The Structural and Metamorphic History of the Oakhurst Roof Pendant, Mariposa and Madera Counties, California

Total Page:16

File Type:pdf, Size:1020Kb

The Structural and Metamorphic History of the Oakhurst Roof Pendant, Mariposa and Madera Counties, California UNLV Theses, Dissertations, Professional Papers, and Capstones 12-1972 The structural and metamorphic history of the Oakhurst roof pendant, Mariposa and Madera counties, California Lee R. Russell Texas Tech University Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Geology Commons, and the Tectonics and Structure Commons Repository Citation Russell, Lee R., "The structural and metamorphic history of the Oakhurst roof pendant, Mariposa and Madera counties, California" (1972). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1443. http://dx.doi.org/10.34917/3432680 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. THE STRUCTURAL AND METAMORPHIC HISTORY OF THE OAKHURST ROOF PENDANT, MARIPOSA AND MADERA COUNTIES, CALIFORNIA by LEE R. RUSSELL, B.A. A THESIS IN GEOLOOY Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of i. the Requ~rements for .the Degree of MASTER OF SCIENCE Director December, 1972 .. ,.,... --- ----------·~ AC: £tJ5' 13 !97Z (\)o. 217 eop, Z ACKNOWLEOOMENTS I would like to express my most sincere gratitude to Dr. S, E. Cebull for his priceless help in directing this thesis. The many hours of discussion with him on interpre­ tations provided me both inspiration and motivation. His scholarly and instructive criticism of the manuscript was invaluable. It has been a pleasure to work with him. In addition, thanks go to G, Mark Gower for drafting assistance and to Jerry B. Oldham for his photographic help. 1i CONTENTS ACKNOWLEDGMENTS ii LIST OF ILLUSTRATIONS v ABSTRACT vii I. INTRODUCTION l Purpose and Scope of Investigation l Location and Geography l Techniques of Study 3 Geologic Setting 4 Geology of the Western Sierra Nevada Metamorphic Belt 5 Stratigraphy 5 Synkinematic Regional Metamorphism 9 Structural Geology 10 Synopsis of Paleozoic and Mesozoic Geologic . ' History 13 Some Important Previous Work of Special Relevance to the Study of the Oakhurst Roof Pendant 15 II. DESCRIPTION OF MESOSCOPIC STRUCTURAL AND LITHOLOGIC RELATIONSHIPS IN THE OAKHURST ROOF PENDANT 19 Lithology 19 Structure 24 III. DESCRIPTION OF MICROSCOPIC MINERALOGICAL AND TEXTURAL RELATIONSHIPS 30 Eastern Unit 30 iii .• ";J)__, Central Unit--Hornblende Schist 33 Western Unit 39 "Other Rocks" 43 IV. INTERPRETATION OF MESOSCOPIC AND MICROSCOPIC FABRICS 48 Mesoscopic Fabric 48 Microscopic Fabric 54 Relationship Between the Mesoscopic and Micro- scopic Fabrics and Chronologies 60 V, CONCLUSIONS, POSSIBLE REGIONAL SIGNIFICANCE, AND SUGGESTIONS FOR FURTHER S7'UDY 64 Conclusi.ons 64 Possible Regional Significance 66 Suggestions for Further Study 67 LIST OF REFERENCES 69 iv • LIST OF ILLUSTRATIONS Figures 1. General geologic index map of the central Sierra Nevada region 2 2. Generalized stratigraphic scheme for the rocks of the western metamorphic belt 6 3, Generalized cross-section of the western meta- morphic belt along the Merced River 7 4. Photograph of four' hand specimens that illustrate the transposition of early layered structures 20 5. Contoured Schmidt net plots of foliations from the three units of the Oakhurst roof pendant 25 6, Schr.ddt net plots of lineation data 27 7. Schmidt net plots of minor fold axes and axial planes in rocks of the Oakhurst roof pendant 29 8, Index map of the geology immediately surrounding the Oakhurst roof pendant, showing locations of important radiogenic dates 28 9, Photomicrograph illustrating static recrystalliza- tion in the rocks of the eastern unit 32 10. Photomicrograph of a shear fold in a quartz-rich layer from an eastern unit sample 32 11. Photomicrograph of a hornblende porphyroblast with inclusions of diopside and hornblende 35 12. Photomicrograph of a hornblende porphyroblast surrounded by an ~-plane 35 13. Photomicrograph of two hornblende porphyroblasts showing fragments cataclastically sheared or pulled from the porphyroblasts 36 14. Photomicrograph of diopside poikiloblastically growing over quartz 38 15. Photomicrograph of a large hornblende porphyroblast that has largely altered 'to biotite 38 v ~.