Summary of North American Blancan Nonmarine Mollusks1

Total Page:16

File Type:pdf, Size:1020Kb

Summary of North American Blancan Nonmarine Mollusks1 MALACOLOGIA , 1966, 4(1): 1-172 SUMMARY OF NORTH AMERICAN BLANCAN NONMARINE MOLLUSKS1 D. W. Taylor U. S. Geological Survey, and Research Associate, University of Michigan Museum of Zoology, Ann Arbor, Michigan, U. S. A. ABSTRACT All known North American nonmarine mollusks of Blancan (late Pliocene and early Pleistocene) age have been here fitted into the available framework of associated fossils, physical stratigraphy and radiogenic potassium-argon dates. Many of the independently dated molluscan assemblages are so similar to other faunas that most of the fossils summarized can be assigned confidently to the Blancan age. These assignments permitted compilation of lists of last appear- ances of genera and families that are unknown during or after Blancan times. About 50-55 Blancan assemblages are known, and together with about 10-15 older or younger faunas included for convenience of discussion they are summarized under 57 local geographic headings (map, Fig. 1). For each local assemblage the following data have been given so far as possi- ble: location, previous references to mollusks, stratigraphic unit and most recent geologic maps, number of species of mollusks, mention of other fossils from the same locality or formation, age, institution where fossils are preserved, and most recent topographic maps. The detail of treatment varies widely, according to available information, progress of knowledge since previous liter- ature and the usefulness of new information. Lists of species are included usually only if the fauna is revised or first recorded in this paper, but the references to previous work are intended to be complete. The Blancan faunas from the Great Plains region (Nebraska, Kansas, Okla- homa, Texas), and from Arizona, are generally similar and include mainly widespread living species. Blancan and post-Blancan molluscan change has been due mainlyto the progressive extinction of relatively few species, and to changes in distribution of extant species caused by changes in local habitat and regional climate. Blancan faunas from the western U. S. A. (California, Oregon, Idaho, Nevada, Utah, Wyoming) are substantially different from one another and from the living fauna. They include many extinct species and genera, and some families region- ally extinct in North America that survive elsewhere, as well as some completely extinct families. Blancan molluscan change in the western U. S. A. was due to some local evolution, as well as termination of lineages. Post-Blancan change has been due mainly to drastic extinctions associated with draining or filling of lake basins, volcanism, changes in drainage patterns, widespread topographic changes and climatic change. In contrast to Blancan times, now scarcely any mollusks are restricted to a single lake basin; formerly local endemism was characteristic of most of the western faunas. The living freshwater molluscan fauna east and west of the continental divide shows contrasts like that of the Blancan faunas. To the east are more widespread species, with no local endemic forms, but to the west local endemic species are 1Publication authorized by the Director, U. S. Geological Survey. (1) 2 D. W. TAYLOR widespread. The eastern limit of Recent local endemism in Utah and western Wyoming (map, Fig. 2) corresponds approximately to the eastern limit in the region of Blancan deposits (Fig. 1). This correlation, together with data from Blancan faunas, supports 2 propositions that apply to freshwater mollusks gener- ally in North America and perhaps everywhere: (a) species of widespread habitats have relatively wide geographic and geologic distribution; (b) tectonic activity promotes taxonomic differentiation. In western North America the differences between the Blancan faunas of local basins are so great that no clear pattern is evident in the present state of know- ledge. The nearest approach to a regional pattern is the occurrence of common -a or closely related species in southern Idaho and in the San Joaquin Valley of California. This affinity