Chapter Four: Landscaping with Native Plants a Gardener’S Guide for Missouri Landscaping with Native Plants a Gardener’S Guide for Missouri

Total Page:16

File Type:pdf, Size:1020Kb

Chapter Four: Landscaping with Native Plants a Gardener’S Guide for Missouri Landscaping with Native Plants a Gardener’S Guide for Missouri Chapter Four: Landscaping with Native Plants A Gardener’s Guide for Missouri Landscaping with Native Plants A Gardener’s Guide for Missouri Introduction Gardening with native plants is becoming the norm rather than the exception in Missouri. The benefits of native landscaping are fueling a gardening movement that says “no” to pesticides and fertilizers and “yes” to biodiversity and creating more sustainable landscapes. Novice and professional gardeners are turning to native landscaping to reduce mainte- nance and promote plant and wildlife conservation. This manual will show you how to use native plants to cre- ate and maintain diverse and beauti- ful spaces. It describes new ways to garden lightly on the earth. Chapter Four: Landscaping with Native Plants provides tools garden- ers need to create and maintain suc- cessful native plant gardens. The information included here provides practical tips and details to ensure successful low-maintenance land- scapes. The previous three chap- ters include Reconstructing Tallgrass Prairies, Rain Gardening, and Native landscapes in the Whitmire Wildflower Garden, Shaw Nature Reserve. Control and Identification of Invasive Species. use of native plants in residential gar- den design, farming, parks, roadsides, and prairie restoration. Miller called his History of Native work “The Prairie Spirit in Landscape Landscaping Design”. One of the earliest practitioners of An early proponent of native landscap- Miller’s ideas was Ossian C. Simonds, ing was Wilhelm Miller who was a landscape architect who worked in appointed head of the University of the Chicago region. In a lecture pre- Illinois extension program in 1912. He sented in 1922, Simonds said, “Nature published a number of papers on the Introduction 3 teaches what to plant. By going to prairies, wetlands, river-bottom for- the neighboring woods and seeing ests, glades and upland savannas. the trees and plants and shrubs they They have evolved with the extremes contain, one can tell pretty accu- of our climate, a wide array of patho- rately what plants will do well in any gens and a variety of soil and mois- given locality.” Nearly 100 years ago ture types, creating a palette of Simonds, Miller, and others understood durable and showy Missouri native that native plants are a good choice for plants that are the focus of landscape use in landscaping and they were right. gardening. Plants such as yellow wild Today native plants are used in resi- indigo (Baptisia sphaerocarpa), native dential and commercial landscaping, to the tallgrass prairie, and white- highway projects, habitat restoration, tinged oak sedge (Carex albicans), storm-water management, for parks which grows in dry woodlands, are and corporate office buildings. easy-to-grow beauties being show- cased in botanical garden displays, Metro St. Louis Sewer District rain Why Use Missouri Native gardens, and homeowners’ flower beds. Gardeners who use Missouri Plants? native plants have more success than those who use plants from other Local Ecotype Native Plants regions of the United States. Missouri’s natural plant communities offer a diversity of native plants to gardeners. For thousands of years, they have been adapting to life in A typical Missouri creek in the Ozarks (left) and rocky glade (right) are homes to many native plants that are useful in native landscaping. Introduction 4 Landscaping with Native Plants A Gardener’s Guide for Missouri ensures seasonal interest, with the Eight Reasons to Use Native bonus of attracting colorful birds, but- Plants terflies and insects. For a Sense of Place For Stormwater Management People who have lived in one place for Rain gardens, bioretention and wet- a time develop images of their home land detention basins are a few best that create a sense of belonging and management practices in use. They familiarity. Those who have lived in slow down and absorb rain water, thus rural Missouri know about flowering reducing the quantity and velocity of dogwood. For instance, its blossoms stormwater runoff while improving and berries have made their mark in water quality. the hearts and thoughts of so many Missouri residents that it is the state See Chapter Two – Rain Gardening tree. Many people have recognized this and Storm Water Management for heart-felt connection with nature, and it details on planning, constructing and often is referred to as “sense of place”. maintaining rain gardens. For Beautification For Educational Opportunities Wildflowers, flowering vines, shrubs and trees offer a wide range of colors, Native plant gardens present end- textures and forms to create dynamic less opportunities for learning about seasonal displays. Grasses and sedges seasonal cycles, wildlife, and plant have interesting flowers and seed life cycles. Quiet spaces outside can heads and yellow–orange fall color. be used for art and reading classes. Shrubs and trees have fall color and Environmental and conservation topics berries that persist into the winter. are taught best outdoors. Choosing a wide assortment of plants Left: Luna moth perched on wood poppy. Right: Sulphur butterfly getting nectar from a New England aster blossom. 