•4i5lJA.t i I 22 I WIIR_t iS nan. w M &I UJ£! @¢ JA • 16. Photomicrograph of an actinolite porphyroblast displaying inclusions of diopside and actinolite 42 17, Photomicrograph of statically altered ultramafic rock, possibly originally serpentinite 46 18. Generalized cross-section, drawn along line A-A' on the isogonal contour map of foliation dips (Plate 2), illustrating the pronounced foliation fan and the interpreted antiform or nappe-like structure 51 19. Schmidt net plot depicting the relationship of the synoptic foliation plane of the hornblende schist unit to the contoured maximum of horn- blende lineations 53 20. Alternative interpretive metamorphic histories for M 56 1 21, Interpretive metamorphic history for M2 59 22. Synoptic diagram showing an interpretive meta­ morphic history for the Oakhurst roof pendant and the relationship between the mesoscopic and microscopic fabrics '63 Plates 1. Geologic map of the Oakhurst roof pendant, back Mariposa a.nd Madera Counties, California pocket 2. Isogonal contour map of the central and back southern sections of the study area pocket vi 4 ~ ..1Q4,-.@h%; t1ZP!X1.lt&IW.¥4A$.k .• .U4¢MUAXOX Ll __ .• ~PLt4MJIIMW ''*-~ ..• I 4-¥[email protected]•W.;;c:;;:;ill£LbQ.J t£4¥$4U JS;)i# ... ABSTRACT The Oakhurst roof pendant, near Oakhurst, California, consists of three pre-Cretaceous clastic metasedimentary rock units, surrounded and intruded by rocks of the Sierra Nevada batholith. T-..ro zones of probable "sheared granitic" and "ultramafic" rocks trend northwesterly and are approxi- mately aligned with the Foothills fault system farther north. The dominant mesoscopic feature of the pendant is a northwesterly.striking foliation which forms a downward converging fan. Earlier-formed hornblende lineations have been transposed into this foliation plane, as shown by Schmidt-net projections. Rocks comprising the three units show three textural stages: (1) Early amph~~oles and diopside overgrown by later static amphibole pophyroblasts, Hornblende lineations in one of these units show a great-circle Schmidt-net distri- but ion. (2) A superimposed, well-developed, cataclastic ~-plane (the mesoscopic foliation). (3) Late, static growth of poikiloblastic micas and diopside, straight well-crystallized micas, near polygonal quartz and feldspar, epidote and biotite after amphibole vii and diopside, and chlorite after biotite. The "sheared granitic" and "ultramafic" rock bodies display the same prominant foliation and static and retro­ grade metamorphic textures as do rocks of the three major units, These data are interpreted as reflecting three domi­ nant post-sedimentary structural (D) and thermal (M) events: (1) M /D consists of episodes of synkinematic 1 1 metamorphism,·which resulted in an early foliation, , 11 and of static metamorphism, M . M is of the epidote­ 1 1 amphibolite facies. (2) n resulted in the cataclastic development of the 2 prominent fanning foliation, ; the fan is indicative of s2 an .antiformal structure. This antiform and foliation developed as a consequence of subvertical movement, as indi- cated by the geometry of transposition of hornblende linea- tions into .§. The "sheared granitic" and "ultramafic" 2 • rock bodies were emplaced along two shear zones during n2 These zones could be the roots of thrust sheets and possibly an extension of the Foothills fault system, which has been mapped as terminating 20 miles to the northwest, (3) M was a static metamorphic event associated with 2 batholithic intrusion. Locally, this event was characterized viii ..,J;'_:\'15Jift!J.41!!1i-----&"'1--&!llii ___ , !!1!2.1!'11 --l!IIJiii!!A~~-Ntr!!l.--!1. II!!L!l'P -~ ··· · a tQ__ 4! 42.4MJ¢A 5 SSQU, .. t.44Aii¢$Lk t .Q • initially by high temperatures, but retrograde conditions generally prevailed, M2 was dominantly of the albite­ epidote-hornfels facies, but locally of the hornblende­ hornfels facies. Radiogenic dates of batholithic rocks near the pendant date M2 as Late Jurassic-Middle Cretaceous. Therefore, M ;n and n are pre-Late Jurassic. 