AGU Poster Session

Total Page:16

File Type:pdf, Size:1020Kb

AGU Poster Session Dual-System Tectonics of the San Luis Range and Vicinity, Coastal Central California Douglas H. Hamilton, Consulting Geologist 2 Bassett Lane, Atherton, California 94027 Text and illustrations from poster displayed at the Wednesday, December 15 Session of the 2010 American Geophysical Union Fall Meeting San Francisco, California Dual – System Tectonics of the San Luis Range and Vicinity, Coastal Central California Douglas H Hamilton Consulting Geologist, Atherton, CA, United States ABSTRACT The M 6.5 "San Simeon" earthquake of December 22, 2003, occurred beneath the San Lucia Range in coastal central California, and resulted in around $250,000,000 property damage and two deaths from collapse of an historic building in the town of Paso Robles, located 40 km from the epicenter. The earthquake and more than 10,000 aftershocks were well recorded by nearby seismographs, which permitted detailed analysis of the event (eg: McLaren et al., 2008). This analysis facilitated evaluation of the hazard of the occurrence of a similar event in the nearby San Luis Range, located along the coast west of the City of San Luis Obispo some 55 km south of the San Simeon epicenter. The future occurrence of earthquakes analogous to the 2003 event in this area had been proposed in the late 1960's (eg: Benioff and Smith, 1967; Richter, 1969) but the apparent hazard of such occurrences came to be overshadowed by the discovery of the "Hosgri" strike slip fault passing close to the area in the offshore. However data accumulated since the early 1970's clearly demonstrate the hazard as being partitioned between nearby earthquakes of strike slip origin, and underlying earthquakes of thrust origin analogous to that of the 2003 San Simeon earthquake. And for the onshore San Luis Range area, an underlying actively seismogenic thrust wedge appears to provide the maximum potential seismic ground motion; exceeding that potentially resulting from large events on nearby strike slip faults of the San Simeon-Hosgri system, for onshore sites. Understanding and documentation of the geology, geomorphology, tectonics and seismogenesis of the San Luis Range and vicinity has recently experienced a quantum improvement as both new and accumulated data have been analysed. An integrated interpretation of all available data now clearly shows that a dual "side by side" system of active tectonics exists in the region. 1 Essentially the most obvious evidence for this is seen simply in the topography; the rapidly uplifting San Luis Range represents the field of NE-SW compression driving a thrust – backthrust thrust-fault wedge "popup" while the adjacent shear-strike slip faulting associated with the plate boundary San Gregorio-Hosgri splay of the San Andreas fault system results in only minor surface deformation of the sea floor surface of late Quaternary marine planation. Interaction between the two tectonic systems occurs mainly along the SE shoreline of Estero Bay where NNW aligned strike slip faults intersect the uplifting San Luis Range thrust fault "popup" wedge, and along the recently identified Shoreline fault, against which the SSW-vergent leading edge of the San Luis Range thrust impinges at depths of 1-5 km. The latter structural relationship gives rise to locally pronounced west facing sea floor surface scarps along a fault with mostly or entirely horizontal strike slip motion. Overall the San Luis Range and vicinity constitutes an excellent full scale laboratory for observation of evidence of a variety of tectonic processes in action. The opportunity for studies of tectonism here arises not only from the geologically and topographically clearly exhibited effects of the two interacting tectonic fields (NNW shear; NE-SW compression) but also from the extensive baseline studies of the area conducted during the past 40 years. 2 Source of Regional Right Shear in Coastal Central California (Figure 1) At the north the San Gregorio fault splays south from the San Andreas fault and extends south as the only west-side first order branch within the San Andreas fault system. This splay diverts approximately 7 mm/yr right slip from the San Andreas fault onto the San Gregorio fault system. - Continuing south, right slip is progressively diverted from the major segments of the San Gregorio-Hosgri fault system along SE – branching splays into Monterey Bay, the northern Santa Lucia Mountains and the Estero Bay offshore in the San Luis Range region. - Southward from San Luis Obispo Bay, right slip along the Hosgri fault has largely dissipated with the southernmost eastward splay branch, the "Shoreline" fault probably accommodating much of that still occurring along the Hosgri at that latitude. - The southernmost Hosgri evolves to a west-vergent thrust complex and appears to merge into the NNW-SSE aligned fold and thrust belt present in the southern part of the offshore Santa Maria Basin. 