is shown by Blancan and pre-Blancan species, and even by a few living forms. Presumably there was a former river connection between the 2 areas; if so, it was of early to middle Pliocene age, as that is the age of the oldest pertinent fossils and Blancan faunas are substantially different. The geographic pattern of distribution to which the plurality of living west American freshwater mollusks are related is a crudely fishhook-shaped belt in and close to the northern and western edges of the Great Basin (Fig. 7). More Blancan fossils have affinities within this "fishhook" than within the Idaho-Cali- fornian pattern. Thus it seems that Blancan or immediately pre-Blancan events rearranged drainage and molluscan distribution to form this fishhook-like pattern, and that the modern fauna retains a marked stamp from those changes. Supporting data include a list of all of the nominal species described from localities discussed in the text: included are all extinct species described from specimens of Blancan age, and a few older and younger ones. Data provided for each of 140 names include reference to original description, revised geographic and geologic location of type locality, location of type and synonymy. These species are listed in an outline of classification involving a number of changes in rank, generic assignment, and synonymy that are not explicitly discussed but have been listed in a section "Taxonomic changes". Only a few new ta.xa have been proposed, all in the gastropods. They include the Pliopholygidae, a new family (Viviparacea); Calibasis, Oreobasis and Idabasis, 3 new subgenera of Juga (Pleuroceridae); and Savaginius, a new genus (Hydrobiidae). CONTENTS Page Page Tectonism and evolution .............. 14 Summary ...................................... 16 INTRODUCTION 6 Abbreviations ................................. 6...... BIOGEOGRAPHY OF BLANCAN FAUNAS 16 THE BLANCAN AGE .............. 6 Hemphillian last appearances . 7 SUMMARY OF LOCALITIES ......... 27 Blancan last appearances . 7 1. Ringold Formation, Washington 28 PLIOCENE-PLEISTOCENE 2. Butte Valley, California . • • . 29 LIMIT ............................................ 7 3. Yonna Formation, Oregon • • . 29 EARLY PLEISTOCENE IN THE 4. Summer Lake, Oregon ............ 31 GREAT PLAINS .............................. 8............ 5. Goose Lake, California- Oregon 32 SEQUENCE WITHIN BLANCAN 6. Warner Lakes, Oregon. 32 FAUNAS 10 7. Danforth Formation, DIFFERENTIATION IN BLANCAN Oregon 32 FAUNAS 10 8. Tehama Formation, Widespread species and habitats . 14 California 36 BLANCAN NONMARINE MOLLUSKS 3 Contents (cont.) Page Page 34. Glenns Ferry Formation, 9. Cache Formation, Oregon-Idaho .......................... 70 California ............................ 37 35. Salt Lake Group, Marsh 10. Petaluma Formation, Creek Valley, Idaho ................ 78 California ............................ 37 36. Cache Valley Formation, 11. Santa Clara Formation, Gentile Valley, Idaho .............. 81 California ............................ 41 37. Cache Valley Formation, 12. Tassajero Formation, Utah ........................................ 82 California ............................ 45 38. Unnamed formation, Jackson 13. Livermore Gravels, Hole, Wyoming ....................... 83 California ............................ 45 39. Unnamed formation, Star 14. Purisima Group, Valley, Wyoming ..................... 84 California ............................ 46 40. Colorado River area, 15. San Benito Gravels, California-Arizona ....... 91 California 46 41. Verde Formation, Arizona . 92 16. Northeast of Kettleman Hills, 42. Lake beds in Payson Basin, California 47 Arizona ................................... 92 17. Tulare Formation, 43. Lake beds in San Carlos Kreyenhagen Hills ................... 48 Basin, Arizona ....................... 93 18. Kettleman Hills, 44. Red Knolls, Arizona .............. 93 California 49 45. Benson local fauna, 19. Paso Robles Formation, Arizona 93 California ............................ 50 46. Tusker local fauna, 20. Lost Hills oil field, Arizona ................................... 94 California ............................ 51 47. White Cone local fauna, 21. Buttonwillow gas field, Arizona ................................... 