Investigating Annual Variation in Fruit Quality Using Nutrient Assays and Multidimensional Fluorescence Spectroscopy

Total Page:16

File Type:pdf, Size:1020Kb

Investigating Annual Variation in Fruit Quality Using Nutrient Assays and Multidimensional Fluorescence Spectroscopy Rochester Institute of Technology RIT Scholar Works Theses 8-2015 Investigating Annual Variation in Fruit Quality Using Nutrient Assays and Multidimensional Fluorescence Spectroscopy Harshita Sood Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Sood, Harshita, "Investigating Annual Variation in Fruit Quality Using Nutrient Assays and Multidimensional Fluorescence Spectroscopy" (2015). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Investigating Annual Variation in Fruit Quality Using Nutrient Assays and Multidimensional Fluorescence Spectroscopy By Harshita Sood A Thesis submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Science ______________________________________ Environmental Science Program Gosnell School of Life Sciences College of Science Rochester Institute of Technology Rochester, NY 14623 August, 2015 ______________________________________ Approved By ___________________________________ Susan Smith Pagano, Ph.D. Thesis Advisor ___________________________________ Todd Pagano, Ph.D. ___________________________________ Elizabeth Hane, Ph.D. Table of Contents List of Figures ................................................................................................................................ iv List of Tables .................................................................................................................................. v Acknowledgements ........................................................................................................................ vi Thesis Abstract ........................................................................................................................... viii Chapter 1 ....................................................................................................................................... 1 Abstract ........................................................................................................................................... 1 Introduction ..................................................................................................................................... 2 Important Dietary Nutrients for Migratory Birds ................................................................. 3 The Impact of Climate Change on Miratory Bird Habitat Quality ....................................... 4 Fruits Available in the Western New York Region .............................................................. 5 Study Goals ........................................................................................................................... 8 Methods........................................................................................................................................... 9 Study Sites .......................................................................................................................... 10 Collecting, Drying, and Storing Fruits ................................................................................ 10 Measuring the Water Content of Fruits .............................................................................. 11 Measuring the Energy Density of Fruits ............................................................................. 12 Measuring the Percent Fat Content of Fruits ...................................................................... 12 Measuring the Percent Ash Content of Fruits ..................................................................... 12 Measuring the Acid Detergent Fiber Content of Fruits ...................................................... 13 Measuring the Total Soluble Solids Content of Fruits ...................................................... 13 Collecting Temperature and Precipitation Data .................................................................. 13 Results ........................................................................................................................................... 14 Temperature and Precipitation Data for 2012 and 2013 ..................................................... 14 Variation in Nutritional Quality of Fruits ........................................................................... 16 Energy Density of Fruits in 2012 vs. 2013 ......................................................................... 18 Fat Content of Fruits in 2012 vs. 2013 ............................................................................... 19 Total Soluble Solids Content of Fruits in 2012 vs. 2013 .................................................... 21 Acid Detergent Fiber of Fruits in 2012 vs. 2013 ................................................................ 22 Ash Content of Fruits in 2012 vs. 2013 .............................................................................. 22 Water Content of Fruits in 2012 vs. 2013 ........................................................................... 23 Discussion ..................................................................................................................................... 25 Data Trends with respect to Ecological and Taxonomic Considerations ........................... 25 Management and Conservation Implications ...................................................................... 28 Scope for Further Research ................................................................................................. 29 Conclusion .................................................................................................................................... 30 Chapter 2 ..................................................................................................................................... 31 Abstract ......................................................................................................................................... 31 Introduction ................................................................................................................................... 32 Methods......................................................................................................................................... 35 Collecting, Drying, and Storing Fruits ................................................................................ 35 Fruit Extraction ................................................................................................................... 35 Obtaining EEMs of Fruits ................................................................................................... 35 Obtaining a PARAFAC Model ........................................................................................... 36 ii Measuring the Total Phenol Content of Fruits .................................................................... 37 Measuring the Monomeric Anthocyanin Content of Fruits ................................................ 37 Data Analysis ...................................................................................................................... 38 Results ........................................................................................................................................... 39 The Four Component Model ............................................................................................... 39 PARAFAC Scores and Annual Variation in Fluorescence of Fruits .................................. 41 Fluorescence Profiles of Select Fruits................................................................................. 45 Monomeric Anthocyanin Content....................................................................................... 46 Total Phenol Content .......................................................................................................... 46 Correlating Components with Phenol and Monomeric Anthocyanin Content ................... 47 Discussion ..................................................................................................................................... 48 Identifying Components...................................................................................................... 48 Annual Variation in Fluorophore Concentration of Fruits ................................................. 50 PARAFAC as a Tool for Determining Nutritional Quality of Fruits ................................. 52 Conclusion .................................................................................................................................... 53 References ..................................................................................................................................... 55 Appendix ....................................................................................................................................... 62 iii List of Figures Chapter 1 Figure 1-1: Average Energy density of fruits in 2012 vs. 2013 .................................................... 19 Figure 1-2: Fat content of fruits in 2012 vs. 2013. ..................................................................... 20 Figure 1-3: Percent total soluble solids content of fruits in 2012 vs. 2013 .................................. 21 Figure 1-4: Average % acid detergent fiber content of fruits in 2012 vs. 2013 .........................
