Conservation Guidelines for Michigan Lakes and Associated Natural Resources

Total Page:16

File Type:pdf, Size:1020Kb

Conservation Guidelines for Michigan Lakes and Associated Natural Resources ATUR F N AL O R T E N S E O U M R T C R E A S STATE OF MICHIGAN P E DNR D M ICHIGAN DEPARTMENT OF NATURAL RESOURCES SR38 March 2006 Conservation Guidelines for Michigan Lakes and Associated Natural Resources Richard P. O’Neal and Gregory J. Soulliere www.michigan.gov/dnr/ FISHERIES DIVISION SPECIAL REPORT 38 MICHIGAN DEPARTMENT OF NATURAL RESOURCES FISHERIES DIVISION Special Report 38 March 2006 Conservation Guidelines for Michigan Lakes and Associated Natural Resources Richard P. O’Neal and Gregory J. Soulliere MICHIGAN DEPARTMENT OF NATURAL RESOURCES (DNR) MISSION STATEMENT “The Michigan Department of Natural Resources is committed to the conservation, protection, management, use and enjoyment of the State’s natural resources for current and future generations.” NATURAL RESOURCES COMMISSION (NRC) STATEMENT The Natural Resources Commission, as the governing body for the Michigan Department of Natural Resources, provides a strategic framework for the DNR to effectively manage your resources. The NRC holds monthly, public meetings throughout Michigan, working closely with its constituencies in establishing and improving natural resources management policy. MICHIGAN DEPARTMENT OF NATURAL RESOURCES NON DISCRIMINATION STATEMENT The Michigan Department of Natural Resources (MDNR) provides equal opportunities for employment and access to Michigan’s natural resources. Both State and Federal laws prohibit discrimination on the basis of race, color, national origin, religion, disability, age, sex, height, weight or marital status under the Civil Rights Acts of 1964 as amended (MI PA 453 and MI PA 220, Title V of the Rehabilitation Act of 1973 as amended, and the Americans with Disabilities Act). If you believe that you have been discriminated against in any program, activity, or facility, or if you desire additional information, please write: HUMAN RESOURCES Or MICHIGAN DEPARTMENT OF CIVIL RIGHTS Or OFFICE FOR DIVERSITY AND CIVIL RIGHTS MICHIGAN DEPARTMENT OF NATURAL RESOURCES CADILLAC PLACE US FISH AND WILDLIFE SERVICE PO BOX 30028 3054 W. GRAND BLVD., SUITE 3-600 4040 NORTH FAIRFAX DRIVE LANSING MI 48909-7528 DETROIT MI 48202 ARLINGTON VA 22203 For information or assistance on this publication, contact the MICHIGAN DEPARTMENT OF NATURAL RESOURCES, Fisheries Division, PO BOX 30446, LANSING, MI 48909, or call 517-373-1280. TTY/TDD: 711 (Michigan Relay Center) This information is available in alternative formats. ATUR F N AL O R T E N S E O U M R T C Printed under authority of Michigan Department of Natural Resources R E A S P E DNR D Total number of copies printed 100 — Total cost $613.75 — Cost per copy $6.14 M ICHIGAN Conservation Guidelines for Michigan Lakes Suggested Citation Format O’Neal, R. P., and G. J. Soulliere. 2006. Conservation guidelines for Michigan lakes and associated natural resources. Michigan Department of Natural Resources, Fisheries Special Report 38, Ann Arbor. ii Conservation Guidelines for Michigan Lakes Table of Contents List of Figures......................................................................................................................... iv List of Tables........................................................................................................................... v List of Appendices.................................................................................................................. vi Introduction ............................................................................................................................. 1 Natural Resources of Lakes and Management Considerations.............................................. 3 Characteristics of Michigan lakes............................................................................................ 5 Ecological features and processes of lakes and wetlands...................................................... 7 Water Quality ...................................................................................................................................... 8 Trophic State..................................................................................................................................... 10 Uplands, Including the Shoreline Ecotone........................................................................................12 Littoral Zone ...................................................................................................................................... 12 Pelagial and Profundal Zones........................................................................................................... 14 Bogs .................................................................................................................................................. 15 Beaver Impoundments...................................................................................................................... 