less equal to the rate of is replaced by an unconformity tectonically subsidence, giving rise to periods of al- flattened beyond recognition.
Recommended publications
  • Frontispiece the 1864 Field Party of the California Geological Survey
    U.S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY GEOLOGIC ROAD GUIDE TO KINGS CANYON AND SEQUOIA NATIONAL PARKS, CENTRAL SIERRA NEVADA, CALIFORNIA By James G. Moore, Warren J. Nokleberg, and Thomas W. Sisson* Open-File Report 94-650 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. * Menlo Park, CA 94025 Frontispiece The 1864 field party of the California Geological Survey. From left to right: James T. Gardiner, Richard D. Cotter, William H. Brewer, and Clarence King. INTRODUCTION This field trip guide includes road logs for the three principal roadways on the west slope of the Sierra Nevada that are adjacent to, or pass through, parts of Sequoia and Kings Canyon National Parks (Figs. 1,2, 3). The roads include State Route 180 from Fresno to Cedar Grove in Kings Canyon Park (the Kings Canyon Highway), State Route 198 from Visalia to Sequoia Park ending near Grant Grove (the Generals Highway) and the Mineral King road (county route 375) from State Route 198 near Three Rivers to Mineral King. These roads provide a good overview of this part of the Sierra Nevada which lies in the middle of a 250 km span over which no roads completely cross the range. The Kings Canyon highway penetrates about three-quarters of the distance across the range and the State Route 198~Mineral King road traverses about one-half the distance (Figs.
    [Show full text]
  • Subduction Cycles Under Western North America During the Mesozoic and Cenozoic Eras
    .. Geological Society of America Special Paper 299 1995 Subduction cycles under western North America during the Mesozoic and Cenozoic eras Peter L. Ward U.S. Geological Survey, 345 Middlefield Road, MS 977, Menlo Park, California 94025 ABSTRACT An extensive review of geologic and tectonic features of western North America suggests that the interaction of oceanic plates with the continent follows a broad cycli- cal pattern. In a typical cycle, periods of rapid subduction (7-15 cdyr), andesitic vol- canism, and trench-normal contraction are followed by a shift to trench-normal extension, the onset of voluminous silicic volcanism, formation of large calderas, and the creation of major batholiths. Extension becomes pervasive in metamorphic core complexes, and there is a shift to fundamentally basaltic volcanism, formation of flood basalts, widespread rifting, rotation of terranes, and extensive circulation of flu- ids throughout the plate margin. Strike-slip faulting becomes widespread with the creation of new tectonostratigraphic terranes. A new subduction zone forms and the cycle repeats. Each cycle is 50-80 m.y. long; cycles since the Triassic have ended and begun at approximately 225, 152, 92, 44, and 15 Ma. The youngest two cycles are diachronous, one from Oregon to Alaska, the other from central Mexico to Califor- nia. The transitions from one cycle to the next cycle are characterized by rapid and pervasive changes termed, in this chapter, “major chaotic tectonic events.” These events appear to be related to the necking or breaking apart of the formerly sub- ducted slab at shallow depth, the resulting delamination of the plate margin, and the onset of a new subduction cycle.