95 California ............................ 51 48. Sand Draw local fauna, 22. McKittrick area, Nebraska ................................. 95 California ............................ 51 49. Iowa Point, Kansas ................ 96 23. Elk Hills and Midway-Sunset 50. Saw Rock Canyon local oil fields, California .............. 52 fauna, Kansas .......................... 96 24. San Pedro Sand, 51a. Rexroad local fauna, California ............................ 52 Kansas 96 25. Bautista Formation, 51b. Bender local fauna, California ............................ 55 Kansas 102 26. Brawley Formation, 51c. Spring Creek local fauna, California ............................ 55 Kansas 103 27. Palm Spring Formation, 51d. Deer Park local fauna, California ............................ 61 Kansas 103 28. Mopung Hills local fauna, 51e. Sanders local fauna, Nevada ................................. 61 Kansas 103 29. Lake beds in Mono Basin, 52a. Dixon local fauna, California 66 Kansas 104 30. Lake beds at Sodaville, 52b. Swingle locality, Kansas . 104 Nevada ................................. 66 53. Buis Ranch local fauna, 31. Lake beds in Owens Valley, Oklahoma 104 California ............................ 67 54. Red Corral local fauna, 32. Allison Ranch, Nevada ............ 68 Texas
Recommended publications
  • Download Full Article 190.3KB .Pdf File
    Memoirs of" the Museum of Victoria 56(2):43 1-433 (1997) 28 February 1997 https://doi.org/10.24199/j.mmv.1997.56.34 A CONSERVATION PROGRAMME FOR THE PARTULID TREE SNAILS OF THE PACIFIC REGION Paul Pearce-Kelly. Dave Clarke, Craig Walker and Paul Atkin Invertebrate Conservation Centre, Zoological Society of London. Regent's Park. London NW1 4RY, UK Abstract Pearce-Kelly, P., Clarke, D., Walker, C. and Atkin, P., 1 997. A conservation programme for - the partulid tree snails of the Pacific region. Memoirs ofthe Museum of Victoria 56(2): 43 1 433. Throughout the Pacific numerous endemic mollusc species have either become extinct in the wild or are currently facing the threat of extinction as a result of introduction of the predatory snail Euglandina rosea and the New Guinea flatworm Platyclemus manokwari. Without determined conservation efforts, including the establishment of ex situ breeding programmes, much of the region's endemic snail fauna will be lost. Since 1986 a collabor- ative international conservation programme has been in place for partulid tree snails. The participating institutions currently maintain a total of 33 taxa in culture (comprising > 12 000 snails). The conservation status of all 1 17 partulid species has been assessed usingthe Conservation Action Management Plan (CAMP) process. Target ex situ population sizes required to maintain 90% of starting heterozygosity over 100 years have been calculated using the analytical model programme CAPACITY (Pearce-Kelly et al., 1994) The genetic management requirements of the breeding programme have necessitated the development of a colony management computer database enabling demographic management and analy- sis of the populations.
    [Show full text]
  • Radiation and Decline of Endodontid Land Snails in Makatea, French Polynesia
    Zootaxa 3772 (1): 001–068 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3772.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:1A1578DD-4B10-4F70-8CB6-03B0ED07AB68 ZOOTAXA 3772 Radiation and decline of endodontid land snails in Makatea, French Polynesia ANDRÉ F. SARTORI1, OLIVIER GARGOMINY2 & BENOÎT FONTAINE3 Muséum National d’Histoire Naturelle, 55 rue Buffon, 75005 Paris, France. E-mail: [email protected]; [email protected]; [email protected] Magnolia Press Auckland, New Zealand Accepted by J. Nekola: 17 Dec. 2013; published: 3 Mar. 2014 ANDRÉ F. SARTORI, OLIVIER GARGOMINY & BENOÎT FONTAINE Radiation and decline of endodontid land snails in Makatea, French Polynesia (Zootaxa 3772) 68 pp.; 30 cm. 3 Mar. 2014 ISBN 978-1-77557-348-7 (paperback) ISBN 978-1-77557-349-4 (Online edition) FIRST PUBLISHED IN 2014 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2014 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 3772 (1) © 2014 Magnolia Press SARTORI ET AL.