3 Source of Sub-Regional NE-SW Compression and Resultant Crustal Shortening (Figure 1) The region of the broad zone of the southern Coast Ranges bounded generally by the Salinas Valley on the NE and the Pacific Ocean coastline on the SW, is characterized by mountain chains that rise abruptly from intervening lowlands. The three principal lowlands of this region are from north to south, the Los Osos, Santa Maria, and Santa Ynez River valleys. These valleys are separated by the San Luis Range and the Casmalia – Solomon - Purisima Hills. Although the present shoreline of these valleys is deeply scalloped by marine erosion, the onshore structural trends continue offshore to their termination at the Hosgri basin boundary fault. The ranges in this SW sector of the Southern Coast Ranges appear to all be developed by Quaternary compressional deformation of long-lived Tertiary synclinal troughs in which thousands of meters of clastic sediments accumulated. The compressional deformation is active at the present. It is manifest most obviously by the terrain aspect, but also by geologically young reverse and thrust faults along the range margins and by compressional mechanism earthquakes. The source of the NE-SW compression that drives this deformation has been attributed variously either to active or residual effects of clockwise rotation of the western Transverse Ranges (eg:, Luyenduyk, 1980, McLaren and Savage, 2001) or to "escape tectonics" acting along the north margin of the Western Transverse Ranges (eg: Wells et. al. 1998, Hardebeck, 2010). We see no compelling argument for preferring either the WTR clockwise rotation or the "escape tectonics" hypotheses but note that geometrically the "clockwise rotation" hypothesis appears to work well for the observed onshore deformation while the "escape tectonics" hypothesis could explain the E-W compressional deformation in the southernmost offshore Santa Maria Basin, west of the Hosgri fault. 4 Seismicity of the South Central Coastal Region The seismicity of the south central coastal region of California as related to terrain is shown on the two maps of earthquake hypocenters, with depth indicated by color code plotted on a digital terrain base (Figures 2, 3). The focal mechanisms of sufficiently well recorded events from this region are shown on separate plots (Figure 4, 5). Seismicity data is shown for the period prior to the occurrence of the San Simeon earthquake in 2003 (Figure 4) and for the period extending through November 2010 (Figure 5). This allows observation of the general pattern of seismicity (the pre 2003 plot) compared with that overprinted by the dense cloud of aftershocks of the San Simeon event, which obscure the general pattern of events that characterize the seismicity in the Santa Lucia Range. Focal mechanisms of both the pre 2003 seismicity in this region and of the main shock and aftershocks of the San Simeon earthquake show the dominant role of compressional seismic faulting in the San Lucia Range. The inset to the post 2003 seismicity map is a cross section through the hypocenters of the main shock and aftershocks of the 2003 San Simeon earthquake (Figure 6). Note that the east-dipping principal source fault projects toward the surface near the offshore trace of the San Simeon fault, passing c. 3 km below the surface trace of the Oceanic fault. Compare this cross section with the cross section plotted at the same scale, of the seismicity beneath the San Luis Range (Figure 9). The pattern of seismicity in the south central coastal onshore and near shore region is noteworthy for the close association of seismic activity with compressionally uplifted ranges of hills and mountains (Santa Lucia, San Luis, Casmalia-Solomon-Purisima) north of the Western Transverse Ranges and east of the San Simeon-Hosgri fault system. Linear patterns of seismicity are generally discernable only along the Hosgri and Shoreline faults opposite Estero Bay and the Irish Hills and less distinctly, within Estero Bay. As shown by the focal mechanism plots, these are all areas with predominantly strike slip faulting. 5 Right-Slip Faulting and Seismicity in the San Simeon - Estero Bay – Offshore Irish Hills Region The uplift–exposed landward part of the compressional Piedras Blancas antiform is transected by the active right slip San Simeon fault, as well as by older related faults. These faults have prominent erosionally produced geomorphic expression, and less obvious tectonic expression marked by linear low scarps. The more active-appearing traces have been explored by trenching (eg: Asquith, 1977, PG&E, 1988). Both the visible landform and the trenching results demonstrate beyond doubt that the San Simeon and related faults represent major loci of right slip faulting. This zone of faulting clearly extends offshore both north and south of the Piedras Blancas onshore exposure (Figure 1). South of San Simeon Bay this zone of faulting continues along strike, paralleling and lying directly offshore from the shoreline between Cambria and Point Estero. In addition to the linear shoreline this reach of the San Simeon fault is marked by a few clusters of epicenters of small earthquakes recorded since 1987.