Recommended publications
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Checklist of Illinois Native Trees
    Technical Forestry Bulletin · NRES-102 Checklist of Illinois Native Trees Jay C. Hayek, Extension Forestry Specialist Department of Natural Resources & Environmental Sciences Updated May 2019 This Technical Forestry Bulletin serves as a checklist of Tree species prevalence (Table 2), or commonness, and Illinois native trees, both angiosperms (hardwoods) and gym- county distribution generally follows Iverson et al. (1989) and nosperms (conifers). Nearly every species listed in the fol- Mohlenbrock (2002). Additional sources of data with respect lowing tables† attains tree-sized stature, which is generally to species prevalence and county distribution include Mohlen- defined as having a(i) single stem with a trunk diameter brock and Ladd (1978), INHS (2011), and USDA’s The Plant Da- greater than or equal to 3 inches, measured at 4.5 feet above tabase (2012). ground level, (ii) well-defined crown of foliage, and(iii) total vertical height greater than or equal to 13 feet (Little 1979). Table 2. Species prevalence (Source: Iverson et al. 1989). Based on currently accepted nomenclature and excluding most minor varieties and all nothospecies, or hybrids, there Common — widely distributed with high abundance. are approximately 184± known native trees and tree-sized Occasional — common in localized patches. shrubs found in Illinois (Table 1). Uncommon — localized distribution or sparse. Rare — rarely found and sparse. Nomenclature used throughout this bulletin follows the Integrated Taxonomic Information System —the ITIS data- Basic highlights of this tree checklist include the listing of 29 base utilizes real-time access to the most current and accept- native hawthorns (Crataegus), 21 native oaks (Quercus), 11 ed taxonomy based on scientific consensus.
    [Show full text]
  • Nursery Price List
    Lincoln-Oakes Nurseries 3310 University Drive • Bismarck, ND 58504 Nursery Seed Price List 701-223-8575 • [email protected] The following seed is in stock or will be collected and available for 2010 or spring 2011 PENDING CROP, all climatic zone 3/4 collections from established plants in North Dakota except where noted. Acer ginnala - 18.00/lb d.w Cornus racemosa - 19.00/lb Amur Maple Gray dogwood Acer tataricum - 15.00/lb d.w Cornus alternifolia - 21.00/lb Tatarian Maple Pagoda dogwood Aesculus glabra (ND, NE) - 3.95/lb Cornus stolonifera (sericea) - 30.00/lb Ohio Buckeye – collected from large well performing Redosier dogwood Trees in upper midwest Amorpha canescens - 90.00/lb Leadplant 7.50/oz Amorpha fruiticosa - 10.50/lb False Indigo – native wetland restoration shrub Aronia melanocarpa ‘McKenzie” - 52.00/lb Black chokeberry - taller form reaching 6-8 ft in height, glossy foliage, heavy fruit production, Corylus cornuta (partial husks) - 16.00/lb NRCS release Beaked hazelnut/Native hazelnut (Inquire) Caragana arborescens - 16.00/lb Cotoneaster integerrimus ‘Centennial’ - 32.00/lb Siberian peashrub European cotoneaster – NRCS release, 6-10’ in height, bright red fruit Celastrus scandens (true) (Inquire) - 58.00/lb American bittersweet, no other contaminating species in area Crataegus crus-galli - 22.00/lb Cockspur hawthorn, seed from inermis Crataegus mollis ‘Homestead’ arnoldiana-24.00/lb Arnold hawthorn – NRCS release Crataegus mollis - 19.50/lb Downy hawthorn Elaeagnus angustifolia - 9.00/lb Russian olive Elaeagnus commutata
    [Show full text]
  • Phylogeny and Phylogenetic Taxonomy of Dipsacales, with Special Reference to Sinadoxa and Tetradoxa (Adoxaceae)
