Active Tectonics at Wheeler Ridge, Southern San Joaquin Valley, California

Total Page:16

File Type:pdf, Size:1020Kb

Active Tectonics at Wheeler Ridge, Southern San Joaquin Valley, California Active tectonics at Wheeler Ridge, southern San Joaquin Valley, California E. A. Keller* Environmental Studies Program and Department of Geological Sciences, University of California, Santa Barbara, California 93106 R. L. Zepeda 1342 Grove Street, Alameda, California 94501 T. K. Rockwell Department of Geological Sciences, San Diego State University, San Diego, California 91282 T. L. Ku Department of Earth Sciences, University of Southern California, Los Angeles, California 90089-0740 W. S. Dinklage Department of Geological Sciences, University of California, Santa Barbara, California 93106 ABSTRACT INTRODUCTION where geomorphic surfaces are folded over the anticlinal axis (Zepeda et al., 1986). In addition, Wheeler Ridge is an east-west–trending Buried reverse faults associated with actively the 1952 Kern County earthquake was centered anticline that is actively deforming on the up- deforming folds are known to produce large earth- below Wheeler Ridge, but not on the Wheeler per plate of the Pleito–Wheeler Ridge thrust- quakes. Several recent, large California earth- Ridge thrust fault; therefore the potential earth- fault system. Holocene and late Pleistocene de- quakes are examples: M = 6.7, Northridge, 1994; quake hazard in the area is clear. formation is demonstrated at the eastern end M = 6.1, Whittier Narrows, 1987; MS = 6.4, The primary goals of the research at Wheeler of the anticline where Salt Creek crosses the Coalinga, 1983, and MS = 7.7, Kern County, Ridge are (1) to characterize the tectonic geomor- anticlinal axis. Uplift, tilting, and faulting, as- 1952. Detailed investigations of folding associ- phology; (2) to develop the Pleistocene chronol- sociated with the eastward growth of the anti- ated with concealed reverse faults are therefore ogy; and (3) to test the hypothesis that climatic cline, are documented by geomorphic surfaces necessary in order to better understand earthquake perturbations are responsible for most Pleistocene that are higher and older to the west. hazards associated with these areas. and Holocene aggradational events that produce Faulting and associated folding is propagat- The goals of earthquake hazards research are alluvial fan segments, and that tectonic perturba- ing eastward, as indicated by increases in both to characterize earthquake sources likely to pro- tions primarily deform the fan segments. the degree of surface dissection and the degree duce future events by determining fault-slip rate, Testing the hypothesis concerning climatic of soil development from east to west. Distinct average recurrence intervals, and timing of past and tectonic perturbations is important in under- topographic areas having distinct degrees of events. Active faults have generally been studied standing the origin and significance of landform surface dissection, bounded by tear faults, where geologically young surficial deposits are evolution in tectonically active regions (Bull, suggest that faulting and folding have propa- observed to be displaced at the surface. Land- 1991). The question is, How significant are tec- gated eastward in discrete segments. forms associated with strike-slip, normal, and re- tonic perturbations? At the regional scale over Numerical dates indicate (1) the anticline is verse faults may include fault scarps, offset several million years, tectonic processes may propagating eastward at a rate of about 30 streams, sag ponds, or offset terraces. However, produce mountain ranges that cause climatic mm/yr (about 10 times the rate of uplift); in areas where active reverse faults do not break change, for example, through the development (2) folding was initiated about 400 ka; (3) a through to the surface, young surficial deposits of a rain shadow. At a more local scale, a study prominent wind gap was formed during Q3 are not ruptured. Therefore, the underlying fault of terraces of the Ventura River, California, indi- time (about 60 ka) when an antecedent stream may be either unknown or incorrectly identified cated that the terrace sequence has a climatic sig- was defeated, forcing the stream east around as inactive, unless independent geophysical data nature, whereas deformation of the terraces re- the nose of the fold; today drainage through demonstrate that activity (Stein and King, 