5 wild bergamot (Monarda fistulosa) and round-leaved groundsel (Senecio obova- tus) deter deer. Some plants repel deer because of their coarse, rough, hairy or spiny textures. This group includes rat- tlesnake master (Eryngium yuccifolium) and prickly pear cactus (Opuntia humi- fusa). A deer-resistant garden includes a high percentage of these types of plants. See pages 32-33 for a list of deer resis- Bioretention seeding in Columbia, Missouri tant native plants. reduces maintenance costs associated with mowing, mulching, and weeding. For Erosion Control For Less Maintenance Siltation is a main source of water pol- Compared with lawns and mulched lution. Soil loss can be reduced by tree, shrub and perennial plantings, using plants with strong, deep roots in landscapes planted with appropriate place of turf, rock or concrete. Plants native plants require less maintenance. hold the soil, absorb water and slow They require minimal watering (except the flow of water over the surface. during establishment and drought peri- Replacing turf with native plantings is ods) and they need no chemical fertil- an effective way to help control erosion. izers or pesticides. To Create Wildlife Habitat Characteristics of native plants that reduce maintenance include: A native plant garden with a diversity • Longevity: plants that live for of trees, shrubs, perennials and grasses many decades provides food and shelter for insects, • Three to four-season interest: plants birds, amphibians and mammals that are apealing most of the year throughout the growing season. • Variable conditions: plants that Leaving seed heads and plant structure tolerate a wide range of light and throughout winter provides continuing moisture conditions food and shelter for many creatures • Small and compact: plants that are and provides opportunities to observe in scale with a given space nature up close. • Weed elimination: plants that grow into dense groupings and eliminate For Resistance to Deer Browse weeds • Seediness: plants that do not spread Deer are adaptable and eat a wide vari- readily from seed ety of plants. Forturately there are many native plants that deer avoid. Deer See page 24 for a list of top performing rely on their sense of smell to deter- native plants that reduce the amount of mine whether an area is safe and which maintenance. plants are desirable to eat. For instance, plants with aromatic foliage such as 6 Landscaping with Native Plants A Gardener’s Guide for Missouri Cost comparisons: This list provides many reasons to use native plants in a landscape, but Turf before you begin planting, think about • Average turf installation per what you want the landscape to do acre (seed): $3,000 for you. You may want to reduce time • Average turf installation per and money spent mowing a large acre (sod): $8,000 expanse of turf. Or you may want to • Annual turf maintenance per reduce the expense of installing annu- acre: $1,000 al flower beds. These numbers put the • Annual turf maintenance cost of mowing grass and maintaining for homeowner:$500 standard planting beds into perspec- tive. Native Prairie Seeding • Average prairie seeding per acre: $1,500 • Annual prairie maintenance per acre: $200 The proper handling of stormwater runoff is a significant issue for homeowners, neigh- borhoods and communities. Left: a rain garden planted with Missouri native plants at the Missouri Methodist Conference Center in Columbia, Missouri. Right: Missouri Botanical Garden bioretention best managment practice (BMP) planted with natives in the main entry parking lot (oak sedge (Carex albicans) in foreground). 7 Mulched Groundcover Planting • Average planting per 1,000 sq. ft. $2,500 • Annual maintenance per 1,000 sq. ft. $200 Standard Mulched Planting Bed • Average planting per 1,000 sq. ft. $3,500 • Annual maintenance per 1,000 sq. ft. $400 Native groundcovers require the least amount of maintenance because they establish quickly, are long-lived, sup- press weeds and require little mulch once established. Native groundcov- ers also are an excellent alternative A site plan of your property will help you to invasive wintercreeper euonymus, decide where to place gardens, walkways, English ivy and periwinkle that have patios and stormwater features. escaped cultivation and invaded many natural woodlands in Missouri. Indicate north, south, east, and west, soil types, existing vegetation See page 26 for a list of native and patterns of shade and sunlight. groundcovers. Make copies of the drawing so various versions of the planning Site Evaluation process can be kept as the design changes. As possibilities are pulled Map the Area together, remember the saying “don’t fight the site.” For most con- Now that you’ve thought about ditions encountered, there is a list of why to use native plants and what plants that will thrive there. It is your goals are, it’s time to make simpler and less expensive to use a map.