1 1 2 M /D may be a southerly expression of .the Late 1 1 Permian-Early Triassic Sonoma Orogeny. D apparently 2 reflects the deformation associated with the classical Nevada.n Orogeny, and M2 corresponds to late or post­ orogenic granitic intrusion of the Sierra Nevada batholith. ix i!ZS!Jb&M l&&UJ\Qf&i& MJCGLUJJ(.J. J1 r. - .. fil'RQ,tt;;;t¥4!4XWU!£&$_ .#41 C. &,W41tW 2£bJI%a%114i_.ZiC CHAPTER I INTRODUCTION Purpose and Scope of Investigation The purpose of this investigation was to study the structural and metamorphic history of a roof pendant in the Sierra Nevada batholith. Hereafter this pendant will be referred to as the Oakhurst roof pendant. It is located '20 miles southeast of the mapped termination of the Melones fault zone, a major component of the Foothills fault system (Clark, 1960; Fig. 1), and is made up of undifferentiated pre-Cretaceous·metasedimentary rocks (Strand, 1967) that are surrounded and partly intruded by granitic rocks of the batholithic complex. Because of the location of the pendant, the possibility that the fault zone may extend south an unknown distance (Cloos, 1932) was pursued as a secondary objective of the thesis. Location and Geography The area of study is in east-central California, between the towns of Oakhurst, Coarsegold, and Ahwahnee, 40 miles northeast of Fresno and 20 miles southeast of Mariposa (Fig. 1), California Routes 41 and 49 are the major paved highways into the area.
Recommended publications
  • Rood Et Al 2011 EPSL SNFFZ.Pdf
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Earth and Planetary Science Letters 301 (2011) 457–468 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Spatiotemporal patterns of fault slip rates across the Central Sierra Nevada frontal fault zone Dylan H. Rood a,b,⁎, Douglas W. Burbank a, Robert C. Finkel c,d a Department of Earth Science, University of California, Santa Barbara, CA 93106, USA b Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA c CEREGE, Aix en Provence, France d Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA article info abstract Article history: Patterns in fault slip rates through time and space are examined across the transition from the Sierra Nevada Received 23 June 2010 to the Eastern California Shear Zone–Walker Lane belt. At each of four sites along the eastern Sierra Nevada Received in revised form 30 October 2010 frontal fault zone between 38 and 39° N latitude, geomorphic markers, such as glacial moraines and outwash Accepted 2 November 2010 terraces, are displaced by a suite of range-front normal faults.
    [Show full text]
  • Frontispiece the 1864 Field Party of the California Geological Survey
    U.S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY GEOLOGIC ROAD GUIDE TO KINGS CANYON AND SEQUOIA NATIONAL PARKS, CENTRAL SIERRA NEVADA, CALIFORNIA By James G. Moore, Warren J. Nokleberg, and Thomas W. Sisson* Open-File Report 94-650 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. * Menlo Park, CA 94025 Frontispiece The 1864 field party of the California Geological Survey. From left to right: James T. Gardiner, Richard D. Cotter, William H. Brewer, and Clarence King. INTRODUCTION This field trip guide includes road logs for the three principal roadways on the west slope of the Sierra Nevada that are adjacent to, or pass through, parts of Sequoia and Kings Canyon National Parks (Figs. 1,2, 3). The roads include State Route 180 from Fresno to Cedar Grove in Kings Canyon Park (the Kings Canyon Highway), State Route 198 from Visalia to Sequoia Park ending near Grant Grove (the Generals Highway) and the Mineral King road (county route 375) from State Route 198 near Three Rivers to Mineral King. These roads provide a good overview of this part of the Sierra Nevada which lies in the middle of a 250 km span over which no roads completely cross the range. The Kings Canyon highway penetrates about three-quarters of the distance across the range and the State Route 198~Mineral King road traverses about one-half the distance (Figs.