    PHYLOGENY AND PHYLOGENETIC TAXONOMY OF DIPSACALES, WITH SPECIAL REFERENCE TO SINADOXA AND TETRADOXA (ADOXACEAE) MICHAEL J. DONOGHUE,1 TORSTEN ERIKSSON,2 PATRICK A. REEVES,3 AND RICHARD G. OLMSTEAD 3 Abstract. To further clarify phylogenetic relationships within Dipsacales,we analyzed new and previously pub- lished rbcL sequences, alone and in combination with morphological data. We also examined relationships within Adoxaceae using rbcL and nuclear ribosomal internal transcribed spacer (ITS) sequences. We conclude from these analyses that Dipsacales comprise two major lineages:Adoxaceae and Caprifoliaceae (sensu Judd et al.,1994), which both contain elements of traditional Caprifoliaceae.Within Adoxaceae, the following relation- ships are strongly supported: (Viburnum (Sambucus (Sinadoxa (Tetradoxa, Adoxa)))). Combined analyses of C ap ri foliaceae yield the fo l l ow i n g : ( C ap ri folieae (Diervilleae (Linnaeeae (Morinaceae (Dipsacaceae (Triplostegia,Valerianaceae)))))). On the basis of these results we provide phylogenetic definitions for the names of several major clades. Within Adoxaceae, Adoxina refers to the clade including Sinadoxa, Tetradoxa, and Adoxa.This lineage is marked by herbaceous habit, reduction in the number of perianth parts,nectaries of mul- ticellular hairs on the perianth,and bifid stamens. The clade including Morinaceae,Valerianaceae, Triplostegia, and Dipsacaceae is here named Valerina. Probable synapomorphies include herbaceousness,presence of an epi- calyx (lost or modified in Valerianaceae), reduced endosperm,and distinctive chemistry, including production of monoterpenoids. The clade containing Valerina plus Linnaeeae we name Linnina. This lineage is distinguished by reduction to four (or fewer) stamens, by abortion of two of the three carpels,and possibly by supernumerary inflorescences bracts. Keywords: Adoxaceae, Caprifoliaceae, Dipsacales, ITS, morphological characters, phylogeny, phylogenetic taxonomy, phylogenetic nomenclature, rbcL, Sinadoxa, Tetradoxa.
    [Show full text]
  • Vascular Flora of Gus Engeling Wildlife Management Area, Anderson County, Texas
    2003SOUTHEASTERN NATURALIST 2(3):347–368 THE VASCULAR FLORA OF GUS ENGELING WILDLIFE MANAGEMENT AREA, ANDERSON COUNTY, TEXAS 1 2,3 2 JASON R. SINGHURST , JAMES C. CATHY , DALE PROCHASKA , 2 4 5 HAYDEN HAUCKE , GLENN C. KROH , AND WALTER C. HOLMES ABSTRACT - Field studies in the Gus Engeling Wildlife Management Area, which consists of approximately 4465.5 ha (11,034.1 acres) of the Post Oak Savannah of Anderson County, have resulted in an annotated checklist of the vascular flora corroborating its remarkable species richness. A total of 930 taxa (excluding family names), belonging to 485 genera and 145 families are re- corded. Asteraceae (124 species), Poaceae (114 species), Fabaceae (67 species), and Cyperaceae (61 species) represented the largest families. Six Texas endemic taxa occur on the site: Brazoria truncata var. pulcherrima (B. pulcherrima), Hymenopappus carrizoanus, Palafoxia reverchonii, Rhododon ciliatus, Trades- cantia humilis, and T. subacaulis. Within Texas, Zigadenus densus is known only from the study area. The area also has a large number of species that are endemic to the West Gulf Coastal Plain and Carrizo Sands phytogeographic distribution patterns. Eleven vegetation alliances occur on the property, with the most notable being sand post oak-bluejack oak, white oak-southern red oak-post oak, and beakrush-pitcher plant alliances. INTRODUCTION The Post Oak Savannah (Gould 1962) comprises about 4,000,000 ha of gently rolling to hilly lands that lie immediately west of the Pineywoods (Timber belt). Some (Allred and Mitchell 1955, Dyksterhuis 1948) consider the vegetation of the area as part of the deciduous forest; i.e., burned out forest that is presently regenerating.