Recommended publications
  • Seismic Shift Diablo Canyon Literally and Figuratively on Shaky Ground
    SEISMIC SHIFT DIABLO CANYON LITERALLY AND FIGURATIVELY ON SHAKY GROUND Five years ago, Pacific Gas and Electric (PG&E) informed the Nuclear Regulatory Commission (NRC) about a newly discovered fault offshore from its Diablo Canyon nuclear plant that could cause more ground motion during an earthquake than the plant was designed to withstand. In other words, there was a gap between seismic protection levels of the plant and the seismic threat levels it faced. When similar gaps were identified at other nuclear facilities in California, New York, Pennsylvania, Maine, and Virginia, the facilities were not permitted to generate electricity until the gaps were closed. The electricity generation gaps did not trump the seismic protection gaps: the need for safety was deemed more important than the need for electricity and its revenues. But the two reactors at Diablo Canyon continue operating despite the seismic protection gap. In the former cases the NRC would not allow nuclear facilities to operate until they demonstrated an adequate level of safety through compliance with federal regulations. It wasn’t that evidence showed disaster was looming on the horizon. Instead, it was that evidence failed to show that the risk of disaster was being properly managed. At Diablo Canyon the NRC has flipped the risk management construct. Despite solid evidence that Diablo Canyon does not conform to regulatory requirements, the nuclear version of the “no blood, no foul” rule is deemed close enough to let its reactors continue operating. This seismic shift places Diablo Canyon’s two aging reactors literally and figuratively on shaky ground. If an earthquake occurs, it may result in more damage than the nuclear plant can withstand, with dire consequences for tens of thousands of Californians.
    [Show full text]
  • Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
    Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G.
    [Show full text]
  • DCL-2011-600.Pdf
    Central Coastal California Seismic Imaging Project Attachment 1 ATTACHMENT 1 PACIFIC GAS and ELECTRIC COMPANY APPLICATION FOR RESOURCE LEASE, PERMIT OR OTHER ENTITLEMENT FOR USE CENTRAL COASTAL CALIFORNIA SEISMIC IMAGING PROJECT Part 1, Section A, Item1. The following PG&E personnel are the project contacts throughout the environmental analysis and permitting processes for the Central Coastal California Seismic Imaging Project (CCCSIP): Mr. Mark Krause, Director, State Agency Relations 1415 L. Street, Suite 280 Sacramento, California 95814 Phone: 916-721-5709 Fax: 916-386-6720 e-mail: [email protected] Mr. Loren Sharp, Senior Director, Technical Services Diablo Canyon Power Plant Mail Code 104/6/603 PO Box 56 Avila Beach, California 93424 Phone: 805-781-9785 Fax: 805-545-4884 e-mail: [email protected] Dr. Stuart Nishenko, Senior Seismologist, Geosciences Mail Code N4C PO Box 770000 San Francisco, California 94177 Phone: 415-973-1213 Fax: 415-973-1409 e-mail: [email protected] Sarah Gassner, Supervisor, Land-Environmental Planning and Permitting 1455 E. Shaw Avenue Fresno, California 93710 Phone: 559-263-5073 Fax: 559-263-5262 e-mail: [email protected] Part 1, Section A, Item 2. PG&E has designated following company/personnel as agents for the Offshore Seismic Imaging Project: Mr. Ray de Wit, Senior Project Manager Padre Associates, Inc. 1485 Enea Court, Bldg. G, Suite 1480 Concord, California 94520 Phone: 925-685-9441 X 21 Fax: 925-685-8401 e-mail: [email protected] Page - 1 Central Coastal California Seismic Imaging Project Attachment 1 Mr. Simon Poulter, Partner Padre Associates, Inc. 5290 Overpass Road, Suite 217 Goleta, California 93111 Phone: 805-683-1233 X 4 Fax: 805-683-3944 e-mail: [email protected] Page - 2 Central Coastal California Seismic Imaging Project Attachment 2 ATTACHMENT 2 PACIFIC GAS and ELECTRIC COMPANY APPLICATION FOR RESOURCE LEASE, PERMIT OR OTHER ENTITLEMENT FOR USE CENTRAL COASTAL CALIFORNIA SEISMIC IMAGING PROJECT DESCRIPTION Part I, Section E, Item 1.