    [Show full text]
  • Mollusca, Bivalvia) Бассейна Реки Таз (Западная Сибирь)
    Ruthenica, 201, vol. 30, No. 1: 13-32. © Ruthenica, 2020 Published online 11.02.2020 http: ruthenica.net Материалы к фауне двустворчатых моллюсков (Mollusca, Bivalvia) бассейна реки Таз (Западная Сибирь) Е.С. БАБУШКИН 1, 2, 3 1Санкт-Петербургский государственный университет, Лаборатория макроэкологии и биогеографии беспозвоночных. 199034, Санкт-Петербург, Университетская набережная, 7–9; РОССИЯ. E-mail: [email protected] 2Сургутский государственный университет. 628403, Сургут, пр. Ленина, 1; РОССИЯ. 3Омский государственный педагогический университет. 644099, Омск, набережная Тухачевского, 14; РОССИЯ. РЕЗЮМЕ. По результатам изучения собственных сборов автора фауна пресноводных двустворчатых моллюсков (Mollusca, Bivalvia) бассейна р. Таз включает 70 видов из 6 родов, 4 подсемейств и 2 семейств. Приведен аннотированный список видов двустворчатых моллюсков бассейна р. Таз. Анно- тации видов содержат сведения об их ареале, находках в Западной Сибири и бассейне Таза, биономике и относительном обилии в водоемах и водотоках рассматриваемого бассейна. Впервые для района исследований зарегистрировано 45 видов. Распределение видов по представленности в составе коллек- ции и по встречаемости крайне неравномерное, видовое богатство большинства малакоценозов невы- сокое. Редкими в составе коллекции являются 22 вида. Наибольшее видовое богатство зарегистрирова- но в придаточных водоемах рек, реках и ручьях, наименьшее – во временных водоемах. В фауне двустворчатых моллюсков Таза преобладают широкораспространенные (космополитные, голаркти- ческие, палеарктические)
    [Show full text]
  • Kathryn E. Perez, Ph.D. Department of Biology, University of Texas Rio Grande Valley 1201 W
    2019 CV Kathryn E. Perez, Ph.D. Department of Biology, University of Texas Rio Grande Valley 1201 W. University Dr., Edinburg, TX 78539 Phone: 956-665-7145 Email: [email protected] URL: http://northamericanlandsnails.org/ Education 2005 Ph.D. Biological Sciences, University of Alabama. 2001 M.S. Biology, Angelo State University. 1998 B.S. Biology, Angelo State University. Professional Experience Assistant Professor, University of Texas Rio Grande Valley, 2014-present. Assistant Professor, University of Texas Pan-American/University of Texas Rio Grande Valley, 2014-2015. Undergraduate Program Coordinator, Biology, University of Texas Rio Grande Valley, 2017-present. Associate Professor, University of Wisconsin at La Crosse, 2012-2014. Assistant Professor, University of Wisconsin at La Crosse, 2008-2012. Member, Assessment of Competence in Experimental Design in Biology (ACED-Bio) Research Coordination Network 2014-2019. Associate, UWL Institute for Latina/o and Latin American Studies. 2008-2014. Research Associate, Section of Mollusks, Carnegie Museum of Natural History, 2005-present. Postdoctoral Fellow, Seeding Postdoctoral Innovators in Research and Education (NIH-SPIRE), 2005-2008. University of North Carolina at Chapel Hill. Visiting Research Scholar, Duke University, Durham NC, Postdoctoral Research with Dr. Cliff Cunningham, 2005-2008. Visiting Assistant Professor, North Carolina Central University, Durham NC, 2007. Graduate Fellow, Integrative Graduate Education and Research Traineeship (NSF-IGERT) program in the Freshwater Sciences,
    [Show full text]
  • A New Approach to an Old Conundrumdna Barcoding Sheds
    Molecular Ecology Resources (2010) doi: 10.1111/j.1755-0998.2010.02937.x DNA BARCODING A new approach to an old conundrum—DNA barcoding sheds new light on phenotypic plasticity and morphological stasis in microsnails (Gastropoda, Pulmonata, Carychiidae) ALEXANDER M. WEIGAND,* ADRIENNE JOCHUM,* MARKUS PFENNINGER,† DIRK STEINKE‡ and ANNETTE KLUSSMANN-KOLB*,† *Institute for Ecology, Evolution and Diversity, Siesmayerstrasse 70, Goethe-University, 60323 Frankfurt am Main, Germany, †Research Centre Biodiversity and Climate, Siesmayerstrasse 70, 60323 Frankfurt am Main, Germany, ‡Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road West, Guelph, ON N1G 2V7, Canada Abstract The identification of microsnail taxa based on morphological characters is often a time-consuming and inconclusive process. Aspects such as morphological stasis and phenotypic plasticity further complicate their taxonomic designation. In this study, we demonstrate that the application of DNA barcoding can alleviate these problems within the Carychiidae (Gastro- poda, Pulmonata). These microsnails are a taxon of the pulmonate lineage and most likely migrated onto land indepen- dently of the Stylommatophora clade. Their taxonomical classification is currently based on conchological and anatomical characters only. Despite much confusion about historic species assignments, the Carychiidae can be unambiguously subdi- vided into two taxa: (i) Zospeum species, which are restricted to karst caves, and (ii) Carychium species, which occur in a broad range of environmental conditions. The implementation of discrete molecular data (COI marker) enabled us to cor- rectly designate 90% of the carychiid microsnails. The remaining cases were probably cryptic Zospeum and Carychium taxa and incipient species, which require further investigation into their species status. Because conventional reliance upon mostly continuous (i.e.