Recommended publications
  • Backgrounder: the New York Botanical Garden's Legacy Of
    Moore in America: Monumental Sculpture at The New York Botanical Garden May 24 – November 2, 2008 Backgrounder: The New York Botanical Garden’s Legacy of Natural and Designed Landscapes The New York Botanical Garden, a 250-acre site that has been designated a National Historic Landmark, offers a wealth of beautiful landscapes, including a hardwood Forest, ponds, lakes, streams, rolling hills with dramatic rock outcroppings carved by glaciers, and New York City’s only freshwater river, which runs through the heart of the Forest in a magnificent rock gorge. These picturesque natural features have been further enhanced by more than a century of artful plantings, gardens, and landscapes designed by the nation’s leading landscape architects and garden designers. As a result of both its natural and human legacies, the Botanical Garden today offers an exceptional setting for outdoor sculpture. Scenic beauty and stunning natural features Following the New York State Governor’s approval on April 28, 1891, of The New York Botanical Garden Act of Incorporation, a site needed to be selected for the location of this new educational and scientific institution. Selection turned to an undeveloped park in the central Bronx. In 1887, a published description of this area notes, “it would be difficult to do justice to the exquisite loveliness of this tract without seeming to exaggerate…gigantic trees, centuries old, crown these summits, while great moss and ivy-covered rocks project here and there at different heights above the surface of the water, increasing the wildness of the science.” An 1893 newspaper account describes the romantic vistas of an old stone house, snuff mill, and other artifacts of previous land use, while surrounded with “almost every tree known to the American forest in the Northern clime.” The underlying bedrock, dark gray Fordham gneiss, shapes many rock outcrops, rolling hills, and steep slopes, ranging from 20 to 180 feet above sea level.
    [Show full text]
  • Vascular Plants at Fort Ross State Historic Park
    19005 Coast Highway One, Jenner, CA 95450 ■ 707.847.3437 ■ [email protected] ■ www.fortross.org Title: Vascular Plants at Fort Ross State Historic Park Author(s): Dorothy Scherer Published by: California Native Plant Society i Source: Fort Ross Conservancy Library URL: www.fortross.org Fort Ross Conservancy (FRC) asks that you acknowledge FRC as the source of the content; if you use material from FRC online, we request that you link directly to the URL provided. If you use the content offline, we ask that you credit the source as follows: “Courtesy of Fort Ross Conservancy, www.fortross.org.” Fort Ross Conservancy, a 501(c)(3) and California State Park cooperating association, connects people to the history and beauty of Fort Ross and Salt Point State Parks. © Fort Ross Conservancy, 19005 Coast Highway One, Jenner, CA 95450, 707-847-3437 .~ ) VASCULAR PLANTS of FORT ROSS STATE HISTORIC PARK SONOMA COUNTY A PLANT COMMUNITIES PROJECT DOROTHY KING YOUNG CHAPTER CALIFORNIA NATIVE PLANT SOCIETY DOROTHY SCHERER, CHAIRPERSON DECEMBER 30, 1999 ) Vascular Plants of Fort Ross State Historic Park August 18, 2000 Family Botanical Name Common Name Plant Habitat Listed/ Community Comments Ferns & Fern Allies: Azollaceae/Mosquito Fern Azo/la filiculoides Mosquito Fern wp Blechnaceae/Deer Fern Blechnum spicant Deer Fern RV mp,sp Woodwardia fimbriata Giant Chain Fern RV wp Oennstaedtiaceae/Bracken Fern Pleridium aquilinum var. pubescens Bracken, Brake CG,CC,CF mh T Oryopteridaceae/Wood Fern Athyrium filix-femina var. cyclosorum Western lady Fern RV sp,wp Dryopteris arguta Coastal Wood Fern OS op,st Dryopteris expansa Spreading Wood Fern RV sp,wp Polystichum munitum Western Sword Fern CF mh,mp Equisetaceae/Horsetail Equisetum arvense Common Horsetail RV ds,mp Equisetum hyemale ssp.affine Common Scouring Rush RV mp,sg Equisetum laevigatum Smooth Scouring Rush mp,sg Equisetum telmateia ssp.