15 Wetland Habitats............................................................................................................................... 15 Stresses and Threats to Natural Resources of Michigan Lakes ........................................... 17 Cumulative Effects of Small Modifications to Habitat ....................................................................... 18 Artificial Drainage.............................................................................................................................. 21 Water Temperature and Dissolved Oxygen...................................................................................... 21 Nutrient, Pesticide, and Chemical Pollutants....................................................................................21 Dams and Lake-Level Control .......................................................................................................... 22 Non-indigenous Species ................................................................................................................... 22 Shoreline Development..................................................................................................................... 23 Dredging and Filling .......................................................................................................................... 23 Aquatic Vegetation Control ............................................................................................................... 25 Swimmer’s Itch Control..................................................................................................................... 28 Boating and Shipping........................................................................................................................ 28 Resource Conservation Opportunities and Management Guidelines ................................... 28 Resource Assessments and Management Plans............................................................................. 29 Overall Development ........................................................................................................................ 29 Water Quality .................................................................................................................................... 30 Shoreline Development..................................................................................................................... 30 Dredging and Filling .......................................................................................................................... 31 Aquatic Vegetation............................................................................................................................ 31 Swimmer’s Itch.................................................................................................................................. 33 Dams and Lake-Level Control .......................................................................................................... 33 Non-indigenous Species ................................................................................................................... 33 Research........................................................................................................................................... 33 Acknowledgements...............................................................................................................34 Figures .................................................................................................................................. 35 Tables ................................................................................................................................... 40 References............................................................................................................................ 42 Appendices ........................................................................................................................... 52 iii Conservation Guidelines for Michigan Lakes List of Figures Figure 1. Lacustrine zones. Figure 2. Frequently observed ontogeny of shallow lake systems through marsh and swamp stages to dry landscape or to raised peat bog. Figure 3. Representation of the major pathways of the runoff phase of the hydrological cycle. Figure 4. Typical thermal stratification of a lake. Figure 5. Common ontogeny of four main types of lakes, each indicating general causal mechanisms regulating the trophic state. iv Conservation Guidelines for Michigan Lakes List of Tables Table 1. Water chemistry values for lakes in the Upper Peninsula of Michigan and the upper Great Lakes area (including
Recommended publications
  • Mollusca, Bivalvia) Бассейна Реки Таз (Западная Сибирь)