    [Show full text]
  • Construction and Emplacement of Cretaceous Plutons in the Crystal Range, Southwest of Lake Tahoe, California
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Summer 2017 Construction and Emplacement of Cretaceous Plutons in the Crystal Range, Southwest of Lake Tahoe, California Brad Buerer San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Buerer, Brad, "Construction and Emplacement of Cretaceous Plutons in the Crystal Range, Southwest of Lake Tahoe, California" (2017). Master's Theses. 4837. DOI: https://doi.org/10.31979/etd.eyj9-3w7m https://scholarworks.sjsu.edu/etd_theses/4837 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. CONSTRUCTION AND EMPLACEMENT OF CRETACEOUS PLUTONS IN THE CRYSTAL RANGE, SOUTHWEST OF LAKE TAHOE, CALIFORNIA A Thesis Presented to The Faculty of the Department of Geology San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Brad Buerer August 2017 © 2017 Brad Buerer ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled CONSTRUCTION AND EMPLACEMENT OF CRETACEOUS PLUTONS IN THE CRYSTAL RANGE, SOUTHWEST OF LAKE TAHOE, CALIFORNIA by Brad Buerer APPROVED FOR THE DEPARTMENT OF GEOLOGY SAN JOSÉ STATE UNIVERSITY August 2017 Dr. Robert Miller Department of Geology Dr. Jonathan Miller Department of Geology Dr. Dave Andersen Department of Geology ABSTRACT CONSTRUCTION AND EMPLACEMENT OF CRETACEOUS PLUTONS IN THE CRYSTAL RANGE, SOUTHWEST OF LAKE TAHOE, CALIFORNIA by Brad Buerer Three Cretaceous plutons are investigated to determine their construction and emplacement histories, focusing on magmatic foliation patterns and contact relationships with each other and with the Jurassic metasedimentary host rocks of the Sailor Canyon Formation.
    [Show full text]
  • Birth of the Sierra Nevada Magmatic Arc: Early Mesozoic Plutonism and Volcanism in the East-Central Sierra Nevada of California
    Origin and Evolution of the Sierra Nevada and Walker Lane themed issue Birth of the Sierra Nevada magmatic arc: Early Mesozoic plutonism and volcanism in the east-central Sierra Nevada of California A.P. Barth1, J.D. Walker2, J.L. Wooden3, N.R. Riggs4, and R.A. Schweickert5 1Department of Earth Sciences, Indiana University–Purdue University, Indianapolis, 723 West Michigan Street, SL118, Indianapolis, Indiana 46202, USA 2Department of Geology, University of Kansas, 1475 Jayhawk Boulevard, Lawrence, Kansas 66045, USA 3Department of Geological and Environmental Sciences, Stanford University, 450 Serra Mall, Stanford, California 94305, USA 4School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Campus Box 4099, Flagstaff, Arizona 86011, USA 5Department of Geological Sciences, University of Nevada, Reno, Nevada 89557, USA ABSTRACT continued during emplacement of the 226– the older, northeast-trending margin (Schweick- 218 Ma Scheelite Intrusive Suite. Ash-fl ow ert and Lahren, 1987; Greene et al., 1997a; Ste- Granitic and volcanic rocks in the east- tuffs are hydrothermally altered but have vens et al., 1997; Stevens and Greene, 2000; central Sierra Nevada, western United high fi eld strength element abundances and Fig. 1), and the initiation of arc volcanism. This States, record the earliest stages of magma- Nd isotopic compositions, suggesting affi nity early Mesozoic volcanism and associated plu- tism in the eastern Sierra Nevada magmatic to the relatively felsic parts of the Wheeler ton emplacement are key constraints on tectonic arc, allowing us to examine magma sources Crest Granodiorite and the granite of Lee models for subduction initiation at the west- and connections between plutonic and volca- Vining Canyon.