    [Show full text]
  • Plants for Bats
    Suggested Native Plants for Bats Nectar Plants for attracting moths:These plants are just suggestions based onfloral traits (flower color, shape, or fragrance) for attracting moths and have not been empirically tested. All information comes from The Lady Bird Johnson's Wildflower Center's plant database. Plant names with * denote species that may be especially high value for bats (based on my opinion). Availability denotes how common a species can be found within nurseries and includes 'common' (found in most nurseries, such as Rainbow Gardens), 'specialized' (only available through nurseries such as Medina Nursery, Natives of Texas, SA Botanical Gardens, or The Nectar Bar), and 'rare' (rarely for sale but can be collected from wild seeds or cuttings). All are native to TX, most are native to Bexar. Common Name Scientific Name Family Light Leaves Water Availability Notes Trees: Sabal palm * Sabal mexicana Arecaceae Sun Evergreen Moderate Common Dead fronds for yellow bats Yaupon holly Ilex vomitoria Aquifoliaceae Any Evergreen Any Common Possumhaw is equally great Desert false willow Chilopsis linearis Bignoniaceae Sun Deciduous Low Common Avoid over-watering Mexican olive Cordia boissieri Boraginaceae Sun/Part Evergreen Low Common Protect from deer Anacua, sandpaper tree * Ehretia anacua Boraginaceae Sun Evergreen Low Common Tough evergreen tree Rusty blackhaw * Viburnum rufidulum Caprifoliaceae Partial Deciduous Low Specialized Protect from deer Anacacho orchid Bauhinia lunarioides Fabaceae Partial Evergreen Low Common South Texas species
    [Show full text]
  • Gray Dogwood Cornus Racemosa ILLINOIS RANGE Leaves and Flowers
    gray dogwood Cornus racemosa Kingdom: Plantae FEATURES Division: Magnoliophyta Gray dogwood is also known as gray-stemmed Class: Magnoliopsida dogwood or panicled dogwood. This shrub may Order: Cornales attain a height of 10 feet. Its opposite, gray-green leaves are simple and entire. Its bark is smooth and Family: Cornaceae light gray. The slender, gray twigs have dark pith. ILLINOIS STATUS Small, white flowers develop in clusters. The white berries (drupes) produced, each about one-fourth common, native inch in diameter, have red stems. BEHAVIORS Gray dogwood may be found statewide in Illinois. It grows in moist woods, upland woods, dry to wet prairies and along roadsides. Flowers are produced from May through July. Gray dogwood plants grow in clusters that give the appearance of a mound. Several species of songbirds take advantage of the closely-spaced twigs and camouflage of the leaves to build their nest in gray dogwood thickets. The leaves, buds, twigs and fruit of this plant are used as food by some wildlife species. Seeds are dispersed in the waste material of birds and mammals that eat the fruit. Leaves turn red or purple in the fall of the year. ILLINOIS RANGE leaves and flowers © Illinois Department of Natural Resources. 2021. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources. leaves and flowers Aquatic Habitats bottomland forests; wet prairies and fens Woodland Habitats bottomland forests; coniferous forests; southern Illinois lowlands; upland deciduous forests Prairie and Edge Habitats black soil prairie © Illinois Department of Natural Resources. 2021. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources..