    Ruthenica, 201, vol. 30, No. 1: 13-32. © Ruthenica, 2020 Published online 11.02.2020 http: ruthenica.net Материалы к фауне двустворчатых моллюсков (Mollusca, Bivalvia) бассейна реки Таз (Западная Сибирь) Е.С. БАБУШКИН 1, 2, 3 1Санкт-Петербургский государственный университет, Лаборатория макроэкологии и биогеографии беспозвоночных. 199034, Санкт-Петербург, Университетская набережная, 7–9; РОССИЯ. E-mail: [email protected] 2Сургутский государственный университет. 628403, Сургут, пр. Ленина, 1; РОССИЯ. 3Омский государственный педагогический университет. 644099, Омск, набережная Тухачевского, 14; РОССИЯ. РЕЗЮМЕ. По результатам изучения собственных сборов автора фауна пресноводных двустворчатых моллюсков (Mollusca, Bivalvia) бассейна р. Таз включает 70 видов из 6 родов, 4 подсемейств и 2 семейств. Приведен аннотированный список видов двустворчатых моллюсков бассейна р. Таз. Анно- тации видов содержат сведения об их ареале, находках в Западной Сибири и бассейне Таза, биономике и относительном обилии в водоемах и водотоках рассматриваемого бассейна. Впервые для района исследований зарегистрировано 45 видов. Распределение видов по представленности в составе коллек- ции и по встречаемости крайне неравномерное, видовое богатство большинства малакоценозов невы- сокое. Редкими в составе коллекции являются 22 вида. Наибольшее видовое богатство зарегистрирова- но в придаточных водоемах рек, реках и ручьях, наименьшее – во временных водоемах. В фауне двустворчатых моллюсков Таза преобладают широкораспространенные (космополитные, голаркти- ческие, палеарктические)
    [Show full text]
  • Clams , Mussels
    KEYS TO THE FRESHWATER MS-Q-S MASTER COPY MACROINVERTEBRATES OF MASSACHUSETTS C --=;...-~---=-~-- /'""-,-----F NO. 1 : MOLLUSCA PELECYPODA ( Clams , Mussels ) Massachusetts Department of Environmental Quality Engineering DIVISION of WATER POLLUTION CONTROL Thomas C. McMahon, Director KEYSTO THE FRESHWATERM.'\CROINVERTEBRATES OF MASSACHUSETTS(No. 1): Mollusca Pelecypoda (clams, mussels) Douglas G. Smith Museum of zoology University of Massachusetts Amherst, Massachusetts and Museum of Comparative zoology Harvard University Cambridge, Massachusetts In Cooperation With The Ccmnonwealth of Massachusetts Technical Services Branch Department Environmental Quality Engineering Division of water Pollution Control Westborough, Massachusetts December, 1986 PUBLICATION: #14,676-56-300-12-86-CR Approved by the state Purchasing Agent TABLEOF CONTENTS PAGE PREFACE••• iii INTRODUCTION 1 CLASSIFICATIONOF MASSACHUSETTSFRESHWATER BIVALVES 8 HOWTO USE THE KEY . 11 PICTORIALKEY TO MASSACHUSETTSUNIONACEANS 15 GENERALKEY TO THE UNIONACEAAND CORBULACEAOF MASSACHUSETTS••• 17 DISTRIBUTIONOF MASSACHUSETTSE'RESI-JfNATER BIVALVES 42 GLOSSARYOF TERMSUSED IN KEY 46 BIBLIOGRAPHY 47 -ii- PREFACE The present work, concerning the identification of freshwater bivalve mollusks occurring in Massachusetts, represents the first of hopefully a series of guides dealing with the identification of benthic macroscopic invertebrates inhabiting the inland freshwaters of Massachusetts. The purpose of this and succeeding guides or handbooks is to introduce various groups of freshwater invertebrates to persons working in any of several areas of the freshwater ecology of Massachusetts. Although the guides are limited in tl1eir geographic scope to areas within the political boundaries of Massachusetts, many of the organisms treated, and information regarding their ecology and biology, will be applicable to neighboring regions. To increase the usefulness of mis and following guidebooks, complete regional bibliographies of me distribution of included species are provided.
    [Show full text]
  • Occurence of Pisidium Conventus Aff. Akkesiense in Gunma Prefecture
    VENUS 62 (3-4): 111-116, 2003 Occurence Occurence of Pisidium conventus aff.α kkesiense in Gunma Prefecture, Japan (Bivalvia: Sphaeriidae) Hiroshi Hiroshi Ieyama1 and Shigeru Takahashi2 Faculty 1Faculty of Education, Ehime Universi η,Bun わ1ocho 3, 2 3, Ehime 790-857 スJapan; [email protected] Yakura Yakura 503-2, Agatsuma-cho, Gunma 377 同 0816, Japan Abstract: Abstract: Shell morphology and 姐 atomy of Pisidium conventus aff. akkesiense collect 巴d from from a fish-culture pond were studied. This species showed similarities to the subgenus Neopisidium Neopisidium with respect to ligament position and gill, res 巴mbling P. conventus in anatomical characters. characters. Keywords: Keywords: Pisidium, Sphaeriidae, gill, mantle, brood pouch Introduction Introduction Komiushin (1999) demonstrated that anatomical features are useful for species diagnostics 佃 d classification of Pisidium, including the demibranchs, siphons, mantle edge and musculature, brood brood pouch, and nephridium. These taxonomical characters are still poorly known in Japanese species species of Pisidium. An anatomical study of P. casertanum 仕om Lake Biwa (Komiushin, 1996) was 祖巴arly report. Onoyama et al. (2001) described differences in the arrangement of gonadal tissues tissues in P. parvum and P. casertanum. Mori (1938) classified Japanese Pisidium into 24 species and subspecies based on minor differences differences in shell characters. For a critical revision of Japanese Pisidium, it is important to study as as many species as possible from various locations in and around Japan. This study includes details details of shell and soft p 紅 t mo 中hology of Pisidium conventus aff. akkesiense from Gunma Prefecture Prefecture in central Honshu.