    [Show full text]
  • Agriculture and the Future of Food: the Role of Botanic Gardens Introduction by Ari Novy, Executive Director, U.S
    Agriculture and the Future of Food: The Role of Botanic Gardens Introduction by Ari Novy, Executive Director, U.S. Botanic Garden Ellen Bergfeld, CEO, American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America The more than 320 million Americans alive today depend on plants for our food, clothing, shelter, medicine, and other critical resources. Plants are vital in today’s world just as they were in the lives of the founders of this great nation. Modern agriculture is the cornerstone of human survival and has played extremely important roles in economics, power dynamics, land use, and cultures worldwide. Interpreting the story of agriculture and showcasing its techniques and the crops upon which human life is sustained are critical aspects of teaching people about the usefulness of plants to the wellbeing of humankind. Botanical gardens are ideally situated to bring the fascinating story of American agriculture to the public — a critical need given the lack of exposure to agricultural environments for most Americans today and the great challenges that lie ahead in successfully feeding our growing populations. Based on a meeting of the nation’s leading agricultural and botanical educators organized by the U.S. Botanic Garden, American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, this document lays out a series of educational narratives that could be utilized by the U.S. Botanic Garden, and other institutions, to connect plants and people through presentation
    [Show full text]
  • Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas
    Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas Texas milkweed (Asclepias texana), courtesy Bill Carr Compiled by Jason Singhurst and Ben Hutchins [email protected] [email protected] Texas Parks and Wildlife Department Austin, Texas and Walter C. Holmes [email protected] Department of Biology Baylor University Waco, Texas Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas Created in partnership with the Lady Bird Johnson Wildflower Center Design and layout by Elishea Smith Compiled by Jason Singhurst and Ben Hutchins [email protected] [email protected] Texas Parks and Wildlife Department Austin, Texas and Walter C. Holmes [email protected] Department of Biology Baylor University Waco, Texas Introduction This document has been produced to serve as a quick guide to the identification of milkweeds (Asclepias spp.) in Texas. For the species listed in Table 1 below, basic information such as range (in this case county distribution), habitat, and key identification characteristics accompany a photograph of each species. This information comes from a variety of sources that includes the Manual of the Vascular Flora of Texas, Biota of North America Project, knowledge of the authors, and various other publications (cited in the text). All photographs are used with permission and are fully credited to the copyright holder and/or originator. Other items, but in particular scientific publications, traditionally do not require permissions, but only citations to the author(s) if used for scientific and/or nonprofit purposes. Names, both common and scientific, follow those in USDA NRCS (2015). When identifying milkweeds in the field, attention should be focused on the distinguishing characteristics listed for each species.
    [Show full text]
  • Grasses Plant List
    Grasses Plant List California Botanical Name Common Name Water Use Native Aristida purpurea purple three-awn Very Low X Arundinaria gigantea cane reed Low Bothriochloa barbinodis cane bluestem Low X Bouteloua curtipendula sideoats grama Low X Bouteloua gracilis, cvs. blue grama Low X Briza media quaking grass Low Calamagrostis x acutiflora cvs., e.g. Karl feather reed grass Low Foerster Cortaderia selloana cvs. pampas grass Low Deschampsia cespitosa, cvs. tufted hairgrass Low X Distichlis spicata (marsh, reveg.) salt grass Very Low X Elymus condensatus, cvs. (Leymus giant wild rye Low X condensatus) Elymus triticoides (Leymus triticoides) creeping wild rye Low X Eragrostis elliottii 'Tallahassee Sunset' Elliott's lovegrass Low Eragrostis spectabilis purple love grass Low Festuca glauca blue fescue Low Festuca idahoensis, cvs. Idaho fescue Low X Festuca mairei Maire's fescue Low Helictotrichon sempervirens, cvs. blue oat grass Low Hordeum brachyantherum Meadow barley Very Low X Koeleria macrantha (cristata) June grass Low X Melica californica oniongrass Very Low X Melica imperfecta coast range onion grass Very Low X Melica torreyana Torrey's melic Very Low X Muhlenbergia capillaris, cvs. hairy awn muhly Low Muhlenbergia dubia pine muhly Low Muhlenbergia filipes purply muhly Low Muhlenbergia lindheimeri Lindheimer muhly Low Muhlenbergia pubescens soft muhly Low Muhlenbergia rigens deer grass Low X Nassella gigantea giant needle grass Low Panicum spp. panic grass Low Panicum virgatum, cvs. switch grass Low Pennisetum alopecuroides, cvs.