    [Show full text]
  • Mammalia, Carnivora) from the Blancan of Florida
    THREE NEW PROCYONIDS (MAMMALIA, CARNIVORA) FROM THE BLANCAN OF FLORIDA Laura G. Emmert1,2 and Rachel A. Short1,3 ABSTRACT Fossils of the mammalian family Procyonidae are relatively abundant at many fossil localities in Florida. Analysis of specimens from 16 late Blancan localities from peninsular Florida demonstrate the presence of two species of Procyon and one species of Nasua. Procyon gipsoni sp. nov. is slightly larger than extant Procyon lotor and is distinguished by five dental characters including a lack of a crista between the para- cone and hypocone on the P4, absence of a basin at the lingual intersection of the hypocone and protocone on the P4, and a reduced metaconule on the M1. Procyon megalokolos sp. nov. is significantly larger than extant P. lotor and is characterized primarily by morphology of the postcrania, such as an expanded and posteriorly rotated humeral medial epicondyle, more prominent tibial tuberosity, and more pronounced radioulnar notch. Other than larger size, the dentition of P. megalokolos falls within the range of variation observed in extant P. lotor, suggesting that it may be an early member of the P. lotor lineage. Nasua mast- odonta sp. nov. has a unique accessory cusp on the m1 as well as multiple morphological differences in the dentition and postcrania, such as close appression of the trigonid of the m1 and a less expanded medial epicondyle of the humerus. We also synonymize Procyon rexroadensis, formerly the only known Blancan Procyon species in North America, with P. lotor due to a lack of distinct dental morphological features observed in specimens from its type locality in Kansas.
    [Show full text]
  • The Great American Biotic Interchange: Patterns and Processes Author(S): S
    The Great American Biotic Interchange: Patterns and Processes Author(s): S. David Webb Source: Annals of the Missouri Botanical Garden, Vol. 93, No. 2 (Aug., 2006), pp. 245-257 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/40035724 . Accessed: 08/04/2014 23:14 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Missouri Botanical Garden Press is collaborating with JSTOR to digitize, preserve and extend access to Annals of the Missouri Botanical Garden. http://www.jstor.org This content downloaded from 137.111.226.20 on Tue, 8 Apr 2014 23:14:05 PM All use subject to JSTOR Terms and Conditions THE GREAT AMERICAN BIOTIC S. David Webb2 INTERCHANGE: PATTERNS AND PROCESSES1 Abstract Whenthe Panamanianland bridgewas emplacedabout 2.7 Ma, it triggeredthe GreatAmerican Biotic Interchange(GABI), a major mingling of land mammal faunas between North and South America. Four families of northern immigrants (Procyonidae,Felidae, Tayassuidae,and Camelidae)diversified at moderaterates, while four others, Canidae, Mustelidae, Cervidae, and especially Muridae, evolved explosively. As a consequence, half of living South American genera are descendantsof northernimmigrants. The other major consequence of the interchangewas the conquest of tropical North Americaby immigrantsfrom Amazonia, an episode that justifies the term NeotropicalRealm.
    [Show full text]
  • The Birds (Aves) of Oromia, Ethiopia – an Annotated Checklist
    European Journal of Taxonomy 306: 1–69 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.306 www.europeanjournaloftaxonomy.eu 2017 · Gedeon K. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:A32EAE51-9051-458A-81DD-8EA921901CDC The birds (Aves) of Oromia, Ethiopia – an annotated checklist Kai GEDEON 1,*, Chemere ZEWDIE 2 & Till TÖPFER 3 1 Saxon Ornithologists’ Society, P.O. Box 1129, 09331 Hohenstein-Ernstthal, Germany. 2 Oromia Forest and Wildlife Enterprise, P.O. Box 1075, Debre Zeit, Ethiopia. 3 Zoological Research Museum Alexander Koenig, Centre for Taxonomy and Evolutionary Research, Adenauerallee 160, 53113 Bonn, Germany. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:F46B3F50-41E2-4629-9951-778F69A5BBA2 2 urn:lsid:zoobank.org:author:F59FEDB3-627A-4D52-A6CB-4F26846C0FC5 3 urn:lsid:zoobank.org:author:A87BE9B4-8FC6-4E11-8DB4-BDBB3CFBBEAA Abstract. Oromia is the largest National Regional State of Ethiopia. Here we present the first comprehensive checklist of its birds. A total of 804 bird species has been recorded, 601 of them confirmed (443) or assumed (158) to be breeding birds. At least 561 are all-year residents (and 31 more potentially so), at least 73 are Afrotropical migrants and visitors (and 44 more potentially so), and 184 are Palaearctic migrants and visitors (and eight more potentially so). Three species are endemic to Oromia, 18 to Ethiopia and 43 to the Horn of Africa. 170 Oromia bird species are biome restricted: 57 to the Afrotropical Highlands biome, 95 to the Somali-Masai biome, and 18 to the Sudan-Guinea Savanna biome.