1984). sulted from tectonic activity (Rockwell et al., the ridge is by way of two antecedent streams The recent earthquakes identified here have re- 1984). As a second example, tectonic tilting of (water gaps) east of the wind gap; and (4) the sulted in a concerted effort by researchers to eval- alluvial fan segments may cause a threshold of rate of uplift at the easternmost and youngest uate the potential seismic hazards in areas of ac- fan slope stability to be exceeded (Schumm, (past 1 k.y.) part of the fold is at least 3 mm/yr. tive folding (Stein and King, 1984; Zepeda et al., 1977) and fan-head entrenchment to occur Investigations of the tectonic geomorphology 1986; Yeats, 1986; Keller and Pinter, 1996). (Rockwell et al., 1985). In turn, entrenchment of Wheeler Ridge support the hypothesis that The Wheeler Ridge anticline, located in the will cause a new fan segment to develop. How- climatic perturbations are primarily responsi- southern San Joaquin Valley, California (Figs. 1 ever, the development of thick alluvial deposits ble for producing geomorphic surfaces such as and 2), was chosen for study because it is possi- through aggradational events may be the result alluvial fan segments and river terraces—tec- ble to determine rates of uplift associated with ac- of climatic perturbations. The study of landscape tonic perturbations deform the surfaces. tive folding above a buried reverse-fault system. evolution at Wheeler Ridge spans a sufficient Holocene and latest Pleistocene activity has been length of time that both tectonic and climatic *e-mail: [email protected] demonstrated at the east end of Wheeler Ridge, perturbations have influenced the landform evo- GSA Bulletin; March 1998; v. 110; no. 3; p. 298–310; 9 figures; 2 tables. 298 ACTIVE TECTONICS AT WHEELER RIDGE, CALIFORNIA CLIMATE There are large topographically controlled variations in climate in the vicinity of Wheeler Ridge (Soil Conservation Service, 1988). The av- erage climate at Wheeler Ridge (~300 m eleva- tion) is warm and semiarid to arid with one wet season during the year (winter). Of all precipita- tion, 90% falls between October and April. Sum- mers are generally cloudless, hot, and dry. Tem- peratures often exceed 38 °C and rarely fall below 20 °C. Minimum temperatures during the winter months sometimes are below freezing. The mean annual temperature is about 19 °C. Precipitation ranges from 15 to 16 cm in the San Joaquin Valley to 27 cm in the San Emigdio and Tehachapi Mountains south of Wheeler Ridge. GEOLOGIC SETTING The east-west–trending Wheeler Ridge anti- cline is located along the north flank of the San Emigdio Mountains at the boundary between the Transverse Ranges and the San Joaquin Valley (Figs. 1 and 2). The San Emigdio Mountains are part of the east-west–trending, western Trans- verse Ranges, in contrast to the predominantly northwest-southeast structural grain of Califor- nia. The western Transverse Ranges are bounded on the north and south edges by fold-and-thrust belts (Keller et al., 1987). Wheeler Ridge is located in the “Big Bend” re- gion of the San Andreas fault, where the generally northwest-southeast–trending fault strikes more east-west (Fig. 1). Within the Big Bend, north- south compression and resulting shortening are observed (Savage, 1983; King and Savage, 1984). Figure 1. Location of study area and generalized geologic setting at Wheeler Ridge. SAF— The driving force for the uplift of the San Emigdio San Andreas fault, BB—“Big Bend” of the fault. After Davis (1983); Dibblee (1973); Morton and Mountains and Wheeler Ridge is thought to be Troxel (1962). compression generated by the left step in the San Andreas fault produced by the Big Bend and ac- companying strain partitioning, resulting in dis- lution. As a result, this study helps delineate the Sample preparation of pedogenic carbonate placement on reverse faults along range fronts relative importance of climatic versus tectonic rinds for radiocarbon and uranium-series analy- (Rodgers, 1980; Lettis and Hanson, 1991; and perturbations in an area characterized by rela- ses included (1) removal of soft outer carbonate; Working Group on California Earthquake Proba- tively high rates of tectonic activity. (2) scraping and collection of the hard, innermost bilities, 1995). carbonate rinds from undersides of clasts; and Nodal planes for five earthquakes in the METHODS (3) viewing with a microscope for signs of leach- Wheeler Ridge area are consistent with the ori- ing or