    [Show full text]
  • Tectonic Influences on the Spatial and Temporal Evolution of the Walker Lane: an Incipient Transform Fault Along the Evolving Pacific – North American Plate Boundary
    Arizona Geological Society Digest 22 2008 Tectonic influences on the spatial and temporal evolution of the Walker Lane: An incipient transform fault along the evolving Pacific – North American plate boundary James E. Faulds and Christopher D. Henry Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada, 89557, USA ABSTRACT Since ~30 Ma, western North America has been evolving from an Andean type mar- gin to a dextral transform boundary. Transform growth has been marked by retreat of magmatic arcs, gravitational collapse of orogenic highlands, and periodic inland steps of the San Andreas fault system. In the western Great Basin, a system of dextral faults, known as the Walker Lane (WL) in the north and eastern California shear zone (ECSZ) in the south, currently accommodates ~20% of the Pacific – North America dextral motion. In contrast to the continuous 1100-km-long San Andreas system, discontinuous dextral faults with relatively short lengths (<10-250 km) characterize the WL-ECSZ. Cumulative dextral displacement across the WL-ECSZ generally decreases northward from ≥60 km in southern and east-central California, to ~25 km in northwest Nevada, to negligible in northeast California. GPS geodetic strain rates average ~10 mm/yr across the WL-ECSZ in the western Great Basin but are much less in the eastern WL near Las Vegas (<2 mm/ yr) and along the northwest terminus in northeast California (~2.5 mm/yr). The spatial and temporal evolution of the WL-ECSZ is closely linked to major plate boundary events along the San Andreas fault system. For example, the early Miocene elimination of microplates along the southern California coast, southward steps in the Rivera triple junction at 19-16 Ma and 13 Ma, and an increase in relative plate motions ~12 Ma collectively induced the first major episode of deformation in the WL-ECSZ, which began ~13 Ma along the N60°W-trending Las Vegas Valley shear zone.