    [Show full text]
  • Wallrocks of the Central Sierra Nevada Batholith, California: a Collage of Accreted Tectono-Stratigraphic Terranes
    Wallrocks of the Central Sierra Nevada Batholith, California: A Collage of Accreted Tectono-Stratigraphic Terranes GEOLOGICAL SURVEY PROFESSIONAL PAPER 1255 Wallrocks of the Central Sierra Nevada Batholith, California: A Collage of Accreted Tectono-Stratigraphic Terranes By WARREN J. NOKLEBERG GEOLOGICAL SURVEY PROFESSIONAL PAPER 1255 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1983 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Nokleberg, Warren J. Wallrocks of the central Sierra Nevada batholith, California. (Geological Survey Professional Paper 1255) Bibliography: 28 p. Supt. of Doca. No.: I 19.16:1255 1. Batholiths Sierra Nevada Mountains (Calif, and Nev.) I. Title. II. Series. QE461.N64 552'.3 81-607153 AACR2 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Abstract .................................... 1 Cretaceous metavolcanic rocks ..................... 14 Introduction .................................. 1 Occurrence ............................... 14 Definitions ................................ 2 Stratigraphy and structure .................... 14 Acknowledgments ........................... 2 Kings terrane ................................ 14 Relation of multiple regional deformation to terrane Occurrence ............................... 14 accretion .................................. 2 Stratigraphy .............................. 15 Relation of terranes
    [Show full text]
  • The Structural and Metamorphic History of the Oakhurst Roof Pendant, Mariposa and Madera Counties, California
    UNLV Theses, Dissertations, Professional Papers, and Capstones 12-1972 The structural and metamorphic history of the Oakhurst roof pendant, Mariposa and Madera counties, California Lee R. Russell Texas Tech University Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Geology Commons, and the Tectonics and Structure Commons Repository Citation Russell, Lee R., "The structural and metamorphic history of the Oakhurst roof pendant, Mariposa and Madera counties, California" (1972). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1443. http://dx.doi.org/10.34917/3432680 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. THE STRUCTURAL AND METAMORPHIC HISTORY OF THE OAKHURST ROOF PENDANT, MARIPOSA AND MADERA COUNTIES, CALIFORNIA by LEE R. RUSSELL, B.A. A THESIS IN GEOLOOY Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of i. the Requ~rements for .the Degree of MASTER OF SCIENCE Director December, 1972 .. ,.,... --- ----------·~ AC: £tJ5' 13 !97Z (\)o.
    [Show full text]
  • Emplacement Mechanisms and Magma Driving Pressure of the Proterozoic Curecanti Pluton; the Black Canyon of the Gunnison, Colorado
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2013 EMPLACEMENT MECHANISMS AND MAGMA DRIVING PRESSURE OF THE PROTEROZOIC CURECANTI PLUTON; THE BLACK CANYON OF THE GUNNISON, COLORADO Gordon Leonard Hicks The University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Geology Commons, and the Tectonics and Structure Commons Recommended Citation Hicks, Gordon Leonard, "EMPLACEMENT MECHANISMS AND MAGMA DRIVING PRESSURE OF THE PROTEROZOIC CURECANTI PLUTON; THE BLACK CANYON OF THE GUNNISON, COLORADO. " Master's Thesis, University of Tennessee, 2013. https://trace.tennessee.edu/utk_gradthes/1626 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Gordon Leonard Hicks entitled "EMPLACEMENT MECHANISMS AND MAGMA DRIVING PRESSURE OF THE PROTEROZOIC CURECANTI PLUTON; THE BLACK CANYON OF THE GUNNISON, COLORADO." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Geology. Micah J. Jessup, Major Professor We have read
    [Show full text]
  • Plutonism in the Central Part of the Sierra Nevada Batholith, California