    [Show full text]
  • Subduction Cycles Under Western North America During the Mesozoic and Cenozoic Eras
    .. Geological Society of America Special Paper 299 1995 Subduction cycles under western North America during the Mesozoic and Cenozoic eras Peter L. Ward U.S. Geological Survey, 345 Middlefield Road, MS 977, Menlo Park, California 94025 ABSTRACT An extensive review of geologic and tectonic features of western North America suggests that the interaction of oceanic plates with the continent follows a broad cycli- cal pattern. In a typical cycle, periods of rapid subduction (7-15 cdyr), andesitic vol- canism, and trench-normal contraction are followed by a shift to trench-normal extension, the onset of voluminous silicic volcanism, formation of large calderas, and the creation of major batholiths. Extension becomes pervasive in metamorphic core complexes, and there is a shift to fundamentally basaltic volcanism, formation of flood basalts, widespread rifting, rotation of terranes, and extensive circulation of flu- ids throughout the plate margin. Strike-slip faulting becomes widespread with the creation of new tectonostratigraphic terranes. A new subduction zone forms and the cycle repeats. Each cycle is 50-80 m.y. long; cycles since the Triassic have ended and begun at approximately 225, 152, 92, 44, and 15 Ma. The youngest two cycles are diachronous, one from Oregon to Alaska, the other from central Mexico to Califor- nia. The transitions from one cycle to the next cycle are characterized by rapid and pervasive changes termed, in this chapter, “major chaotic tectonic events.” These events appear to be related to the necking or breaking apart of the formerly sub- ducted slab at shallow depth, the resulting delamination of the plate margin, and the onset of a new subduction cycle.
    [Show full text]
  • 150 Geologic Facts About California
    California Geological Survey - 150th Anniversary 150 Geologic Facts about California California’s geology is varied and complex. The high mountains and broad valleys we see today were created over long periods of time by geologic processes such as fault movement, volcanism, sea level change, erosion and sedimentation. Below are 150 facts about the geology of California and the California Geological Survey (CGS). General Geology and Landforms 1 California has more than 800 different geologic units that provide a variety of rock types, mineral resources, geologic structures and spectacular scenery. 2 Both the highest and lowest elevations in the 48 contiguous states are in California, only 80 miles apart. The tallest mountain peak is Mt. Whitney at 14,496 feet; the lowest elevation in California and North America is in Death Valley at 282 feet below sea level. 3 California’s state mineral is gold. The Gold Rush of 1849 caused an influx of settlers and led to California becoming the 31st state in 1850. 4 California’s state rock is serpentine. It is apple-green to black in color and is often mottled with light and dark colors, similar to a snake. It is a metamorphic rock typically derived from iron- and magnesium-rich igneous rocks from the Earth’s mantle (the layer below the Earth’s crust). It is sometimes associated with fault zones and often has a greasy or silky luster and a soapy feel. 5 California’s state fossil is the saber-toothed cat. In California, the most abundant fossils of the saber-toothed cat are found at the La Brea Tar Pits in Los Angeles.