reprecipitation (not included for radiocar- entation of the generally east-west–striking The approach to the investigation included bon-dated carbonate rinds). faults mapped in the area (Webb and Kanamori, photogeologic analysis to characterize the struc- Soil properties were described according to the 1985). The focal mechanisms for these events ture and geomorphology of the anticline; geo- methods and terminology described by the Soil agree well with those expected from the local logic mapping; surveying with engineering level Survey Staff (1975). Stages of carbonate mor- geology and the general north-south compres- to document deformation (folding) of geomor- phology were described using the nomenclature sion. Shallow-dipping nodal planes associated phic surfaces;
Recommended publications
  • Appendices D Through I
    Appendix D Operation & Maintenance Appendix D. Operation and Maintenance Plan Operation and Maintenance Plan This document presents the operation and maintenance (O&M) plan for Western Area Power Administration’s (Western) Sierra Nevada Region (SNR) transmission line systems. 1.0 Inspection/System Management In compliance with Western’s Reliability Centered Maintenance Program, Western would conduct aerial, ground, and climbing inspections of its existing transmission infrastructure since initial construction. The following paragraphs describe Western’s inspection requirements. Aerial Inspections Aerial inspections would be conducted a minimum of every 6 months by helicopter or small plane over the entire transmission system to check for hazard trees1 or encroaching vegetation, as well as to locate damaged or malfunctioning transmission equipment. Typically, aerial patrols would be flown between 50 and 300 feet above Western’s transmission infrastructure depending on the land use, topography, and infrastructure requirements. In general, the aerial inspections would pass over each segment of the transmission line within a one-minute period. Ground Inspections Annual ground inspections would check access to the towers/poles, tree clearances, fences, gates, locks, and tower hardware, and ensure that each structure would be readily accessible in the event of an emergency. They would allow for the inspection of hardware that would not be possible by air, and identify redundant or overgrown access roads that should be permanently closed and returned to their natural state. Ground inspections would typically be conducted by driving a pickup truck along the ROW and access roads. Detailed ground inspections would be performed on 20 percent of all lines and structures annually, for 100 percent inspection every 5 years.
    [Show full text]
  • 3. Seismicity of Southern California* by Charle S F
    3. SEISMICITY OF SOUTHERN CALIFORNIA* BY CHARLE S F. RICHTER t AND B ENO GUTENBERG l Evidence for regional seismicity is of four kinds : ( 1) geological ment of only a few inches along the line of the Manix fault; Instru­ field observation of fault phenomena, ( 2) historical documents, ( 3) mental locations of epicenters of aftershocks aligned nearly at right instrumental recording, and ( 4) fi eld investigation immediately after angles to this fault, suggesting that the observed displacement is li earthquakes. secondary result of a larger displacement on a fault with different Historical and instrumental data cover a very small part of ge­ strike in the basement rocks; (6) July 21, 1952. Arvin-Tehachapi ological time, and thus constitute only a snapshot of the record, so earthquake, Kern County; probably thrust faulting, with surface to speak. They may furnish positive evidence of seismicity, but expression obscured and complicated by large-scale slumping and failure of earthquakes to occur on a given fault during a period of sliding; White Wolf fault. less than two centuries is no proof of quiescence. On the other hand, The historical record begins with a strong earthquake felt by the identifying faults as active on the basis of field evidence alone im­ Portola expedition on July 28, 1769, when the explorers were in plies an assumption that there have been no significant permanent camp along the Santa Ana River near the present townsite of Olive. changes in seismicity in a few tens of thousands of years. This Subsequent information for all of California is extremely scanty assumption is reasonable, but it does not necessarily apply without until 1850, and in southern California the record is imperfect for exception.
