2019 Scec Annual Technical Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seismic Shift Diablo Canyon Literally and Figuratively on Shaky Ground
SEISMIC SHIFT DIABLO CANYON LITERALLY AND FIGURATIVELY ON SHAKY GROUND Five years ago, Pacific Gas and Electric (PG&E) informed the Nuclear Regulatory Commission (NRC) about a newly discovered fault offshore from its Diablo Canyon nuclear plant that could cause more ground motion during an earthquake than the plant was designed to withstand. In other words, there was a gap between seismic protection levels of the plant and the seismic threat levels it faced. When similar gaps were identified at other nuclear facilities in California, New York, Pennsylvania, Maine, and Virginia, the facilities were not permitted to generate electricity until the gaps were closed. The electricity generation gaps did not trump the seismic protection gaps: the need for safety was deemed more important than the need for electricity and its revenues. But the two reactors at Diablo Canyon continue operating despite the seismic protection gap. In the former cases the NRC would not allow nuclear facilities to operate until they demonstrated an adequate level of safety through compliance with federal regulations. It wasn’t that evidence showed disaster was looming on the horizon. Instead, it was that evidence failed to show that the risk of disaster was being properly managed. At Diablo Canyon the NRC has flipped the risk management construct. Despite solid evidence that Diablo Canyon does not conform to regulatory requirements, the nuclear version of the “no blood, no foul” rule is deemed close enough to let its reactors continue operating. This seismic shift places Diablo Canyon’s two aging reactors literally and figuratively on shaky ground. If an earthquake occurs, it may result in more damage than the nuclear plant can withstand, with dire consequences for tens of thousands of Californians. -
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G. -
Tectonic Influences on the Spatial and Temporal Evolution of the Walker Lane: an Incipient Transform Fault Along the Evolving Pacific – North American Plate Boundary
Arizona Geological Society Digest 22 2008 Tectonic influences on the spatial and temporal evolution of the Walker Lane: An incipient transform fault along the evolving Pacific – North American plate boundary James E. Faulds and Christopher D. Henry Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada, 89557, USA ABSTRACT Since ~30 Ma, western North America has been evolving from an Andean type mar- gin to a dextral transform boundary. Transform growth has been marked by retreat of magmatic arcs, gravitational collapse of orogenic highlands, and periodic inland steps of the San Andreas fault system. In the western Great Basin, a system of dextral faults, known as the Walker Lane (WL) in the north and eastern California shear zone (ECSZ) in the south, currently accommodates ~20% of the Pacific – North America dextral motion. In contrast to the continuous 1100-km-long San Andreas system, discontinuous dextral faults with relatively short lengths (<10-250 km) characterize the WL-ECSZ. Cumulative dextral displacement across the WL-ECSZ generally decreases northward from ≥60 km in southern and east-central California, to ~25 km in northwest Nevada, to negligible in northeast California. GPS geodetic strain rates average ~10 mm/yr across the WL-ECSZ in the western Great Basin but are much less in the eastern WL near Las Vegas (<2 mm/ yr) and along the northwest terminus in northeast California (~2.5 mm/yr). The spatial and temporal evolution of the WL-ECSZ is closely linked to major plate boundary events along the San Andreas fault system. For example, the early Miocene elimination of microplates along the southern California coast, southward steps in the Rivera triple junction at 19-16 Ma and 13 Ma, and an increase in relative plate motions ~12 Ma collectively induced the first major episode of deformation in the WL-ECSZ, which began ~13 Ma along the N60°W-trending Las Vegas Valley shear zone. -
Rood Et Al 2011 EPSL SNFFZ.Pdf
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Earth and Planetary Science Letters 301 (2011) 457–468 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Spatiotemporal patterns of fault slip rates across the Central Sierra Nevada frontal fault zone Dylan H. Rood a,b,⁎, Douglas W. Burbank a, Robert C. Finkel c,d a Department of Earth Science, University of California, Santa Barbara, CA 93106, USA b Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA c CEREGE, Aix en Provence, France d Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA article info abstract Article history: Patterns in fault slip rates through time and space are examined across the transition from the Sierra Nevada Received 23 June 2010 to the Eastern California Shear Zone–Walker Lane belt. At each of four sites along the eastern Sierra Nevada Received in revised form 30 October 2010 frontal fault zone between 38 and 39° N latitude, geomorphic markers, such as glacial moraines and outwash Accepted 2 November 2010 terraces, are displaced by a suite of range-front normal faults. -