    Plutonism in the Central Part of the '5n«Sierra Nevada Batholith,* California *~r ._*» U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1483 Plutonism in the Central Part of the Sierra Nevada Batholith, California By PAUL C. BATEMAN U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1483 A study of the structure, composition, and pre-Tertiary history of the Sierra Nevada batholith in the Mariposa 1° by 2° quadrangle UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1992 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY DALLAS L. PECK, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Bateman, Paul Charles, 1910- Plutonism in the central part of the Sierra Nevada batholith, California / by Paul C. Bateman p. cm. (U.S. Geological Survey professional paper ; 1483) Includes bibliographical references. 1. Batholiths Sierra Nevada Mountains (Calif, and Nev.) 2. Geology Sierra Nevada Mountains (Calif, and Nev.) I. Title. II. Series: Geological Survey professional paper ; 1483. QE11.5.U6B36 1992 91-14788 552M dc20 CIP For sale by the Books and Open-File Report Sales, U.S. Geological Survey, Federal Center, Box 25286, Denver, CO 80225 CONTENTS Page Hierarchical organization of granitic units 24 Introduction Plutons 25 Stratigraphic and structural setting Lithodemes 25 Metamorphism Late Proterozoic and Paleozoic strata of the White and Roof pendants, septa, and inclusions
    [Show full text]
  • Paleotectonic and Paleogeographic Significance of the Calaveras Complex, Western Sierra Nevada, Californ I A
    PALEOTECTONIC AND PALEOGEOGRAPHIC SIGNIFICANCE OF THE CALAVERAS COMPLEX, WESTERN SIERRA NEVADA, CALIFORN I A Richard A. Schweicker t Lamont-Doherty Geological Observatory of Columbia Uni ver sit y, Palisades , N. Y. 10964 Jason B. Saleeby Department of Geo logy and Geophysics Univer sity of California, Berkeley, California 94720 Othmar T. Tobisch Unive r sit y of California, Santa Cruz, California Ea rth Science Board, Applied Science Building Sant a Cruz , California 95064 William H. Wr ight, III Depar tment of Geology , California State College Sonoma , Rohne rt Park, California 94928 ABSTRACT marginal basin i s consider ed to have been situated be tween the Co rdilleran miogeocline to the southeas t The Calave r as Complex of the western Sierra and a volcanic arc t errane to the northwest. The Nevada , as defined he re , cons ists of a 375 km l ong, late Paleozoic Havallah sequence of north-central 35 km wide belt of metasediment ary and me t avolcanic Nevada i s bel ieved to have accumulated in the same r ocks , bounded on the west by the Melones faul t zone marginal basin. and Kings- Kaweah suture , and on the east by the The Me lones fault zone and Kings- Kaweah s uture Sierr a Nevada bathol ith. The Calave ras Compl ex forms r epresent a zone of early Mesozoic t ectonic trunca­ a cont inuous northwest-trendi ng belt between t he tion a long which the Calaveras Complex is j uxtaposed Placerville ar ea and the Mer ced Rive r area . South of against upper Paleozoic ophiolitic r ocks and Jurassic t he Me r ced River the belt extends in numerous r oof volcan ic and epiclast ic r ocks.
    [Show full text]
  • Geology and Climatology of the Saddlebag Lake Region Near Tioga Pass, California
    Geology and Climatology of the Saddlebag Lake Region near Tioga Pass, California. Ryan J Hollister – Turlock High School – www.mrhollister.com Laura K Hollister – Pitman High School This field trip is designed around a five mile hiking tour into the stunningly beautiful eastern crest of the Sierra Nevada just north of Tioga Pass in the Twenty Lakes Basin of the Hoover Wilderness Area. The tour will explore the glacially-incised boundary zone between the Sierra Nevada Batholith and Saddlebag Lake Pendant which contains rocks from the earliest beginnings of the Sierra Nevada. A good chunk of time will also be given to the exploration of past and present climatology of the area including prehistoric glaciations and historic weather phenomena created by seasonal fluctuations of land and sea temperatures. 4 4 Figure 1 - Roadmap of stops on this trip. Hiking at Saddlebag Lake takes place at Stop 4. A detailed map of the hike route and topography can be found on Figure 2. 1 = Baker Station. 2 = Leavitt Falls, 3 = Saddlebag Lake Pullout. 4 = Saddlebag Lake Hike. 5 = Lateral Moraines. 6 = Wave Cut Terraces of Lake Russell. 7 = Mono Winds Discussion at Conway Summit. Moderate to strenuous hiking at elevations over 10,000’ is required. Also, an $11 dollar water taxi fee across Saddlebag Lake that will eliminate four extra miles of hiking. The roads up to Saddlebag Lake and Log Cabin Mine Road are rough gravel, but most high clearance 2WD vehicles should have no problem navigating them. NAGT Far West Region. Fall 2012 Conference - Ryan & Laura Hollister Our road log follows a very similar path to that of Garry Hayes’ (see A Teachers Guide to the Eastern Sierra Nevada between Sonora Pass and June Lake, California) who has done an exceptional job explaining details of roadside attractions all the way south to the June Lake Loop.