    [Show full text]
  • Presence of the Indole Alkaloid Reserpine in Bignonia Capreolata L
    Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2012; 4(3); 89-91 ISSN: 0975-4873 Research Article Presence of the Indole Alkaloid Reserpine in Bignonia Capreolata L. Clark. T1, *Lund. K.C.1,2 1Department of Botanical Medicine, Bastyr University, Kenmore WA, USA 2Bastyr University Research Institute, Kenmore WA, USA ABSTRACT Bignonia capreolatais a perennial semi-evergreen vine from the Southeast United States that was used as a medicine by the Native Americans but has since fallen out of use. A preliminary screen of B. capreolata suggested the presence of the indole alkaloid reserpine. This analysis was undertaken to 1) verify the presence reserpine using LC-MS referenced with an analytical standard of reserpine; and 2) if verified, quantitate the level of reserpine in B. capreolata leaf. LC-MS analysis has confirmed the presence of reserpine in B. capreolata, which makes this the only known plant outside the Apocynaceae family to contain this indole alkaloid. INTRODUCTION MATERIALS AND METHODS Bignonia capreolata(crossvine)is a perennial semi- Plant Material: Leaf and stem of Bignonia capreolataL. evergreen vine native to the Eastern United States. It is a were collected in near Shelby, Alabama (USA). A member of the Bignoniaceae family, a plant family sample of the plant material used for testing was predominately found in tropical and subtropical regions. authenticated by a botanist (George Yatskievych, PhD) It is known by the common name crossvine and has and submitted to the Missouri Botanical Gardens become a popular ornamental plant due to its showy herbarium (voucher #6257878). clusters of orange to red trumpet flowers1.Ethnobotanical Sample Preparation: Plant material was dried whole and use in North Americahas been documented for the leaves removed for processing.
    [Show full text]
  • The Genus Baptisia in Alabama
    Woods, M. and A.R. Diamond, Jr. 2014. The genus Baptisia in Alabama. Phytoneuron 2014-83: 1–11. Published 12 August 2014. ISSN 2153 733X THE GENUS BAPTISIA (FABACEAE) IN ALABAMA MICHAEL WOODS [email protected] ALVIN R. DIAMOND , JR. Department of Biological and Environmental Sciences Troy University Troy, Alabama 36082 ABSTRACT The primary objectives of this project were to determine which species of Baptisia (Fabaceae) occur in Alabama and to report the county distribution of each. Baptisia , known commonly as wild or false indigo, is recognized as consisting of seven species in Alabama. The most common species are Baptisia alba, B. bracteata, and B. megacarpa. The less common species are B. lanceolata and B. albescens . The least common species are B. australis and B. perfoliata. The dichotomous key and descriptions we present are modifications from earlier authors; however, all measurements are based on morphological features of the vegetative and reproductive structures of the more than 200 specimens studied during this project. Data for the county-level distribution maps were compiled entirely from herbarium vouchers. Baptisia , commonly known as wild or false indigo, consists of 18 species, 7 infraspecific taxa, and 6 hybrids confined to the eastern USA and Canada (NatureServe 2013). Of these, 15 species have been reported from the southeastern USA (Isely 1990) and eight species and one infraspecific taxon have been reported from Alabama (Kral et al. 2011). The genus Baptisia Vent. is a member of the legume family Fabaceae (Leguminosae), tribe Thermopsideae, which includes six genera and approximately 45 species scattered through the Mediterranean and eastern North America (Turner 1981).