    [Show full text]
  • Displacements on the Imperial, Superstition Hills, and San Andreas Faults Triggered by the Borrego Mountain Earthquake1
    DISPLACEMENTS ON THE IMPERIAL, SUPERSTITION HILLS, AND SAN ANDREAS FAULTS TRIGGERED BY THE BORREGO MOUNTAIN EARTHQUAKE1 By CLARENCE R. ALLEN) SEISMOLOGICAL LABORATORY) CALIFORNIA INSTITUTE OF TECHNOLOGY) MAx WYss) LAMONT-DOHERTY GEOLOGICAL OBSERVATORY OF COLUMBIA UNIVERSITY} jAMES N. BRUNE) INSTITUTE OF GEOPHYSICS AND PLANETARY PHYSICS) UNIVERSITY OF CALIFORNIA} SAN DIEGO} AND ARTHUR GRANTZ and RoBERT E. WALLACE} U.S. GEOLOGICAL SuRVEY ABSTRACT INTRODUCTION The Borrego Mountain earthquake of April 9, 1968, trig­ The Borrego Mountain earthquake of April 9, 1968 gered small but consistent surface displacements on three (magnitude 6.4) was associated not only with a con­ faults far outside the source area and zone of aftershock activity. Right-lateral displacement of 1-2% em occurred spicuous surface-break in its source region along the along 22, 23, and 30 km of the Imperial, Superstition Hills, Coyote Creek fault (Clark, "Surface Rupture Along and San Andreas (Banning-Mission Cre.ek) faults, respec­ the Coyote Creek Fault," this volume), but also with tively, at distances of 70, 45, and 50 km from the epicenter. displacements far outside the epicentral region along Although these displacements were not noticed until 4 days three major faults in the Imperial Valley region to after the earthquake, their association with the earthquake is suggested by the freshness of the resultant en echelon the east and southeast of the epicenter (fig. 52). The 2 cracks at that time and by the absence of creep along most Imperial, Superstition Hills, and San Andreas faults of these faults during the year before or the year after the broke along segments at least 22, 23, and 30 km long, event.
    [Show full text]
  • Signature of Author:
    KINEMATICMODELS OF DEFORMATIONIN SOUTHERN CALIFORNIA CONSTRAINEDBY GEOLOGICAND GEODETICDATA Lori A. Eich S.B. Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology, 2003 SUBMITTEDTO THE DEPARTMENTOF EARTH, ATMOSPHERIC, AND PLANETARYSCIENCES IN PARTIALFULFILLMENT OF THE REQUIREMENTSFOR THE DEGREEOF AT THE MASSACHUSETTSINSTITUTE OF TECHNOLOGY I FEBRUARY2006 1 LIBRARIES O 2006 Massachusetts Institute of Technology. All rights reserved. Signature of Author: ....................................................................................:. ................................... Department of Earth, Atmospheric, and Planetary Sciences September 2 1,2005 Certified by: ...................................................%. .......... .%. .............. - ....- .. ......................................... Bradford H. Hager Cecil and Ida Green Professor of Earth Sciences Thesis Supervisor Accepted by: ................................................................................................................................. Maria T. Zuber E. A. Griswold Professor of Geophysics Head, Department of Earth, Atmospheric, and Planetary Sciences Kinematic Models of Deformation in Southern California Constrained by Geologic and Geodetic Data Lori A. Eich Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on January 20,2006, in partial fulfillment of the requirements for the degree of Master of Science in Earth, Atmospheric, and Planetary Sciences Abstract Using a standardized fault geometry based on
    [Show full text]
  • Environmental Assessment
    United States Department of Agriculture Environmental Forest Service Assessment January 2012 Frazier Mountain Project Mt. Pinos Ranger District, Los Padres National Forest Kern and Ventura County, California Frazier Mt. Project Errata Cover Sheet (dated May 21, 2012) for the Frazier Mt Project EA (dated January 19, 2012) The following list includes the Frazier Mt EA errata items and changes or additions to the Project Design Features (PDFs) agreed to by all parties during the Objection Resolution Process. • This errata sheet will be attached to the front of previously completed EA dated January 19, 2012. Errata #1 EA pages 36-43: Table 9- Project Design Features and Table 10 - Monitoring Activities • Replace existing Table 9- Project Design Features, with the following replacement Table 9. Table 9. Project Design Criteria by Resource Area Design Criteria Description of Design Criteria Silviculture SL-1 All project activity will use existing classified and unclassified roads. Removal of forest products would require travel by vehicles (such as tree skidding equipment) off of existing system roads to facilitate removal. These temporary roads will be closed and obliterated where necessary following product removal. Ground equipment (such as masticators, skidders, or feller-bunchers) will be restricted to slopes of less than 35%, except for occasional pitches up to 50%. SL-2 When chipping is employed, chip depth should be no more than 2 inches scattered across no more than 75% of the project area. SL-3 In all units, as soon as possible, and no longer than 24 hours after tree cutting, all activity-created fir and pine tree stumps greater or equal to 14-inches in diameter would be treated with a borax compound (Sporax) to inhibit the spread of annosus root disease.