    [Show full text]
  • Stratigraphy and Structure of the Saddlebag Lake Roof Pendant, Sierra Nevada, California
    Stratigraphy and structure of the Saddlebag Lake roof pendant, Sierra Nevada, California CHARLES A. BROOK* Department of Geology, California State University, Fresno, Fresno, California 93740 ABSTRACT more apparent that an understanding of the structural and strati- graphic histories of the Sierran metamorphic rocks is essential to Geologic mapping of the southern part of the Saddlebag Lake understanding the Mesozoic and pre-Mesozoic tectonics of the roof pendant, east-central Sierra Nevada, California, reveals three western margin of North America. Concepts learned here will in rock sequences that have been multiply deformed. The oldest se- turn influence interpretations on the origin of the Sierra Nevada quence consists of the metamorphosed equivalents of marine batholith. With this in mind, I will describe and then attempt to sedimentary rocks of Silurian(?)-Ordovician(?) age. Metamor- correlate rocks and structures in the Saddlebag Lake roof pendant phosed volcanic and volcaniclastic rocks and basal conglomerate with those in other roof pendants of the central Sierra Nevada. As (possibly in part continental) of Permian age unconformably overlie such, this will enlarge upon data and ideas presented in an earlier the older sequence. Another metavolcanic and metasedimentary abstract (Brook, 1974). sequence of unknown age, here designated Permian(?)-Triassic(?), and of uncertain boundary relationships with the two older se- LOCATION quences crops out in the southern part of the pendant. Field observations of minor structures and structural analysis in- The Saddlebag Lake roof pendant is located in the east-central dicate that rocks of the Silurian(?)-Ordovician(?) sequence have Sierra Nevada, California, approximately 10 km west of Mono undergone three episodes of deformation, whereas the Permian and Lake (Fig.
    [Show full text]
  • Sequoia and Kings Canyon National Parks
    Excerpt from Geologic Trips, Sierra Nevada by Ted Konigsmark ISBN 0-9661316-5-7 GeoPress All rights reserved. No part ofthis book may be reproduced without written permission, except for critical articles or reviews. For other geologic trips see: www.geologictrips.com 272 - Trip 9. SEQUOIA AND KINGS CANYON NATIONAL PARKS Kings Canyon Lodgepole Village Glaciated Horseshoe Bend Moro Rock Cedar Grove Village Crystal Cave 5 Miles Big Pine Mt. Darwin S O w ens North Palisade S V al l e KINGS CANYON y NATIONAL PARK rk Fo rk M o F S 395 Kings River Mt. Baxter S 180 Grant Grove 180 Village Roaring River Ge ner a ls 245 Hiwy . Mt. Whitney k S r SEQUOIA o F e l NATIONAL PARK b r a iver M R eah Kaw Mineral King Three ork st F 198 Rivers Ea S ou th F ork K e r n R i v e r - 273 Trip 9 SEQUOIA AND KINGS CANYON NATIONAL PARKS The Southern Sierra Sequoia and Kings Canyon National Parks have the highest and most rugged relief in the entire Sierra Nevada. The area includes Mt. Whitney, the highest mountain in the lower 48 States, and Kings Canyon, one of the deepest canyons in North America. For over 150 miles, there are no roads that cross this part of the Sierra, and the trails that cross the range are rigorous and difficult. This high and harsh topography was formed because the southern part of the Sierra block was uplifted over 8,000 feet during Plio-Pleistocene time, about twice as high as the northern Sierra.
    [Show full text]