    [Show full text]
  • Possible Correlations of Basement Rocks Across the San Andreas, San Gregorio- Hosgri, and Rinconada- Reliz-King City Faults
    Possible Correlations of Basement Rocks Across the San Andreas, San Gregorio- Hosgri, and Rinconada- Reliz-King City Faults, U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1317 Possible Correlations of Basement Rocks Across the San Andreas, San Gregorio- Hosgri, and Rinconada- Reliz-King City Faults, California By DONALD C. ROSS U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1317 A summary of basement-rock relations and problems that relate to possible reconstruction of the Salinian block before movement on the San Andreas fault UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1984 DEPARTMENT OF THE INTERIOR WILLIAM P. CLARK, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Boss, Donald Clarence, 1924- Possible correlations of basement rocks across the San Andreas, San Gregrio-Hosgri, and Rinconada-Reliz-King City faults, California (U.S. Geological Survey Bulletin 1317) Bibliography: p. 25-27 Supt. of Docs, no.: 119.16:1317 1. Geology, structural. 2. Geology California. 3. Faults (geology) California. I. Title. II. Series: United States. Geological Survey. Professional Paper 1317. QE601.R681984 551.8'09794 84-600063 For sale by the Distribution Branch, Text Products Section, U.S. Geological Survey, 604 South Pickett St., Alexandria, VA 22304 CONTENTS Page Abstract _____________________________________________________________ 1 Introduction __________________________________________________________ 1 San Gregorio-Hosgri fault zone ___________________________________________ 3 San Andreas
    [Show full text]
  • 4.1 Geology/Hazards
    Dalidio/San Luis Marketplace Annexation and Development Project EIR Section 4.1 Geology/Hazards 4.1 GEOLOGY/HAZARDS The project site lies within the seismically active coastal region of central California. Regional studies indicate that there are no active or potentially active faults on the project site. However, groundshaking associated with nearby faults could damage or destroy property, structures and transportation infrastructures. These impacts can be mitigated to less than significant levels. In addition, site soils are reported to have a high liquefaction potential, a moderate to high expansion potential and a potential for subsidence. These impacts are considered less than significant with the adherence to mitigation measures. The Dalidio property could potentially be subject to contamination that has migrated from off-site hazardous materials releases. Implementation of recommended mitigation measures, including soils and groundwater testing along the northwestern site boundary to determine the presence of such contamination on site, and appropriate remediation if necessary, would reduce this impact to a less than significant level. The proposed Prado Road/ U.S. Highway 101 interchange and associated improvements could be located on soils that contain residual quantities of aerially-deposited lead (ADL) associated with historic exhaust emissions along U.S. Highway 101. The release of ADL during disturbance of this area would be considered a potentially significant but mitigable health hazard. 4.1.1 Geologic Setting. This section describes the geologic conditions and related hazards of the project site, including faulting, seismically induced ground movement, liquefaction potential, potential for soil expansion/contraction and a subsidence potential. a. Regional Topography. The Dalidio property is located west of U.S.
    [Show full text]
  • 2019 Scec Annual Technical Report
    1 2019 SCEC ANNUAL TECHNICAL REPORT - SCEC Award 19031 Evaluate & Refine 3D Fault and Deformed Surface Geometry to Update & Improve the SCEC Community Fault Model Craig Nicholson Marine Science Institute, University of California, Santa Barbara, CA 93106-6150 Summary Since SCEC3, I and my colleagues Andreas Plesch, Chris Sorlien, John Shaw, Egill Hauksson, and now Scott Marshall continue to make steady and significant improvements to the SCEC Community Fault Model (CFM), culminating in the release of CFM-v5.3 [Nicholson et al., 2019]. This on-going systematic update represents a substantial improvement of 3D fault models for southern California. The CFM-v3 fault set was expanded from 170 faults to over 860 fault objects and alternative representations in CFM- v5.3 that define nearly 400 faults organized into 106 complex fault systems (Fig.1). Most of these updated 3D fault models were developed by UCSB, or to which UCSB made significant contributions. This includes all the major fault models of major fault systems (e.g., San Andreas, San Jacinto, Elsinore- Laguna Salada, Newport-Inglewood, Imperial, Garlock, etc.), and most major faults in the Mojave, Eastern & Western Transverse Ranges, offshore Borderland, and updated faults within designated Special Fault Study or Earthquake Gate Areas (Fig.1) [Nicholson et al., 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019; Sorlien et al, 2012, 2014, 2015, 2016; Sorlien and Nicholson, 2015]. These new models allow for more realistic, curviplanar, complex 3D fault geometry, including changes in dip and dip direction along strike and down dip, based on the changing patterns of earthquake hypocenter and nodal plane alignments and, where possible, imaging subsurface fault geometry with industry seismic reflection data.