    [Show full text]
  • Mammalia, Felidae, Canidae, and Mustelidae) from the Earliest Hemphillian Screw Bean Local Fauna, Big Bend National Park, Brewster County, Texas
    Chapter 9 Carnivora (Mammalia, Felidae, Canidae, and Mustelidae) From the Earliest Hemphillian Screw Bean Local Fauna, Big Bend National Park, Brewster County, Texas MARGARET SKEELS STEVENS1 AND JAMES BOWIE STEVENS2 ABSTRACT The Screw Bean Local Fauna is the earliest Hemphillian fauna of the southwestern United States. The fossil remains occur in all parts of the informal Banta Shut-in formation, nowhere very fossiliferous. The formation is informally subdivided on the basis of stepwise ®ning and slowing deposition into Lower (least fossiliferous), Middle, and Red clay members, succeeded by the valley-®lling, Bench member (most fossiliferous). Identi®ed Carnivora include: cf. Pseudaelurus sp. and cf. Nimravides catocopis, medium and large extinct cats; Epicyon haydeni, large borophagine dog; Vulpes sp., small fox; cf. Eucyon sp., extinct primitive canine; Buisnictis chisoensis, n. sp., extinct skunk; and Martes sp., marten. B. chisoensis may be allied with Spilogale on the basis of mastoid specialization. Some of the Screw Bean taxa are late survivors of the Clarendonian Chronofauna, which extended through most or all of the early Hemphillian. The early early Hemphillian, late Miocene age attributed to the fauna is based on the Screw Bean assemblage postdating or- eodont and predating North American edentate occurrences, on lack of de®ning Hemphillian taxa, and on stage of evolution. INTRODUCTION southwestern North America, and ®ll a pa- leobiogeographic gap. In Trans-Pecos Texas NAMING AND IMPORTANCE OF THE SCREW and adjacent Chihuahua and Coahuila, Mex- BEAN LOCAL FAUNA: The name ``Screw Bean ico, they provide an age determination for Local Fauna,'' Banta Shut-in formation, postvolcanic (,18±20 Ma; Henry et al., Trans-Pecos Texas (®g.
    [Show full text]
  • Some Thoughts and Personal Opinions About Molluscan Scientific Names
    A name is a name is a name: some thoughts and personal opinions about molluscan scientifi c names S. Peter Dance Dance, S.P. A name is a name is a name: some thoughts and personal opinions about molluscan scien- tifi c names. Zool. Med. Leiden 83 (7), 9.vii.2009: 565-576, fi gs 1-9.― ISSN 0024-0672. S.P. Dance, Cavendish House, 83 Warwick Road, Carlisle CA1 1EB, U.K. ([email protected]). Key words: Mollusca, scientifi c names. Since 1758, with the publication of Systema Naturae by Linnaeus, thousands of scientifi c names have been proposed for molluscs. The derivation and uses of many of them are here examined from various viewpoints, beginning with names based on appearance, size, vertical distribution, and location. There follow names that are amusing, inventive, ingenious, cryptic, ideal, names supposedly blasphemous, and names honouring persons and pets. Pseudo-names, diffi cult names and names that are long or short, over-used, or have sexual connotations are also examined. Pertinent quotations, taken from the non-scientifi c writings of Gertrude Stein, Lord Byron and William Shakespeare, have been incorporated for the benefi t of those who may be inclined to take scientifi c names too seriously. Introduction Posterity may remember Gertrude Stein only for ‘A rose is a rose is a rose’. The mean- ing behind this apparently meaningless statement, she said, was that a thing is what it is, the name invoking the images and emotions associated with it. One of the most cele- brated lines in twentieth-century poetry, it highlights the importance of names by a sim- ple process of repetition.