    [Show full text]
  • Timing and Structural Expression of the Nevadan Orogeny, Sierra Nevada, California: Discussions and Reply
    Timing and structural expression of the Nevadan orogeny, Sierra Nevada, California: Discussions and reply Discussion TAPAS BHATTACHARYYA i _ „ . _ . ,, . , _ ... „ , _ _ ,., . nATi-DCAM I ^art'1 Science Board, University of California, Santa Cruz, California 95064 SCO IT R. PA [ bKSON / Prior to commenting on several aspects of the paper by Schweickert and others, 1984, can be divided into four topics: (1) the position/exist- and others, 1984, we wish to note that we have benefited from the work of ence of the "Sonora fault," (2) the "polymetamorphism and structural these authors. We also wish to note that all of our comments concern complexity" of the Calaveras Complex and Shoo Fly Formation, (3) the statements made about the southern portion of the Western Metamorphic interpretation of "Late Phase" or Cretaceous folds and possible conjugate Belt where we are presently completing an east-west transect on scales of structures, and (4) their model for "rigid body rotation of the central belt" 1:24,000 and larger. during Nevadan deformation. We will discuss each of these in turn. Our objections to observations and interpretations by Schweickert 1. Many of the age relations and positions of contacts/faults dis- cussed by Schweickert and others, 1984, are better established in the The article discussed appeared in the Bulletin, v. 95, p. 967-979. northern Sierra or the part of the southern belt which lies north of 3£ We Geological Society of America Bulletin, v. 96, p. 1346-1352, 1 fig., October 1985. Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/96/10/1349/3445091/i0016-7606-96-10-1349.pdf by guest on 02 October 2021 DISCUSSIONS AND REPLY 1347 think that similar relations are not nearly so well established in the south- Belt.
    [Show full text]
  • 2019 Scec Annual Technical Report
    1 2019 SCEC ANNUAL TECHNICAL REPORT - SCEC Award 19031 Evaluate & Refine 3D Fault and Deformed Surface Geometry to Update & Improve the SCEC Community Fault Model Craig Nicholson Marine Science Institute, University of California, Santa Barbara, CA 93106-6150 Summary Since SCEC3, I and my colleagues Andreas Plesch, Chris Sorlien, John Shaw, Egill Hauksson, and now Scott Marshall continue to make steady and significant improvements to the SCEC Community Fault Model (CFM), culminating in the release of CFM-v5.3 [Nicholson et al., 2019]. This on-going systematic update represents a substantial improvement of 3D fault models for southern California. The CFM-v3 fault set was expanded from 170 faults to over 860 fault objects and alternative representations in CFM- v5.3 that define nearly 400 faults organized into 106 complex fault systems (Fig.1). Most of these updated 3D fault models were developed by UCSB, or to which UCSB made significant contributions. This includes all the major fault models of major fault systems (e.g., San Andreas, San Jacinto, Elsinore- Laguna Salada, Newport-Inglewood, Imperial, Garlock, etc.), and most major faults in the Mojave, Eastern & Western Transverse Ranges, offshore Borderland, and updated faults within designated Special Fault Study or Earthquake Gate Areas (Fig.1) [Nicholson et al., 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019; Sorlien et al, 2012, 2014, 2015, 2016; Sorlien and Nicholson, 2015]. These new models allow for more realistic, curviplanar, complex 3D fault geometry, including changes in dip and dip direction along strike and down dip, based on the changing patterns of earthquake hypocenter and nodal plane alignments and, where possible, imaging subsurface fault geometry with industry seismic reflection data.
    [Show full text]
  • Construction and Emplacement of Cretaceous Plutons in the Crystal Range, Southwest of Lake Tahoe, California
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Summer 2017 Construction and Emplacement of Cretaceous Plutons in the Crystal Range, Southwest of Lake Tahoe, California Brad Buerer San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Buerer, Brad, "Construction and Emplacement of Cretaceous Plutons in the Crystal Range, Southwest of Lake Tahoe, California" (2017). Master's Theses. 4837. DOI: https://doi.org/10.31979/etd.eyj9-3w7m https://scholarworks.sjsu.edu/etd_theses/4837 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. CONSTRUCTION AND EMPLACEMENT OF CRETACEOUS PLUTONS IN THE CRYSTAL RANGE, SOUTHWEST OF LAKE TAHOE, CALIFORNIA A Thesis Presented to The Faculty of the Department of Geology San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Brad Buerer August 2017 © 2017 Brad Buerer ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled CONSTRUCTION AND EMPLACEMENT OF CRETACEOUS PLUTONS IN THE CRYSTAL RANGE, SOUTHWEST OF LAKE TAHOE, CALIFORNIA by Brad Buerer APPROVED FOR THE DEPARTMENT OF GEOLOGY SAN JOSÉ STATE UNIVERSITY August 2017 Dr. Robert Miller Department of Geology Dr. Jonathan Miller Department of Geology Dr. Dave Andersen Department of Geology ABSTRACT CONSTRUCTION AND EMPLACEMENT OF CRETACEOUS PLUTONS IN THE CRYSTAL RANGE, SOUTHWEST OF LAKE TAHOE, CALIFORNIA by Brad Buerer Three Cretaceous plutons are investigated to determine their construction and emplacement histories, focusing on magmatic foliation patterns and contact relationships with each other and with the Jurassic metasedimentary host rocks of the Sailor Canyon Formation.