    [Show full text]
  • Tectono-Metamorphic Impact of a Subduction-Transform Transition and Implications for Interpretation of Orogenic Belts
    International Geology Review, Vol. 38, 1996, p. 979-994. Copyright © 1996 by V. H. Winston & Son, Inc. All rights reserved. Tectono-Metamorphic Impact of a Subduction-Transform Transition and Implications for Interpretation of Orogenic Belts JOHN WAKABAYASHI 1329 Sheridan Lane, Hayward, California 94544 Abstract Subduction-transform tectonic transitions were common in the geologic past, yet their impact on the evolution of orogenic belts is seldom considered. Evaluation of the tectonic transition in the Coast Ranges of California is used as an example to predict some characteristics of exhumed regions that experienced similar histories worldwide. Elevated thermal gradients accompanied the transition from subduction to transform tec­ tonics in coastal California. Along the axis of the Coast Ranges, peak pressure-temperature (P/T) conditions of 700 to 1000° C at a pressure of ~7 kbar, corresponding to granulite-facies metamorphism, and cooling to 500° C, or amphibolite facies, within 15 million years, are indicated by thermal gradients estimated from the depth to the base of crustal seismicity. Greenschist-facies conditions may occur at depths of 10 km or less. These P/T estimates are consistent with the petrology of crustal xenoliths and thermal models. Preservation of earlier subduction-related metamorphism is possible at depth in the Coast Ranges. Such rocks may record a greenschist or higher-grade overprint over blueschist assemblages, and late growth of metamorphic minerals may reflect dextral shear along the plate margin, with development of orogen-parallel stretching lineations. Thermal overprints of early-formed high-P (HP), low-T (LT) assemblages, in association with orogen-parallel stretching lineations, occur in many orogenic belts of the world, and have been attributed to subduction followed by collision.
    [Show full text]
  • Pamphlet to Accompany
    Geologic and Geophysical Maps of the Eastern Three- Fourths of the Cambria 30´ x 60´ Quadrangle, Central California Coast Ranges Pamphlet to accompany Scientific Investigations Map 3287 2014 U.S. Department of the Interior U.S. Geological Survey This page is intentionally left blank Contents Contents ........................................................................................................................................................................... ii Introduction ..................................................................................................................................................................... 1 Interactive PDF ............................................................................................................................................................ 2 Stratigraphy ..................................................................................................................................................................... 5 Basement Complexes ................................................................................................................................................. 5 Salinian Complex ..................................................................................................................................................... 5 Great Valley Complex ............................................................................................................................................ 10 Franciscan Complex .............................................................................................................................................
    [Show full text]
  • Faults Near DCPP : Sources of Uncertainty
    California Energy Commission DOCKETED 13-IEP-1J TN 71300 JUN 19 2013 Faults Near DCPP : Sources of Uncertainty Jeanne Hardebeck USGS, Menlo Park, CA Fault Information Needed for Probabilistic Seismic Hazard Assessment: (()1) Fault Geometry • Location • Strike, Dip, Rake • Length • Connection to other faults (2) Fault Slip Rate • Offset geological features • Past large earthquakes • Geodesy (GPS, InSAR) Known Faults Relevant to DCPP Seismic Hazard. Strike‐slip fault system: Hosgri Fault Shoreline Fault Geometry: ‐ Hosgri and Shoreline Faults both near‐vertical, strike‐slip motion. ‐ Hosgri and Shoreline Faults appear to join at earthquake depths, plausible they could rupture together. ‐ Southern end of Shoreline Fault unknown, connection to other faults to the south unknown. Slip Rate: ‐ Hosgri slip rate of 1‐3 mm/yr from geologic observations near San Simeon. ‐ Shlhoreline slip rate poorly constrained. Lithosphere, 2012 From J. Watt, SSHAC SSC Workshop 2 Southern End of Shoreline Fault? From J. Watt, USGS. Fault Geometry from Small Earthquakes From Hardebeck, BSSA, 2013. Multi-Fault Earthquakes. 2012 Sumatra 1999 California 1992 California 2002 Alaska From J. Hardebeck, SSHAC SSC Workshop 2 1999 Turkey EtiEstimat tded MiMaximum MitdMagnitude Earthquake: • Shoreline defined by seismicity: ‐ Mmax = 6.7. • Shoreline extended south to coast: ‐ Mmax = 6.8. • Hosgri, Lompoc to Big Sur: ‐ Mmax = 757.5. • Shoreline + Hosgri (pictured): ‐ Mmax = 7.2. From Hardebeck, BSSA, 2013. Weak bounds on Shoreline slip rate from small earthquakes. • Lower bound from extrapolation to Mmax=6.7. • Upper bound assuming slip rate less than Hosgri. • Slip rate: 0.04 mm/yr ‐ 3 mm/yr. • Recurrence time of M6.7 earthquakes: 1,000 yr ‐ 67,000 yr.