    [Show full text]
  • Palynological Evolutionary Trends Within the Tribe Mentheae with Special Emphasis on Subtribe Menthinae (Nepetoideae: Lamiaceae)
    Plant Syst Evol (2008) 275:93–108 DOI 10.1007/s00606-008-0042-y ORIGINAL ARTICLE Palynological evolutionary trends within the tribe Mentheae with special emphasis on subtribe Menthinae (Nepetoideae: Lamiaceae) Hye-Kyoung Moon Æ Stefan Vinckier Æ Erik Smets Æ Suzy Huysmans Received: 13 December 2007 / Accepted: 28 March 2008 / Published online: 10 September 2008 Ó Springer-Verlag 2008 Abstract The pollen morphology of subtribe Menthinae Keywords Bireticulum Á Mentheae Á Menthinae Á sensu Harley et al. [In: The families and genera of vascular Nepetoideae Á Palynology Á Phylogeny Á plants VII. Flowering plantsÁdicotyledons: Lamiales (except Exine ornamentation Acanthaceae including Avicenniaceae). Springer, Berlin, pp 167–275, 2004] and two genera of uncertain subtribal affinities (Heterolamium and Melissa) are documented in Introduction order to complete our palynological overview of the tribe Mentheae. Menthinae pollen is small to medium in size The pollen morphology of Lamiaceae has proven to be (13–43 lm), oblate to prolate in shape and mostly hexacol- systematically valuable since Erdtman (1945) used the pate (sometimes pentacolpate). Perforate, microreticulate or number of nuclei and the aperture number to divide the bireticulate exine ornamentation types were observed. The family into two subfamilies (i.e. Lamioideae: bi-nucleate exine ornamentation of Menthinae is systematically highly and tricolpate pollen, Nepetoideae: tri-nucleate and hexa- informative particularly at generic level. The exine stratifi- colpate pollen). While the
    [Show full text]
  • Oberholzeria (Fabaceae Subfam. Faboideae), a New Monotypic Legume Genus from Namibia
    RESEARCH ARTICLE Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume Genus from Namibia Wessel Swanepoel1,2*, M. Marianne le Roux3¤, Martin F. Wojciechowski4, Abraham E. van Wyk2 1 Independent Researcher, Windhoek, Namibia, 2 H. G. W. J. Schweickerdt Herbarium, Department of Plant Science, University of Pretoria, Pretoria, South Africa, 3 Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, South Africa, 4 School of Life Sciences, Arizona a11111 State University, Tempe, Arizona, United States of America ¤ Current address: South African National Biodiversity Institute, Pretoria, South Africa * [email protected] Abstract OPEN ACCESS Oberholzeria etendekaensis, a succulent biennial or short-lived perennial shrublet is de- Citation: Swanepoel W, le Roux MM, Wojciechowski scribed as a new species, and a new monotypic genus. Discovered in 2012, it is a rare spe- MF, van Wyk AE (2015) Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume cies known only from a single locality in the Kaokoveld Centre of Plant Endemism, north- Genus from Namibia. PLoS ONE 10(3): e0122080. western Namibia. Phylogenetic analyses of molecular sequence data from the plastid matK doi:10.1371/journal.pone.0122080 gene resolves Oberholzeria as the sister group to the Genisteae clade while data from the Academic Editor: Maharaj K Pandit, University of nuclear rDNA ITS region showed that it is sister to a clade comprising both the Crotalarieae Delhi, INDIA and Genisteae clades. Morphological characters diagnostic of the new genus include: 1) Received: October 3, 2014 succulent stems with woody remains; 2) pinnately trifoliolate, fleshy leaves; 3) monadel- Accepted: February 2, 2015 phous stamens in a sheath that is fused above; 4) dimorphic anthers with five long, basifixed anthers alternating with five short, dorsifixed anthers, and 5) pendent, membranous, one- Published: March 27, 2015 seeded, laterally flattened, slightly inflated but indehiscent fruits.