    [Show full text]
  • Selecting Trees and Shrubs in Windbreaks
    Fall 2012 Selecting Trees and Shrubs in Windbreaks Windbreaks are plantings of single or multiple rows of trees or shrubs that are established for one or more environmental purposes. Purposes of windbreaks include: wind protection, controlling blowing and drifting snow, wildlife habitat establishment, energy saving, living screens, odor abatement and more. The effectiveness of a windbreak depends on suitable tree and shrub selection as well as planting density and spacing. This fact sheet offers information on tree and shrub species to consider in Minnesota windbreak plantings and a list of resources for technical and financial assistance. Tree and Shrub Selection: Windbreak tree and shrub selection is extremely important to insure an effective, long lasting planting. Plants need to be winter hardy and should have a positive history of plantings in the area suitable for the site and soils. Select multiple species of trees and shrubs, so if there is a failure in a row the windbreak is still effective for the purposes. A mix of deciduous and coniferous plants is recommended and should be based on the purpose of the planting. Many plants can offer potential income benefits such as edible, decorative, crafts, medicinal and specialty woods. As appropriate, first consider using native plants. Landowners should consult with area or County Soil and Water Conservation Districts/National Resources Conservation Service, Department of Natural Resource and Extension staff to get a recommended list of plants suitable for the area. Density: How dense
    [Show full text]
  • Cornaceae – Dogwood Family
    CORNACEAE – DOGWOOD FAMILY Plant: shrubs and small trees (possibly herbs elsewhere) Stem: twigs with white or brown pith Root: Leaves: mostly deciduous but some evergreen; mostly not toothed but may be wavy, opposite or less often alternate; no stipules Flowers: mostly perfect locally (or dioecious elsewhere); sometimes with large petal-like bracts; small, mostly 4-5 sepals, often just teeth or minute; mostly 4-5 petals or rarely none; 4-10 (15) stamens; ovary inferior, usually 2 carpels, usually 1 style Fruit: drupe or berry, oily, 1-2 seeded Other: widespread in tropical and temperate regions; locally the dogwoods; some put Nyssa (sour gum genus) in this family instead of in the Nyssaceae; Dicotyledons Group Genera: 65+ species; locally Cornus (dogwood) – Some would put Nyssa and relatives here instead of the family Nyssaeae WARNING – family descriptions are only a layman’s guide and should not be used as definitive Flower Morphology in the Cornaceae (Dogwood Family) Examples of genus Cornus Silky Dogwood Cornus amomum Mill. Flowering Dogwood Cornus florida L. Roughleaf Dogwood Cornus drummondii C.A. Mey. Bunchberry Dogwood [Dwarf Cornel] Cornus canadensis L. CORNACEAE – DOGWOOD FAMILY Alternate Leaf [Pagoda] Dogwood; Cornus alternifolia L. f. Silky Dogwood; Cornus amomum Mill. Bunchberry Dogwood [Dwarf Cornel]; Cornus canadensis L. Roughleaf Dogwood; Cornus drummondii C.A. Mey. Flowering Dogwood; Cornus florida L. Kousa Dogwood; Cornus kousa Hance (Introduced) Gray [Panicled] Dogwood; Cornus racemosa Lam. Red Ossier; Cornus sericea
    [Show full text]
  • Trees, Shrubs, and Perennials That Intrigue Me (Gymnosperms First
    Big-picture, evolutionary view of trees and shrubs (and a few of my favorite herbaceous perennials), ver. 2007-11-04 Descriptions of the trees and shrubs taken (stolen!!!) from online sources, from my own observations in and around Greenwood Lake, NY, and from these books: • Dirr’s Hardy Trees and Shrubs, Michael A. Dirr, Timber Press, © 1997 • Trees of North America (Golden field guide), C. Frank Brockman, St. Martin’s Press, © 2001 • Smithsonian Handbooks, Trees, Allen J. Coombes, Dorling Kindersley, © 2002 • Native Trees for North American Landscapes, Guy Sternberg with Jim Wilson, Timber Press, © 2004 • Complete Trees, Shrubs, and Hedges, Jacqueline Hériteau, © 2006 They are generally listed from most ancient to most recently evolved. (I’m not sure if this is true for the rosids and asterids, starting on page 30. I just listed them in the same order as Angiosperm Phylogeny Group II.) This document started out as my personal landscaping plan and morphed into something almost unwieldy and phantasmagorical. Key to symbols and colored text: Checkboxes indicate species and/or cultivars that I want. Checkmarks indicate those that I have (or that one of my neighbors has). Text in blue indicates shrub or hedge. (Unfinished task – there is no text in blue other than this text right here.) Text in red indicates that the species or cultivar is undesirable: • Out of range climatically (either wrong zone, or won’t do well because of differences in moisture or seasons, even though it is in the “right” zone). • Will grow too tall or wide and simply won’t fit well on my property.