Possible Correlations of Basement Rocks Across the San Andreas, San Gregorio- Hosgri, and Rinconada- Reliz-King City Faults
Possible Correlations of Basement Rocks Across the San Andreas, San Gregorio- Hosgri, and Rinconada- Reliz-King City Faults, U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1317 Possible Correlations of Basement Rocks Across the San Andreas, San Gregorio- Hosgri, and Rinconada- Reliz-King City Faults, California By DONALD C. ROSS U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1317 A summary of basement-rock relations and problems that relate to possible reconstruction of the Salinian block before movement on the San Andreas fault UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1984 DEPARTMENT OF THE INTERIOR WILLIAM P. CLARK, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Boss, Donald Clarence, 1924- Possible correlations of basement rocks across the San Andreas, San Gregrio-Hosgri, and Rinconada-Reliz-King City faults, California (U.S. Geological Survey Bulletin 1317) Bibliography: p. 25-27 Supt. of Docs, no.: 119.16:1317 1. Geology, structural. 2. Geology California. 3. Faults (geology) California. I. Title. II. Series: United States. Geological Survey. Professional Paper 1317. QE601.R681984 551.8'09794 84-600063 For sale by the Distribution Branch, Text Products Section, U.S. Geological Survey, 604 South Pickett St., Alexandria, VA 22304 CONTENTS Page Abstract _____________________________________________________________ 1 Introduction __________________________________________________________ 1 San Gregorio-Hosgri fault zone ___________________________________________ 3 San Andreas -
3. Seismicity of Southern California* by Charle S F
3. SEISMICITY OF SOUTHERN CALIFORNIA* BY CHARLE S F. RICHTER t AND B ENO GUTENBERG l Evidence for regional seismicity is of four kinds : ( 1) geological ment of only a few inches along the line of the Manix fault; Instru field observation of fault phenomena, ( 2) historical documents, ( 3) mental locations of epicenters of aftershocks aligned nearly at right instrumental recording, and ( 4) fi eld investigation immediately after angles to this fault, suggesting that the observed displacement is li earthquakes. secondary result of a larger displacement on a fault with different Historical and instrumental data cover a very small part of ge strike in the basement rocks; (6) July 21, 1952. Arvin-Tehachapi ological time, and thus constitute only a snapshot of the record, so earthquake, Kern County; probably thrust faulting, with surface to speak. They may furnish positive evidence of seismicity, but expression obscured and complicated by large-scale slumping and failure of earthquakes to occur on a given fault during a period of sliding; White Wolf fault. less than two centuries is no proof of quiescence. On the other hand, The historical record begins with a strong earthquake felt by the identifying faults as active on the basis of field evidence alone im Portola expedition on July 28, 1769, when the explorers were in plies an assumption that there have been no significant permanent camp along the Santa Ana River near the present townsite of Olive. changes in seismicity in a few tens of thousands of years. This Subsequent information for all of California is extremely scanty assumption is reasonable, but it does not necessarily apply without until 1850, and in southern California the record is imperfect for exception. -
4.1 Geology/Hazards
Dalidio/San Luis Marketplace Annexation and Development Project EIR Section 4.1 Geology/Hazards 4.1 GEOLOGY/HAZARDS The project site lies within the seismically active coastal region of central California. Regional studies indicate that there are no active or potentially active faults on the project site. However, groundshaking associated with nearby faults could damage or destroy property, structures and transportation infrastructures. These impacts can be mitigated to less than significant levels. In addition, site soils are reported to have a high liquefaction potential, a moderate to high expansion potential and a potential for subsidence. These impacts are considered less than significant with the adherence to mitigation measures. The Dalidio property could potentially be subject to contamination that has migrated from off-site hazardous materials releases. Implementation of recommended mitigation measures, including soils and groundwater testing along the northwestern site boundary to determine the presence of such contamination on site, and appropriate remediation if necessary, would reduce this impact to a less than significant level. The proposed Prado Road/ U.S. Highway 101 interchange and associated improvements could be located on soils that contain residual quantities of aerially-deposited lead (ADL) associated with historic exhaust emissions along U.S. Highway 101. The release of ADL during disturbance of this area would be considered a potentially significant but mitigable health hazard. 