    [Show full text]
  • Table of Contents 2
    Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels 1 March 2011 Austin Brady Richards and D. Christopher Rogers Table of Contents 2 1.0 Introduction 4 1.1 Acknowledgments 5 2.0 Standard Taxonomic Effort 5 2.1 Rules for Developing a Standard Taxonomic Effort Document 5 2.2 Changes from the Previous Version 6 2.3 The SAFIT Standard Taxonomic List 6 3.0 Methods and Materials 7 3.1 Habitat information 7 3.2 Geographic Scope 7 3.3 Abbreviations used in the STE List 8 3.4 Life Stage Terminology 8 4.0 Rare, Threatened and Endangered Species 8 5.0 Literature Cited 9 Appendix I. The SAFIT Standard Taxonomic Effort List 10 Phylum Silicea 11 Phylum Cnidaria 12 Phylum Platyhelminthes 14 Phylum Nemertea 15 Phylum Nemata 16 Phylum Nematomorpha 17 Phylum Entoprocta 18 Phylum Ectoprocta 19 Phylum Mollusca 20 Phylum Annelida 32 Class Hirudinea Class Branchiobdella Class Polychaeta Class Oligochaeta Phylum Arthropoda Subphylum Chelicerata, Subclass Acari 35 Subphylum Crustacea 47 Subphylum Hexapoda Class Collembola 69 Class Insecta Order Ephemeroptera 71 Order Odonata 95 Order Plecoptera 112 Order Hemiptera 126 Order Megaloptera 139 Order Neuroptera 141 Order Trichoptera 143 Order Lepidoptera 165 2 Order Coleoptera 167 Order Diptera 219 3 1.0 Introduction The Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) is charged through its charter to develop standardized levels for the taxonomic identification of aquatic macroinvertebrates in support of bioassessment. This document defines the standard levels of taxonomic effort (STE) for bioassessment data compatible with the Surface Water Ambient Monitoring Program (SWAMP) bioassessment protocols (Ode, 2007) or similar procedures.
    [Show full text]
  • Book of Abstracts
    Book of Abstracts 2nd International Meeting on Biology and Conservation of Freshwater Bivalves, Buffalo, Oct. 4-8, 2015 2 2nd International Meeting on Biology and Conservation of Freshwater Bivalves, Buffalo, Oct. 4-8, 2015 Title: 2nd International Meeting on Biology and Conservation of Freshwater Bivalves: Book of Abstracts Editors: Knut Mehler, Lyubov E. Burlakova, Alexander Y. Karatayev, Susan Dickinson Published by: Great Lakes Center, SUNY Buffalo State 1300 Elmwood Avenue, Buffalo, New York 14222 http://greatlakescenter.buffalostate.edu Printed by: Gallagher Printing, Inc. 9195 Main Street Clarence, New York 14031 August 2015 3 2nd International Meeting on Biology and Conservation of Freshwater Bivalves, Buffalo, Oct. 4-8, 2015 2nd International Meeting on Biology and Conservation of Freshwater Bivalves: Book of Abstracts 4-8 October 2015 Buffalo, USA Edited by: Knut Mehler Lyubov E. Burlakova Alexander Y. Karatayev Susan Dickinson Great Lakes Center Buffalo State College The State University of New York August 2015 4 2nd International Meeting on Biology and Conservation of Freshwater Bivalves, Buffalo, Oct. 4-8, 2015 Table of Contents Preface……………………………………………………………………………………………………………………….….6 Organization……………………………………………………………………………………………………………..……7 Sponsors………………………………………………………………………………………………………………………..8 Committees…………………………………………………………………………………………………………………...9 Keynote Speakers………………………………………………………………………………………………………...10 Venue…………………………………………………………………………………………………………………………..12 City…………………………………………………………………………………………………………………………...12
    [Show full text]
  • A Ma Aeolake in Alacologi N the Moe Cal Analy
    Faculty of Sciences Department of Geology and Soil Science Research Unit Palaeontology Academic year 2009‐2010 Changes in surface waters: a malacological analysis of a Late Glacial and early Holocene palaeolake in the Moervaartdepression (Belgium). by Lynn Serbruyns Thesis submitted to obtain the degree of Master in Biology. Promotor: Prof. Dr. Jacques Verniers Co‐promotor: Prof. Dr. Dirk Van Damme Faculty of Sciences Department of Geology and Soil Science Research Unit Palaeontology Academic year 2009‐2010 Changes in surface waters: a malacological analysis of a Late Glacial and early Holocene palaeolake in the Moervaartdepression (Belgium). by Lynn Serbruyns Thesis submitted to obtain the degree of Master in Biology. Promotor: Prof. Dr. Jacques Verniers Co‐promotor: Prof. Dr. Dirk Van Damme Acknowledgements0 First of all, I would like to thank my promoter Prof. Jacques Verniers and Prof. Philippe Crombé for providing me with this interesting subject and for giving me the freedom to further extend the analysis beyond the original boundaries. Thanks to my co-promoter Prof. Dirk Van Damme who I could always contact with questions and who provided me with many articles on the subject. I also want to thank Prof. Keppens for giving me the opportunity to perform the isotope analysis at the VUB, even though technology let us down in the end. I would like to thank Koen Verhoeven for sacrificing part of his office and for aiding me with the sampling from the trench. Thanks to Mona Court-Picon for the numerous ways in which she helped me during the making of this thesis and for the nice talks.