    [Show full text]
  • Quaternary Fault and Fold Database of the United States
    Jump to Navigation Quaternary Fault and Fold Database of the United States As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the interactive fault map. Kings Canyon fault zone (Class A) No. 1654 Last Review Date: 2014-06-10 citation for this record: Adams, K., Sawyer, T.L., and Haller, K.M., compilers, 2014, Fault number 1654, Kings Canyon fault zone, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:35 PM. Synopsis This nearly continuous north- to northeast-striking fault zone consists of: (1) generally range- and hill-front faults bounding Carson Range north of U.S. 50 and along southeast front of Sugarloaf; (2) piedmont faults adjacent to the range- and hill-front faults form near mouth of Kings Canyon northeastward to Indian Mountain; and (3) primarily intermontane, bedrock faults extending from Kings Canyon northward to southern margin of Washoe Valley. Fault zone may be structurally related to the Carson Range fault [1285] to the south based on a possibly splaying relationship. The intermontane fault are included in this zone because of similar strike, recency of movement, and proximity to other faults in the zone. Detailed surficial and bedrock mapping are the sources of data. Trench investigations have been accomplished, but detailed studies of scarp morphology have not
    [Show full text]
  • Birth of the Sierra Nevada Magmatic Arc: Early Mesozoic Plutonism and Volcanism in the East-Central Sierra Nevada of California
    Origin and Evolution of the Sierra Nevada and Walker Lane themed issue Birth of the Sierra Nevada magmatic arc: Early Mesozoic plutonism and volcanism in the east-central Sierra Nevada of California A.P. Barth1, J.D. Walker2, J.L. Wooden3, N.R. Riggs4, and R.A. Schweickert5 1Department of Earth Sciences, Indiana University–Purdue University, Indianapolis, 723 West Michigan Street, SL118, Indianapolis, Indiana 46202, USA 2Department of Geology, University of Kansas, 1475 Jayhawk Boulevard, Lawrence, Kansas 66045, USA 3Department of Geological and Environmental Sciences, Stanford University, 450 Serra Mall, Stanford, California 94305, USA 4School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Campus Box 4099, Flagstaff, Arizona 86011, USA 5Department of Geological Sciences, University of Nevada, Reno, Nevada 89557, USA ABSTRACT continued during emplacement of the 226– the older, northeast-trending margin (Schweick- 218 Ma Scheelite Intrusive Suite. Ash-fl ow ert and Lahren, 1987; Greene et al., 1997a; Ste- Granitic and volcanic rocks in the east- tuffs are hydrothermally altered but have vens et al., 1997; Stevens and Greene, 2000; central Sierra Nevada, western United high fi eld strength element abundances and Fig. 1), and the initiation of arc volcanism. This States, record the earliest stages of magma- Nd isotopic compositions, suggesting affi nity early Mesozoic volcanism and associated plu- tism in the eastern Sierra Nevada magmatic to the relatively felsic parts of the Wheeler ton emplacement are key constraints on tectonic arc, allowing us to examine magma sources Crest Granodiorite and the granite of Lee models for subduction initiation at the west- and connections between plutonic and volca- Vining Canyon.