4.1.1 Geologic Setting. This section describes the geologic conditions and related hazards of the project site, including faulting, seismically induced ground movement, liquefaction potential, potential for soil expansion/contraction and a subsidence potential. a. Regional Topography. The Dalidio property is located west of U.S. -
Displacements on the Imperial, Superstition Hills, and San Andreas Faults Triggered by the Borrego Mountain Earthquake1
DISPLACEMENTS ON THE IMPERIAL, SUPERSTITION HILLS, AND SAN ANDREAS FAULTS TRIGGERED BY THE BORREGO MOUNTAIN EARTHQUAKE1 By CLARENCE R. ALLEN) SEISMOLOGICAL LABORATORY) CALIFORNIA INSTITUTE OF TECHNOLOGY) MAx WYss) LAMONT-DOHERTY GEOLOGICAL OBSERVATORY OF COLUMBIA UNIVERSITY} jAMES N. BRUNE) INSTITUTE OF GEOPHYSICS AND PLANETARY PHYSICS) UNIVERSITY OF CALIFORNIA} SAN DIEGO} AND ARTHUR GRANTZ and RoBERT E. WALLACE} U.S. GEOLOGICAL SuRVEY ABSTRACT INTRODUCTION The Borrego Mountain earthquake of April 9, 1968, trig The Borrego Mountain earthquake of April 9, 1968 gered small but consistent surface displacements on three (magnitude 6.4) was associated not only with a con faults far outside the source area and zone of aftershock activity. Right-lateral displacement of 1-2% em occurred spicuous surface-break in its source region along the along 22, 23, and 30 km of the Imperial, Superstition Hills, Coyote Creek fault (Clark, "Surface Rupture Along and San Andreas (Banning-Mission Cre.ek) faults, respec the Coyote Creek Fault," this volume), but also with tively, at distances of 70, 45, and 50 km from the epicenter. displacements far outside the epicentral region along Although these displacements were not noticed until 4 days three major faults in the Imperial Valley region to after the earthquake, their association with the earthquake is suggested by the freshness of the resultant en echelon the east and southeast of the epicenter (fig. 52). The 2 cracks at that time and by the absence of creep along most Imperial, Superstition Hills, and San Andreas faults of these faults during the year before or the year after the broke along segments at least 22, 23, and 30 km long, event. -
150 Geologic Facts About California
California Geological Survey - 150th Anniversary 150 Geologic Facts about California California’s geology is varied and complex. The high mountains and broad valleys we see today were created over long periods of time by geologic processes such as fault movement, volcanism, sea level change, erosion and sedimentation. Below are 150 facts about the geology of California and the California Geological Survey (CGS). General Geology and Landforms 1 California has more than 800 different geologic units that provide a variety of rock types, mineral resources, geologic structures and spectacular scenery. 2 Both the highest and lowest elevations in the 48 contiguous states are in California, only 80 miles apart. The tallest mountain peak is Mt. Whitney at 14,496 feet; the lowest elevation in California and North America is in Death Valley at 282 feet below sea level. 3 California’s state mineral is gold. The Gold Rush of 1849 caused an influx of settlers and led to California becoming the 31st state in 1850. 4 California’s state rock is serpentine. It is apple-green to black in color and is often mottled with light and dark colors, similar to a snake. It is a metamorphic rock typically derived from iron- and magnesium-rich igneous rocks from the Earth’s mantle (the layer below the Earth’s crust). It is sometimes associated with fault zones and often has a greasy or silky luster and a soapy feel. 5 California’s state fossil is the saber-toothed cat. In California, the most abundant fossils of the saber-toothed cat are found at the La Brea Tar Pits in Los Angeles. -
Signature of Author:
KINEMATICMODELS OF DEFORMATIONIN SOUTHERN CALIFORNIA CONSTRAINEDBY GEOLOGICAND GEODETICDATA Lori A. Eich S.B. Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology, 2003 SUBMITTEDTO THE DEPARTMENTOF EARTH, ATMOSPHERIC, AND PLANETARYSCIENCES IN PARTIALFULFILLMENT OF THE REQUIREMENTSFOR THE DEGREEOF AT THE MASSACHUSETTSINSTITUTE OF TECHNOLOGY I FEBRUARY2006 1 LIBRARIES O 2006 Massachusetts Institute of Technology. All rights reserved. Signature of Author: ....................................................................................:. ................................... Department of Earth, Atmospheric, and Planetary Sciences September 2 1,2005 Certified by: ...................................................%. .......... .%. .............. - ....- .. ......................................... Bradford H. Hager Cecil and Ida Green Professor of Earth Sciences Thesis Supervisor Accepted by: ................................................................................................................................. Maria T. Zuber E. A. Griswold Professor of Geophysics Head, Department of Earth, Atmospheric, and Planetary Sciences Kinematic Models of Deformation in Southern California Constrained by Geologic and Geodetic Data Lori A. Eich Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on January 20,2006, in partial fulfillment of the requirements for the degree of Master of Science in Earth, Atmospheric, and Planetary Sciences Abstract Using a standardized fault geometry based on -
Tectono-Metamorphic Impact of a Subduction-Transform Transition and Implications for Interpretation of Orogenic Belts
International Geology Review, Vol. 38, 1996, p. 979-994. Copyright © 1996 by V. H. Winston & Son, Inc. All rights reserved. Tectono-Metamorphic Impact of a Subduction-Transform Transition and Implications for Interpretation of Orogenic Belts JOHN WAKABAYASHI 1329 Sheridan Lane, Hayward, California 94544 Abstract Subduction-transform tectonic transitions were common in the geologic past, yet their impact on the evolution of orogenic belts is seldom considered. Evaluation of the tectonic transition in the Coast Ranges of California is used as an example to predict some characteristics of exhumed regions that experienced similar histories worldwide. Elevated thermal gradients accompanied the transition from subduction to transform tec tonics in coastal California. Along the axis of the Coast Ranges, peak pressure-temperature (P/T) conditions of 700 to 1000° C at a pressure of ~7 kbar, corresponding to granulite-facies metamorphism, and cooling to 500° C, or amphibolite facies, within 15 million years, are indicated by thermal gradients estimated from the depth to the base of crustal seismicity. Greenschist-facies conditions may occur at depths of 10 km or less. These P/T estimates are consistent with the petrology of crustal xenoliths and thermal models. Preservation of earlier subduction-related metamorphism is possible at depth in the Coast Ranges. Such rocks may record a greenschist or higher-grade overprint over blueschist assemblages, and late growth of metamorphic minerals may reflect dextral shear along the plate margin, with development of orogen-parallel stretching lineations. Thermal overprints of early-formed high-P (HP), low-T (LT) assemblages, in association with orogen-parallel stretching lineations, occur in many orogenic belts of the world, and have been attributed to subduction followed by collision. -
Pamphlet to Accompany
Geologic and Geophysical Maps of the Eastern Three- Fourths of the Cambria 30´ x 60´ Quadrangle, Central California Coast Ranges Pamphlet to accompany Scientific Investigations Map 3287 2014 U.S. Department of the Interior U.S. Geological Survey This page is intentionally left blank Contents Contents ........................................................................................................................................................................... ii Introduction ..................................................................................................................................................................... 1 Interactive PDF ............................................................................................................................................................ 2 Stratigraphy ..................................................................................................................................................................... 5 Basement Complexes ................................................................................................................................................. 5 Salinian Complex ..................................................................................................................................................... 5 Great Valley Complex ............................................................................................................................................ 10 Franciscan Complex .............................................................................................................................................