    [Show full text]
  • Helmond Erika MSC BIOL Fall
    THERMAL TOLERANCES OF AN ENDEMIC HOT SPRING SNAIL PHYSELLA WRIGHTI TE AND CLARKE (MOLLUSCA: PHYSIDAE) A Thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Master of Science in Biology University of Regina By Erika Kirsten Helmond Regina, Saskatchewan July 2020 Copyright 2020: Erika Helmond UNIVERSITY OF REGINA FACULTY OF GRADUATE STUDIES AND RESEARCH SUPERVISORY AND EXAMINING COMMITTEE Erika Kirsten Helmond, candidate for the degree of Master of Science in Biology, has presented a thesis titled, Thermal Tolerances of an Endemic Hot Spring Snail Physella wrighti Te and Clarke (Mollusca: Physidae), in an oral examination held on July 28, 2020. The following committee members have found the thesis acceptable in form and content, and that the candidate demonstrated satisfactory knowledge of the subject material. External Examiner: *Prof. Bruce Leighton, Simon Fraser University Co-Supervisor: *Dr. Kerri FInlay, Department of Biology Co-Supervisor: *Dr. Cory Sheffield, Adjunct Committee Member: *Dr. Mel Hart, Department of BIology Committee Member: *Jennifer Heron, Adjunct Chair of Defense: *Dr. Maria Velez, Department of Geology *All present via Zoom ABSTRACT Physella wrighti (Te and Clarke, 1985) is an Endangered freshwater snail endemic to the Liard Hot Springs in northern British Columbia. It inhabits water temperatures from 23.5oC to 36oC and is active year-round. Despite its conservation status, little else is known about this species. To advance our understanding of P. wrighti in its environment, I investigated how water temperature affects aspects of its life history in a lab setting. I first investigated if P.
    [Show full text]
  • List of Bivalve Molluscs from British Columbia, Canada
    List of Bivalve Molluscs from British Columbia, Canada Compiled by Robert G. Forsyth Research Associate, Invertebrate Zoology, Royal BC Museum, 675 Belleville Street, Victoria, BC V8W 9W2; [email protected] Rick M. Harbo Research Associate, Invertebrate Zoology, Royal BC Museum, 675 Belleville Street, Victoria BC V8W 9W2; [email protected] Last revised: 11 October 2013 INTRODUCTION Classification rankings are constantly under debate and review. The higher classification utilized here follows Bieler et al. (2010). Another useful resource is the online World Register of Marine Species (WoRMS; Gofas 2013) where the traditional ranking of Pteriomorphia, Palaeoheterodonta and Heterodonta as subclasses is used. This list includes 237 bivalve species from marine and freshwater habitats of British Columbia, Canada. Marine species (206) are mostly derived from Coan et al. (2000) and Carlton (2007). Freshwater species (31) are from Clarke (1981). Common names of marine bivalves are from Coan et al. (2000), who adopted most names from Turgeon et al. (1998); common names of freshwater species are from Turgeon et al. (1998). Changes to names or additions to the fauna since these two publications are marked with footnotes. Marine groups are in black type, freshwater taxa are in blue. Introduced (non-indigenous) species are marked with an asterisk (*). Marine intertidal species (n=84) are noted with a dagger (†). Quayle (1960) published a BC Provincial Museum handbook, The Intertidal Bivalves of British Columbia. Harbo (1997; 2011) provided illustrations and descriptions of many of the bivalves found in British Columbia, including an identification guide for bivalve siphons and “shows”. Lamb & Hanby (2005) also illustrated many species.