    [Show full text]
  • Amorpha Canescens Pursh Leadplant
    leadplant, Page 1 Amorpha canescens Pursh leadplant State Distribution Best Survey Period Photo by Susan R. Crispin Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Status: State special concern the Mississippi valley through Arkansas to Texas and in the western Great Plains from Montana south Global and state rank: G5/S3 through Wyoming and Colorado to New Mexico. It is considered rare in Arkansas and Wyoming and is known Other common names: lead-plant, downy indigobush only from historical records in Montana and Ontario (NatureServe 2006). Family: Fabaceae (pea family); also known as the Leguminosae. State distribution: Of Michigan’s more than 50 occurrences of this prairie species, the vast majority of Synonym: Amorpha brachycarpa E.J. Palmer sites are concentrated in southwest Lower Michigan, with Kalamazoo, St. Joseph, and Cass counties alone Taxonomy: The Fabaceae is divided into three well accounting for more than 40 of these records. Single known and distinct subfamilies, the Mimosoideae, outlying occurrences have been documented in the Caesalpinioideae, and Papilionoideae, which are last two decades from prairie remnants in Oakland and frequently recognized at the rank of family (the Livingston counties in southeast Michigan. Mimosaceae, Caesalpiniaceae, and Papilionaceae or Fabaceae, respectively). Of the three subfamilies, Recognition: Leadplant is an erect, simple to sparsely Amorpha is placed within the Papilionoideae (Voss branching shrub ranging up to ca. 1 m in height, 1985). Sparsely hairy plants of leadplant with greener characterized by its pale to grayish color derived from leaves have been segregated variously as A. canescens a close pubescence of whitish hairs that cover the plant var.
    [Show full text]
  • Cynodonteae Tribe
    POACEAE [GRAMINEAE] – GRASS FAMILY Plant: annuals or perennials Stem: jointed stem is termed a culm – internodial stem most often hollow but always solid at node, mostly round, some with stolons (creeping stem) or rhizomes (underground stem) Root: usually fibrous, often very abundant and dense Leaves: mostly linear, sessile, parallel veins, in 2 ranks (vertical rows), leaf sheath usually open or split and often overlapping, but may be closed Flowers: small in 2 rows forming a spikelet (1 to several flowers), may be 1 to many spikelets with pedicels or sessile to stem; each flower within a spikelet is between an outer limna (bract, with a midrib) and an inner palea (bract, 2-nerved or keeled usually) – these 3 parts together make the floret – the 2 bottom bracts of the spikelet do not have flowers and are termed glumes (may be reduced or absent), the rachilla is the axis that hold the florets; sepals and petals absent; 1-6 but often 3 stamens; 1 pistil, 1-3 but usually 2 styles, ovary superior, 1 ovule – there are exceptions to most everything!! Fruit: seed-like grain (seed usually fused to the pericarp (ovary wall) or not) Other: very large and important family; Monocotyledons Group Genera: 600+ genera; locally many genera 2 slides per species WARNING – family descriptions are only a layman’s guide and should not be used as definitive POACEAE [GRAMINEAE] – CYNODONTEAE TRIBE Sideoats Grama; Bouteloua curtipendula (Michx.) Torr. var. curtipendula - Cynodonteae (Tribe) Bermuda Grass; Cynodon dactylon (L.) Pers. (Introduced) - Cynodonteae (Tribe) Egyptian Grass [Durban Crowfoot]; Dactyloctenium aegyptium (L.) Willd (Introduced) [Indian] Goose Grass; Eleusine indica (L.) Gaertn.
    [Show full text]
  • Vegetative Growth and Organogenesis 555
    Vegetative Growth 19 and Organogenesis lthough embryogenesis and seedling establishment play criti- A cal roles in establishing the basic polarity and growth axes of the plant, many other aspects of plant form reflect developmental processes that occur after seedling establishment. For most plants, shoot architecture depends critically on the regulated production of determinate lateral organs, such as leaves, as well as the regulated formation and outgrowth of indeterminate branch systems. Root systems, though typically hidden from view, have comparable levels of complexity that result from the regulated formation and out- growth of indeterminate lateral roots (see Chapter 18). In addition, secondary growth is the defining feature of the vegetative growth of woody perennials, providing the structural support that enables trees to attain great heights. In this chapter we will consider the molecular mechanisms that underpin these growth patterns. Like embryogenesis, vegetative organogenesis and secondary growth rely on local differences in the interactions and regulatory feedback among hormones, which trigger complex programs of gene expres- sion that drive specific aspects of organ development. Leaf Development Morphologically, the leaf is the most variable of all the plant organs. The collective term for any type of leaf on a plant, including struc- tures that evolved from leaves, is phyllome. Phyllomes include the photosynthetic foliage leaves (what we usually mean by “leaves”), protective bud scales, bracts (leaves associated with inflorescences, or flowers), and floral organs. In angiosperms, the main part of the foliage leaf is expanded into a flattened structure, the blade, or lamina. The appearance of a flat lamina in seed plants in the middle to late Devonian was a key event in leaf evolution.
    [Show full text]