    [Show full text]
  • THE NAUTILUS (Quarterly)
    americanmalacologists, inc. PUBLISHERS OF DISTINCTIVE BOOKS ON MOLLUSKS THE NAUTILUS (Quarterly) MONOGRAPHS OF MARINE MOLLUSCA STANDARD CATALOG OF SHELLS INDEXES TO THE NAUTILUS {Geographical, vols 1-90; Scientific Names, vols 61-90) REGISTER OF AMERICAN MALACOLOGISTS JANUARY 30, 1984 THE NAUTILUS ISSN 0028-1344 Vol. 98 No. 1 A quarterly devoted to malacology and the interests of conchologists Founded 1889 by Henry A. Pilsbry. Continued by H. Burrington Baker. Editor-in-Chief: R. Tucker Abbott EDITORIAL COMMITTEE CONSULTING EDITORS Dr. William J. Clench Dr. Donald R. Moore Curator Emeritus Division of Marine Geology Museum of Comparative Zoology School of Marine and Atmospheric Science Cambridge, MA 02138 10 Rickenbacker Causeway Miami, FL 33149 Dr. William K. Emerson Department of Living Invertebrates Dr. Joseph Rosewater The American Museum of Natural History Division of Mollusks New York, NY 10024 U.S. National Museum Washington, D.C. 20560 Dr. M. G. Harasewych 363 Crescendo Way Dr. G. Alan Solem Silver Spring, MD 20901 Department of Invertebrates Field Museum of Natural History Dr. Aurele La Rocque Chicago, IL 60605 Department of Geology The Ohio State University Dr. David H. Stansbery Columbus, OH 43210 Museum of Zoology The Ohio State University Dr. James H. McLean Columbus, OH 43210 Los Angeles County Museum of Natural History 900 Exposition Boulevard Dr. Ruth D. Turner Los Angeles, CA 90007 Department of Mollusks Museum of Comparative Zoology Dr. Arthur S. Merrill Cambridge, MA 02138 c/o Department of Mollusks Museum of Comparative Zoology Dr. Gilbert L. Voss Cambridge, MA 02138 Division of Biology School of Marine and Atmospheric Science 10 Rickenbacker Causeway Miami, FL 33149 EDITOR-IN-CHIEF The Nautilus (USPS 374-980) ISSN 0028-1344 Dr.
    [Show full text]
  • A Ma Aeolake in Alacologi N the Moe Cal Analy
    Faculty of Sciences Department of Geology and Soil Science Research Unit Palaeontology Academic year 2009‐2010 Changes in surface waters: a malacological analysis of a Late Glacial and early Holocene palaeolake in the Moervaartdepression (Belgium). by Lynn Serbruyns Thesis submitted to obtain the degree of Master in Biology. Promotor: Prof. Dr. Jacques Verniers Co‐promotor: Prof. Dr. Dirk Van Damme Faculty of Sciences Department of Geology and Soil Science Research Unit Palaeontology Academic year 2009‐2010 Changes in surface waters: a malacological analysis of a Late Glacial and early Holocene palaeolake in the Moervaartdepression (Belgium). by Lynn Serbruyns Thesis submitted to obtain the degree of Master in Biology. Promotor: Prof. Dr. Jacques Verniers Co‐promotor: Prof. Dr. Dirk Van Damme Acknowledgements0 First of all, I would like to thank my promoter Prof. Jacques Verniers and Prof. Philippe Crombé for providing me with this interesting subject and for giving me the freedom to further extend the analysis beyond the original boundaries. Thanks to my co-promoter Prof. Dirk Van Damme who I could always contact with questions and who provided me with many articles on the subject. I also want to thank Prof. Keppens for giving me the opportunity to perform the isotope analysis at the VUB, even though technology let us down in the end. I would like to thank Koen Verhoeven for sacrificing part of his office and for aiding me with the sampling from the trench. Thanks to Mona Court-Picon for the numerous ways in which she helped me during the making of this thesis and for the nice talks.
    [Show full text]