    [Show full text]
  • Chronology and Molluscan Paleontology of Two Post-Woodfordian Bogs in Northeastern Illinois
    ILLINOIS GEOLOGtCAl O /Oh ZtJ SURVEY tmQAPV STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION Chronology and Molluscan Paleontology of Two Post-Woodfordian Bogs in Northeastern Illinois A. Byron Leonard ILLINOIS STATE GEOLOGICAL SURVEY John C. Frye, Chief Urbana, IL 61801 CIRCULAR 487 1974 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/chronologymollus487leon — CHRONOLOGY AND MOLLUSCAN PALEONTOLOGY OF TWO POST-WOODFORDIAN BOGS IN NORTHEASTERN ILLINOIS A. Byron Leonard ABSTRACT Hand -auger borings intwopost-Woodfordian basic bogs, one northeast of Strawn in Livingston County and one west- southwest of Batavia, Kane County, Illinois, provided the materials for collections of fossil mollusks from a total of 27 levels. Each collection consisted of approximately 1,000 shells; faunal assemblages varied from 10 to 19 species. In all, 31 species, grouped in 18 genera, were recovered from fine-grained water-laid sediments; sediments and molluscan assemblages from the two bogs were remarkably similar. Each of the bogs and their remnant lakes —occupies a basin in morainal topography; the lakes are maintained at present by runoff from surrounding slopes and by groundwater inflow. Radiocarbon analyses of carbonaceous materials in the samples range from about 9,000 years B.P. several feet above the bottom of the sediments to about 2,000 years B.P. at the base of the sphagnum matte that essentially terminated the biological activity in the bog lakes. It is estimated that the deposition in the basins began more than 10,000 radiocarbon years B.P. Six species, Amnioola gelida , A.
    [Show full text]
  • Floristic Quality Assessment Report
    FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al.
    [Show full text]
  • Summary of North American Blancan Nonmarine Mollusks1
    MALACOLOGIA , 1966, 4(1): 1-172 SUMMARY OF NORTH AMERICAN BLANCAN NONMARINE MOLLUSKS1 D. W. Taylor U. S. Geological Survey, and Research Associate, University of Michigan Museum of Zoology, Ann Arbor, Michigan, U. S. A. ABSTRACT All known North American nonmarine mollusks of Blancan (late Pliocene and early Pleistocene) age have been here fitted into the available framework of associated fossils, physical stratigraphy and radiogenic potassium-argon dates. Many of the independently dated molluscan assemblages are so similar to other faunas that most of the fossils summarized can be assigned confidently to the Blancan age. These assignments permitted compilation of lists of last appear- ances of genera and families that are unknown during or after Blancan times. About 50-55 Blancan assemblages are known, and together with about 10-15 older or younger faunas included for convenience of discussion they are summarized under 57 local geographic headings (map, Fig. 1). For each local assemblage the following data have been given so far as possi- ble: location, previous references to mollusks, stratigraphic unit and most recent geologic maps, number of species of mollusks, mention of other fossils from the same locality or formation, age, institution where fossils are preserved, and most recent topographic maps. The detail of treatment varies widely, according to available information, progress of knowledge since previous liter- ature and the usefulness of new information. Lists of species are included usually only if the fauna is revised or first recorded in this paper, but the references to previous work are intended to be complete. The Blancan faunas from the Great Plains region (Nebraska, Kansas, Okla- homa, Texas), and from Arizona, are generally similar and include mainly widespread living species.
    [Show full text]
  • Freshwater Mollusca of Plummers Island, Maryland Author(S): Timothy A
    Freshwater Mollusca of Plummers Island, Maryland Author(s): Timothy A. Pearce and Ryan Evans Source: Bulletin of the Biological Society of Washington, 15(1):20-30. Published By: Biological Society of Washington DOI: http://dx.doi.org/10.2988/0097-0298(2008)15[20:FMOPIM]2.0.CO;2 URL: http://www.bioone.org/doi/full/10.2988/0097-0298%282008%2915%5B20%3AFMOPIM %5D2.0.CO%3B2 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Freshwater Mollusca of Plummers Island, Maryland Timothy A. Pearce and Ryan Evans (TAP) Carnegie Museum of Natural History, Section of Mollusks, 4400 Forbes Avenue, Pittsburgh, Pennsylvania 15213, U.S.A., e-mail: [email protected]; (RE) Pennsylvania Natural Heritage Program, Pittsburgh Office, 209 Fourth Avenue, Pittsburgh, Pennsylvania 15222, U.S.A. Abstract.—We found 19 species of freshwater mollusks (seven bivalves, 12 gastropods) in the Plummers Island area, Maryland, bringing the total known for the Middle Potomac River to 42 species.
    [Show full text]