    [Show full text]
  • Region of the San Andreas Fault, Western Transverse Ranges, California
    Thrust-Induced Collapse of Mountains— An Example from the “Big Bend” Region of the San Andreas Fault, Western Transverse Ranges, California By Karl S. Kellogg Scientific Investigations Report 2004–5206 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Reston, Virginia: 2004 For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225 For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. iii Contents Abstract ……………………………………………………………………………………… 1 Introduction …………………………………………………………………………………… 1 Geology of the Mount Pinos and Frazier Mountain Region …………………………………… 3 Fracturing of Crystalline Rocks in the Hanging Wall of Thrusts ……………………………… 5 Worldwide Examples of Gravitational Collapse ……………………………………………… 6 A Spreading Model for Mount Pinos and Frazier Mountain ………………………………… 6 Conclusions …………………………………………………………………………………… 8 Acknowledgments …………………………………………………………………………… 8 References …………………………………………………………………………………… 8 Illustrations 1. Regional geologic map of the western Transverse Ranges of southern California …………………………………………………………………………… 2 2. Simplified geologic map of the Mount Pinos-Frazier Mountain region …………… 2 3. View looking southeast across the San Andreas rift valley toward Frazier Mountain …………………………………………………………………… 3 4. View to the northwest of Mount Pinos, the rift valley (Cuddy Valley) of the San Andreas fault, and the trace of the Lockwood Valley fault ……………… 3 5.
    [Show full text]
  • 2019 Scec Annual Technical Report
    1 2019 SCEC ANNUAL TECHNICAL REPORT - SCEC Award 19031 Evaluate & Refine 3D Fault and Deformed Surface Geometry to Update & Improve the SCEC Community Fault Model Craig Nicholson Marine Science Institute, University of California, Santa Barbara, CA 93106-6150 Summary Since SCEC3, I and my colleagues Andreas Plesch, Chris Sorlien, John Shaw, Egill Hauksson, and now Scott Marshall continue to make steady and significant improvements to the SCEC Community Fault Model (CFM), culminating in the release of CFM-v5.3 [Nicholson et al., 2019]. This on-going systematic update represents a substantial improvement of 3D fault models for southern California. The CFM-v3 fault set was expanded from 170 faults to over 860 fault objects and alternative representations in CFM- v5.3 that define nearly 400 faults organized into 106 complex fault systems (Fig.1). Most of these updated 3D fault models were developed by UCSB, or to which UCSB made significant contributions. This includes all the major fault models of major fault systems (e.g., San Andreas, San Jacinto, Elsinore- Laguna Salada, Newport-Inglewood, Imperial, Garlock, etc.), and most major faults in the Mojave, Eastern & Western Transverse Ranges, offshore Borderland, and updated faults within designated Special Fault Study or Earthquake Gate Areas (Fig.1) [Nicholson et al., 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019; Sorlien et al, 2012, 2014, 2015, 2016; Sorlien and Nicholson, 2015]. These new models allow for more realistic, curviplanar, complex 3D fault geometry, including changes in dip and dip direction along strike and down dip, based on the changing patterns of earthquake hypocenter and nodal plane alignments and, where possible, imaging subsurface fault geometry with industry seismic reflection data.