    [Show full text]
  • Cornus, Cornaceae) Dans L'herbier De Strasbourg (STR
    1 Les Cornouillers ( Cornus , Cornaceae) dans l’Herbier de Strasbourg (STR) Yvan Brahy et Michel Hoff Avec la collaboration de Françoise Deluzarche, Frédéric Tournay, Gisèle Haan-Archipof et Claudine Bertin-Charbonnier Herbier de l’Université de Strasbourg 2 3 Plan Introduction 1. Etude nomenclaturale et taxonomique des Cornus des Herbiers de Strasbourg. 1. Cornus alba C. Linnaeus 1.2. Cornus alternifolia C. Linnaeus f. 1.3. Cornus amomum Mill. 1.4. Cornus asperifolia Michaux. 1.5. Cornus canadensis C. Linnaeus 1.6. Cornus capitata Wall. 1.7. Cornus disciflora Moc. & Sessé ex D.C. 1.8. Cornus excelsa Kunth 1.9. Cornus florida C. Linnaeus 1.10. Cornus foemina Mill. 1.11. Cornus kousa F. Buerger ex Miquel 1.12. Cornus macrophylla Wall. 1.13. Cornus mas C. Linnaeus 1.14. Cornus nuttallii Audubon ex Torr. & A. Gray 1.15. Cornus officinalis Siebold & Zucc. 1.16. Cornus quinquinervis Franch. 1.17. Cornus racemosa Lam. 1.18. Cornus rugosa Lam. 1.19. Cornus sanguinea C. Linnaeus 1.20. Cornus sericea C. Linnaeus 1.21. Cornus suecica C. Linnaeus 1.22. Spécimens indéterminés 2. Analyse de la collection des spécimens de l’Herbier des Cornus 2.1. Introduction 2.2. Les collecteurs 2.3. Les collections 2.4. Les années de collecte 2.5. Les pays et régions de collecte 2.6. Les habitats de collecte 2.7. Les principaux jardins botaniques 2.8. Conclusion Conclusion générale Bibliographie Sites internet Annexes Annexe 1 : Caractères des Cornus Annexe 2 : Arbre de parenté des Cornus Annexe 3 : Illustrations 4 Diagramme du genre Cornus 5 Introduction Le genre Cornus rassemble, selon les auteurs, entre 43 et 46 espèces dans le monde (P.
    [Show full text]
  • Vascular Flora of Capel Glacial Drift Hill Prairie Natural Area, Shelby County, Illinois
    Transactions of the Illinois State Academy of Science received 5/2/12 (2012) Volume 105, #3&4 pp. 85-93 accepted 1/7/13 Vascular Flora of Capel Glacial Drift Hill Prairie Natural Area, Shelby County, Illinois William E. McClain1, John E. Ebinger2*, Roger Jansen3, and Gordon C. Tucker2 1Illinois State Museum, Springfield, IL 62706 2Department of Biological Sciences, Eastern Illinois University, Charleston, IL 61920 3Illinois Department of Natural Resources 1660 West Polk Avenue, Charleston, IL 61920 *corresponding author ([email protected]) ABSTRACT The vascular flora of Capel Glacial Drift Hill Prairie Natural Area, Shelby County, Illi- nois was studied during the 2009 and 2010 growing seasons. The 1.10 ha glacial drift hill prairie is located on a southwest-facing slope associated with Lake Shelbyville, Wolf Creek State Park 4 km east of Findley, Illinois. Plant community structure was deter- mined using m2 square quadrats located at one-meter intervals along two randomly located transect lines. Frequency, mean cover, relative frequency, relative cover, and importance value (I. V. total = 200) were determined from the data collected. A total of 106 vascular plant taxa were observed on the site, with 39 encountered in the plots. Andropogon gerardii (big bluestem) had the highest importance value followed by Schi- zachyrium scoparium (little bluestem), Echinacea pallida (pale coneflower), and Dalea purpurea (purple prairie clover). Exotic species were represented by six taxa. Key Words: Andropogon gerardii, glacial hill prairie formation, soil slumping. INTRODUCTION Small prairie openings in the forested landscapes of east-central Illinois were first described and named “hill prairies” by Vestal (1918).
    [Show full text]