    [Show full text]
  • Air Photo Lineaments, Southern Sierra Nevada, California
    DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY Air photo lineaments, southern Sierra Nevada, California by Donald C. Ross1 Open-File Report 89-365 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U. S. Government. 'Menlo Park, California 1989 CONTENTS Page Introduction .................................................................................................................................... i Discussion .................................................................................................................................... 2 Air photo lineaments along known faults.............................................................................. 2 San Andreas and Garlock faults................................................................................. 2 Kern Canyon-Breckenridge-White Wolf fault zone.................................................. 2 Durmc>c>d fault?.........7...:............... 2 Pinyon Peak fault....................................................................................................... 4 Jawbone fault............................................................................................................. 4 Sierra Nevada fault.................................................................................................... 4 Kern River fault........................................................................................................
    [Show full text]
  • The Stratigraphie Evolution of the El Paso Basin, Southern California: Implications for the Miocene Development of the Garlock Fault and Uplift of the Sierra Nevada
    The stratigraphie evolution of the El Paso basin, southern California: Implications for the Miocene development of the Garlock fault and uplift of the Sierra Nevada DANA P. LOOMIS Department of Geology, University of North Carolina, Chapel Hill, North Carolina 27514 DOUGLAS W. BURBANK Department of Geological Sciences, University of Southern California, Los Angeles, California 90089-0740 ABSTRACT This paper presents the results of stratigraphic, chronologic, and tec- tonic investigations of the Miocene Ricardo Group in the El Paso basin. The Ricardo Group is a 1,700-m-thick sequence of Miocene vol- Sedimentary and magnetostratigraphic data provide evidence for the onset canic rocks and continental sedimentary rocks deposited between ~19 of east-west extension north of the Garlock fault about 10 Ma and for the and 7 Ma in the El Paso basin, near the junction of the Garlock fault emergence of the Sierra Nevada as a topographic upland about 8 Ma. In and the Sierra Nevada frontal fault in southern California. The combi- addition to these age constraints for the Garlock fault and Sierra Nevada, nation of stratigraphic and structural data from the Ricardo Group this analysis also provides an opportunity to test some plate-tectonic mod- with chronologic and rotational histories derived from magnetostrati- els for the late Cenozoic sedimentary and tectonic evolution of southern graphic and radiometric studies provides some new constraints for the California. Sedimentary evidence from the El Paso basin is largely consist- morphotectonic emergence of the Sierra Nevada, the initiation of ent with proposals that basin growth and sedimentation (Glazner and strike-slip movement on the Garlock fault, and related east-west ex- Loomis, 1984) and basin-and-range extension (Ingersoll, 1982; Glazner tension in the southern Basin and Range region.
    [Show full text]
  • Review of Cordilleran Tectonics
    The Wacky Wonderful World of Cordilleran Tectonics Event Timing Description Transform Tectonics Middle Miocene - As North American Plate overran the divergent boundary of the Farallon and Pacific plates, change in sense of along California Coast Holocene motion from subduction to transform; birth of San Andreas Fault system; sealing off of southern entrance to Great Valley of California as sliver of crust containing Baja California and Los Angeles moves northward Half-graben Rise of Late Pliocene Large scale tilting of old plutons (emplaced in Nevadan orogeny) in eastern California, producing modern Sierra Sierra Nevada Nevada Basin-and-Range Miocene – Pliocene Large-scale extension in American Southwest, thinning continental crust and widening region by 50-100%; Extension & Volcanism associated regional volcanism Coastal Range Orogeny Late Miocene – Subduction along western coastline producing Andean-style volcanoes (Coastal Ranges of California, Cascades of Holocene Northwest); continues to operate in Northwest Flood Basalts in Miocene – Pliocene Columbia River Basalts (Miocene); Snake River Extrusives (Pliocene) Northwest Uplift of Colorado Middle Miocene Large vertical uplift of flat region in American Southwest, with little internal disturbance; downward erosion of Plateau Colorado River produces Grand Canyon Exhumation of the Early Miocene – Uplift of ~1600 m; erosion of much of the alluvium formed in the Oligocene; downward cutting action of rivers Rockies Pliocene produces “meandering” streams inside mountains Erosion of Cordillera Oligocene Erosion of Laramide uplift produces alluvium which largely fills up the intramontane basins and which spreads in large wedges into the cratonic interior; meandering rivers eventually form on these wedges. The tops of the mountains are weathered down to form broad flat surfaces confluent with the alluvial wedges.
    [Show full text]