    [Show full text]
  • Summary of North American Blancan Nonmarine Mollusks1
    MALACOLOGIA , 1966, 4(1): 1-172 SUMMARY OF NORTH AMERICAN BLANCAN NONMARINE MOLLUSKS1 D. W. Taylor U. S. Geological Survey, and Research Associate, University of Michigan Museum of Zoology, Ann Arbor, Michigan, U. S. A. ABSTRACT All known North American nonmarine mollusks of Blancan (late Pliocene and early Pleistocene) age have been here fitted into the available framework of associated fossils, physical stratigraphy and radiogenic potassium-argon dates. Many of the independently dated molluscan assemblages are so similar to other faunas that most of the fossils summarized can be assigned confidently to the Blancan age. These assignments permitted compilation of lists of last appear- ances of genera and families that are unknown during or after Blancan times. About 50-55 Blancan assemblages are known, and together with about 10-15 older or younger faunas included for convenience of discussion they are summarized under 57 local geographic headings (map, Fig. 1). For each local assemblage the following data have been given so far as possi- ble: location, previous references to mollusks, stratigraphic unit and most recent geologic maps, number of species of mollusks, mention of other fossils from the same locality or formation, age, institution where fossils are preserved, and most recent topographic maps. The detail of treatment varies widely, according to available information, progress of knowledge since previous liter- ature and the usefulness of new information. Lists of species are included usually only if the fauna is revised or first recorded in this paper, but the references to previous work are intended to be complete. The Blancan faunas from the Great Plains region (Nebraska, Kansas, Okla- homa, Texas), and from Arizona, are generally similar and include mainly widespread living species.
    [Show full text]
  • 4.6 Geologic and Seismic Hazards
    METROPOLITAN BAKERSFIELD METROPOLITAN BAKERSFIELD GENERAL PLAN UPDATE EIR 4.6 GEOLOGIC AND SEISMIC HAZARDS The purpose of this Section is to describe the geologic and seismic setting of the Bakersfield Metropolitan area, identify potential impacts associated with implementation of the General Plan Update, reference General Plan goals, policies, and standards, and, where necessary, recommends mitigation measures to reduce the significance of impacts. The issues addressed in this section include risks associated with: faults, strong seismic ground shaking, seismic related ground failure such as liquefaction, landslides, and unstable geologic units and/or soils. ENVIRONMENTAL SETTING GEOLOGY Geologic Structure The Metropolitan Bakersfield area is a part of the Great Valley Geomorphic Province of California which is an alluvial plain, about 50 miles wide and 400 miles long, between the Coast Ranges and Sierra Nevada. The Great Valley is drained by the Sacramento and San Joaquin rivers, which join and enter San Francisco Bay. The southern part of the Great Valley is the San Joaquin Valley. The Valley is a northwesterly trending trough (geocycline) filled with immense thickness of sediments (estimated at 40,000 feet at the axis) deposited from surrounding mountains. Streams flowing westerly from the Sierra Nevada have eroded and deposited materials into the trough, forming alluvial fans at the surface. The largest of these in the Plan area is the Kern River fan, covering about 300 square miles of the valley and made up of sand, silt and clay deposits. The Kern River flood plain is incised into the upper part of the fan, north of downtown Bakersfield, and spread out across the broad, flat lower fan to the southwest.
    [Show full text]
  • Transverse Ranges - Wikipedia, the Free Encyclopedia
    San Gabriel Mountains - Field Trip http://www.csun.edu/science/geoscience/fieldtrips/san-gabriel-mts/index.html Sourcebook Home Biology Chemistry Physics Geoscience Reference Search CSUN San Gabriel Mountains - Field Trip Science Teaching Series Geography & Topography The Sourcebook for Teaching Science Hands-On Physics Activities Tour - The route of the field trip Hands-On Chemistry Activities GPS Activity HIstory of the San Gabriels Photos of field trip Internet Resources Geology of the San Gabriel Mountains I. Developing Scientific Literacy 1 - Building a Scientific Vocabulary Plate Tectonics, Faults, Earthquakes 2 - Developing Science Reading Skills 3 - Developing Science Writing Skills Rocks, Minerals, Geological Features 4 - Science, Technology & Society Big Tujunga Canyon Faults of Southern California II. Developing Scientific Reasoning Gneiss | Schist | Granite | Quartz 5 - Employing Scientific Methods 6 - Developing Scientific Reasoning Ecology of the San Gabriel Mountains 7 - Thinking Critically & Misconceptions Plant communities III. Developing Scientific Animal communities Understanding Fire in the San Gabriel Mountains 8 - Organizing Science Information Human impact 9 - Graphic Oganizers for Science 10 - Learning Science with Analogies 11 - Improving Memory in Science Meteorology, Climate & Weather 12 - Structure and Function in Science 13 - Games for Learning Science Inversion Layer Los Angeles air pollution. Åir Now - EPA reports. IV. Developing Scientific Problem Climate Solving Southern Calfirornia Climate 14 - Science Word Problems United States Air Quality blog 15 - Geometric Principles in Science 16 - Visualizing Problems in Science 1 of 2 7/14/08 12:56 PM San Gabriel Mountains - Field Trip http://www.csun.edu/science/geoscience/fieldtrips/san-gabriel-mts/index.html 17 - Dimensional Analysis Astronomy 18 - Stoichiometry 100 inch Mount Wilson telescope V.