    [Show full text]
  • Southward Continuation of the San Jacinto Fault Zone Through and Beneath the Extra and Elmore Ranch Left-Lateral Fault Arrays, Southern California
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2013 Southward Continuation of the San Jacinto Fault Zone through and beneath the Extra and Elmore Ranch Left-Lateral Fault Arrays, Southern California Steven Jesse Thornock Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Geology Commons Recommended Citation Thornock, Steven Jesse, "Southward Continuation of the San Jacinto Fault Zone through and beneath the Extra and Elmore Ranch Left-Lateral Fault Arrays, Southern California" (2013). All Graduate Theses and Dissertations. 1978. https://digitalcommons.usu.edu/etd/1978 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. SOUTHWARD CONTINUATION OF THE SAN JACINTO FAULT ZONE THROUGH AND BENEATH THE EXTRA AND ELMORE RANCH LEFT- LATERAL FAULT ARRAYS, SOUTHERN CALIFORNIA by Steven J. Thornock A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Geology Approved: ________________ ________________ Susanne U. Janecke James P. Evans Major Professor Committee Member ________________ ________________ Anthony Lowry Mark R. McLellan Committee Member Vice President of Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2013 ii ABSTRACT Southward Continuation of the San Jacinto Fault Zone through and beneath the Extra and Elmore Ranch Left-Lateral Fault Arrays, Southern California by Steven J. Thornock, Master of Science Utah State University, 2013 Major Professor: Dr.
    [Show full text]
  • PDF Linkchapter
    Index (Italic page numbers indicate major references) Abalone Cove landslide, California, Badger Spring, Nevada, 92, 94 Black Dyke Formation, Nevada, 69, 179, 180, 181, 183 Badwater turtleback, California, 128, 70, 71 abatement districts, California, 180 132 Black Mountain Basalt, California, Abrigo Limestone, Arizona, 34 Bailey ash, California, 221, 223 135 Acropora, 7 Baked Mountain, Alaska, 430 Black Mountains, California, 121, Adams Argillite, Alaska, 459, 462 Baker’s Beach, California, 267, 268 122, 127, 128, 129 Adobe Range, Nevada, 91 Bald Peter, Oregon, 311 Black Point, California, 165 Adobe Valley, California, 163 Balloon thrust fault, Nevada, 71, 72 Black Prince Limestone, Arizona, 33 Airport Lake, California, 143 Banning fault, California, 191 Black Rapids Glacier, Alaska, 451, Alabama Hills, California, 152, 154 Barrett Canyon, California, 202 454, 455 Alaska Range, Alaska, 442, 444, 445, Barrier, The, British Columbia, 403, Blackhawk Canyon, California, 109, 449, 451 405 111 Aldwell Formation, Washington, 380 Basin and Range Province, 29, 43, Blackhawk landslide, California, 109 algae 48, 51, 53, 73, 75, 77, 83, 121, Blackrock Point, Oregon, 295 Oahu, 6, 7, 8, 10 163 block slide, California, 201 Owens Lake, California, 150 Basin Range fault, California, 236 Blue Lake, Oregon, 329 Searles Valley, California, 142 Beacon Rock, Oregon, 324 Blue Mountains, Oregon, 318 Tatonduk River, Alaska, 459 Bear Meadow, Washington, 336 Blue Mountain unit, Washington, 380 Algodones dunes, California, 101 Bear Mountain fault zone, California,
    [Show full text]