    [Show full text]
  • Insights from Lowtemperature Thermochronometry Into
    TECTONICS, VOL. 32, 1602–1622, doi:10.1002/2013TC003377, 2013 Insights from low-temperature thermochronometry into transpressional deformation and crustal exhumation along the San Andreas fault in the western Transverse Ranges, California Nathan A. Niemi,1 Jamie T. Buscher,2 James A. Spotila,3 Martha A. House,4 and Shari A. Kelley 5 Received 21 May 2013; revised 21 October 2013; accepted 28 October 2013; published 20 December 2013. [1] The San Emigdio Mountains are an example of an archetypical, transpressional structural system, bounded to the south by the San Andreas strike-slip fault, and to the north by the active Wheeler Ridge thrust. Apatite (U-Th)/He and apatite and zircon fission track ages were obtained along transects across the range and from wells in and to the north of the range. Apatite (U-Th)/He ages are 4–6 Ma adjacent to the San Andreas fault, and both (U-Th)/He and fission track ages grow older with distance to the north from the San Andreas. The young ages north of the San Andreas fault contrast with early Miocene (U-Th)/He ages from Mount Pinos on the south side of the fault. Restoration of sample paleodepths in the San Emigdio Mountains using a regional unconformity at the base of the Eocene Tejon Formation indicates that the San Emigdio Mountains represent a crustal fragment that has been exhumed more than 5 km along the San Andreas fault since late Miocene time. Marked differences in the timing and rate of exhumation between the northern and southern sides of the San Andreas fault are difficult to reconcile with existing structural models of the western Transverse Ranges as a thin-skinned thrust system.
    [Show full text]
  • Signature Redacted for Privacy. Robeqs. Yeats
    AN ABSTRACT OF THE DISSERTATION OF Barbara Jean Ellis for the degree of Doctor of Philosophy in Geology presented on May 12, 1994, Title: Changing Tectonic Regimes in the Southern Salinian Block: Extension, Strike-Slip Faulting. Compression and Rotation in the Cuyama Valley, Ca1ifornia ,.Signature redacted forprivacy. Abstract approved: RobeqS.Yeats During the Cenozoic, tectonics in the Cuyama basin of the southeastern Salinian block changed from extension to strike-slip faulting to compression and rotation. During the Oligocene-early Miocene, the Cuyama basin was adjacent to the southern Mojave region and part of that extensional tectonic regime. Many present-day reverse faults have an extensional history. At -P23 Ma, strike-slip faulting began, and the Cuyama basin was part of a zone of distributed shear between the North American and Pacific plates. The Russell fault, which is the oldest documented right-lateral fault in the region, began movement at -P23 Ma which continued until 4 Ma. Tracing its 29 km of slip south of the Big Pine fault is problematic.It may connect with the Blue Rock fault below the Cuyama Badlands, and then correlate with the Clemens Well-Fenner-San Francisquito fault segments, another early strand of the San Andreas fault system to the south. An associated left-lateral fault is proposed to underlie the southeast Caliente Range. The Cox normal fault, which was active during deposition of the Saltos Shale member of the Monterey Formation, is another structure associated with the early right-lateral shear. Compressional tectonics have occurred more recently. The Caliente Range is moving south on the Whiterock and Morales thrusts; the Sierra Madre is moving north on the South Cuyama and Ozena faults.
    [Show full text]